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Abstract

Trusted Third Parties (TTPs) are widely employed in various scenarios for providing fairness
guarantees (e.g., in fair exchange or e-commerce protocols, including secure two-party computa-
tion), for distributing secrets (e.g., in authentication or secret-sharing protocols, as well as group
signatures), and for creating trust (e.g., as certificate authorities). Such wide use of TTPs, as
well as the trust requirement that is put on them make them a prime target for distributed
systems and cryptography research.

There are some well-known and proven solutions to the problem of distributing the trust put
on TTPs: byzantine agreement or secure multi-party computation techniques can be employed
to distribute the job of any TTP to multiple parties, tolerating up to half or one-third of those
parties being malicious. Such techniques are not widely-employed in practice possibly due to
their quadratic complexity or inter-operation requirements. This brings up the question of
distributing TTPs in a much more efficient way, possibly via using autonomous agents, who do
not directly communicate with each other.

In this paper, we present various known techniques for distributing the trust put on TTPs.
Then, we concentrate on using multiple autonomous parties, who do not communicate with each
other at all, to realize a single TTP. We discuss the role of synchrony in such attempts, and
conclude with some open questions.

Keywords: trusted third party, fair exchange, distributing trust.

1 Introduction

Many current systems rely on trusted third parties (TTPs) for performing their operations fairly,
securely, or efficiently. TTPs are crucially important in many scenarios, some of whom we will look
at in detail in this paper. For example, it is proven that efficient fair exchange protocols cannot
be completely fair without the help of a TTP that is mutually trusted by both of the parties
performing the exchange [71]. Therefore, TTPs are employed in all state-of-the-art optimistic fair
exchange and e-commerce protocols [2, 56, 57, 3, 7, 10, 33, 67]. If the TTP acts dishonestly, then
the result may be unfairness against one of the parties.

Many other systems rely on TTPs. In authentication and certification systems [69, 51] the
dishonesty of the TTP may break the security of the whole system. In group signature schemes

∗Parts of Section 4 of this article previously appeared in [55].

1



[26] dishonesty may result in losing privacy. In secret-sharing protocols [80, 14] a dishonest dealer
may prevent the system from working at all. In some secure multi-party computation and secure
two-party computation protocols that employ a TTP for providing fairness [63, 19], indeed the
protocol is unfair without a TTP anyway; thus one may argue that using a dishonest TTP is
no worse than not using a TTP. In some reputation-based systems and e-auction protocols TTP
incentivizes honest behavior, and absence or dishonesty of TTP would mean either no or faulty
work getting done, or a high-price economy [50, 79, 77, 9].

Due to the multitude of systems that rely on TTPs for various guarantees on fairness, security,
or efficiency, there is a pressing need to distribute the trust put on those central entities. The
usual way of distributing the trust is employing multiple parties instead of a single central TTP.
Obviously, other than distributing the trust, such systems generally increase fault tolerance of the
system, though not always (e.g., some systems require that all parties must act as part of the TTP
function, for example by using n-out-of-n secret sharing, which actually increases the number of
points of failure, thus creating a negative effect on fault tolerance [41]).

The standard mechanisms of distributing trust include Byzantine agreement [12, 16, 39, 60, 53]
and secure multi-party computation [86, 45, 11, 24, 22] techniques. Given such a general tool,
any TTP functionality can be distributed to multiple parties, up to half or one-third of whom
may be malicious. Unfortunately, this extraordinary benefit comes with a price: communication
complexity that is quadratic in terms of the number of parties employed for distributing the TTP
[34]. Indeed, this is one of the reasons why TTPs are not implemented in a distributed manner
in reality. Threshold cryptosystems [32, 30, 31] may also be used to distribute the job of TTP in
some systems, and we believe further research in this area should be done.

On the other hand, it is conceivable to employ multiple autonomous parties to perform the job
of a TTP [55]. Autonomous parties never directly communicate with each other, and hence can be
realized by independent entities with ease. Their decisions do not depend on each other’s decisions.
They do not even need to be aware that other parties realizing the TTP exist. In essence, they can
consider themselves as the sole TTP in the system, and base their decisions accordingly. Effectively,
you can create your own TTP agent and set it running independently of others, without explicitly
having an identity as part of a group as in byzantine systems. This is a very desirable property
especially in peer-to-peer settings [5].

As in previous scenarios, the idea is to rely on maybe at least half of these parties being honest,
thereby distributing the trust. One benefit of such an approach is that since the parties forming the
TTP are autonomous, the complexity of communication among these agents is zero. The parties
participating in the underlying system using the TTP (e.g., parties trying to fairly exchange their
items) may have increased communication costs, since now they may need to contact more than a
single agent. Just as in many other solutions, the synchrony of those agents forming the TTP will
play a crucial role in such autonomous distributed TTPs, as we will discuss later.

In this paper, we shall first discuss non-autonomous solutions to distributing trust. There has
been extensive work in this area, yet we can only provide an overview. Then, we will transition to
employing autonomous agents in distributing trust. The main idea will be based on representing
the finite state machine of the TTP and the agents employed to form that TTP, and then relating
the states of the participating parties, explaining how the state of one affects the state of the other.
We will then look at a single scenario in more detail: autonomous distributed TTP in optimistic
fair exchange. After discussing the role of synchrony, we shall conclude with some related topics
and open problems.
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2 Cryptographic Preliminaries

We informally define many cryptographic primitives that will be used in this paper. A crypto-
savvy reader may freely skip this section. Parts of these will be repeated in a scattered manner
throughout the text.

Secure multi-party computation is a technique where n multiple independent parties may
jointly compute a function f(x1, ..., xn) where xi is the input provided by party i. The security
property states that no party j can learn information about others’ inputs, except what he can
infer using the output of the function f and its own input xj . Secure two-party computation is just
the same, but with only two parties.

Secret sharing techniques let a single party owning a secret value s to distribute this secret
to n parties. Each party i will obtain a share si. If this is a threshold secret sharing system where
the threshold is t, then any t out of these n parties may combine their shares to obtain the original
secret s. The security property states that any t − 1 element subset of the parties has no way of
figuring out the original secret.

Threshold cryptography is essentially the generalization of the secret sharing idea to other
systems. For example, in encryption, if we distribute shares of the secret decryption key to n
parties, then the moment t of these parties combine their shares to reconstruct the secret, they
have obtained the decryption key, and thus there is almost no meaning left for distributing it. In
threshold encryption, this idea is taken one step further: The decryption key is never reconstructed,
but any t out of n parties may jointly decrypt some given ciphertext. Threshold cryptography is
hence the name given to such cryptosystems where multiple parties jointly perform some operation
without reconstructing and revealing the secret.

An escrow is simply a public key encryption under the TTP’s key, together with a label. This
label is public, but is tied to the ciphertext. The TTP must verify that the conditions on the label
are satisfied before decrypting the escrow.

A verifiable escrow is an escrow with the additional property that the contents of the ci-
phertext can be checked to satisfy a particular relation, without being decrypted. For example, if
electronic cash is verifiably escrowed, then the party who receives the verifiable escrow can verify
that the encrypted cash has real value, without obtaining the cash. Just as for regular escrows, the
TTP verifies the conditions on the label before decrypting.

Fair exchange involves two parties who wish to exchange two items. Fairness means at the
end of the exchange, either both parties obtain each other’s value, or no one obtains anything
useful. A fair exchange requires a TTP to be involved [71]. Optimistic fair exchange systems
still require a TTP to be present, but the TTP is involved only when there is a dispute between
the participants.

3 Non-Autonomous Distribution of Trust

This section concentrates on distribution of trust via multiple communicating agents. We first
overview some general techniques that are applicable to a wide-range of problems. We may mention
specific applications to these techniques, but the techniques themselves are general. Then, we
mention solutions to distributing trust for some specific applications.
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3.1 General Techniques

Byzantine Agreement and Quorum Systems: The “Specification of Dependable Trusted
Third Parties” [18] provides a nice overview of some general techniques for distributing TTPs in
many applications, including certificate authorities, directory services, optimistic fair exchange,
digital notary (timestamping), and Kerberos-like authentication services (see also [17]). Since all
the techniques presented are based on byzantine agreement type of solutions [12, 16, 39, 60, 53]
as well as threshold cryptography [32, 30, 31], they require broadcast messages and thus incur
high communication complexity. The general framework can be summarized as follows: The client
broadcasts messages to at least t+1 agents of the distributed TTP. Depending on the requirements
of the TTP job, the client and the agents need to employ reliable broadcast, atomic broadcast,
or secure causal atomic broadcast to realize the distributed service. The agents use threshold
cryptography techniques to respond. The client waits for at least 2t+1 responses, and then accepts
the majority decision. If secure causal atomic broadcast is used, the client encrypts her request,
and in many cases, the client may perform recovery of threshold cryptosystem shares.

The specification considers general adversary structures [49, 8, 66] rather than just threshold
systems. An interesting observation follows: Such systems that are based on quorums or general
adversary structures may, in cases, tolerate an adversary who actually corrupts more than half of
the agents. Following an example in the specification document, the agents used to distribute the
TTP may employ, let’s say, four different operating systems: Microsoft Windows, Mac OS, Linux,
BSD. Furthermore, it is possible that different numbers of agents use each (e.g., let’s say Microsoft
Windows is used by half of the agents, Linux is used by a quarter, and Mac OS and BSD are used
by one-eighth of agents each). It is possible to design the system such that the system may tolerate
corruption of any two operating system while still maintaining security (e.g., if Windows and Linux
are corrupted, then three-quarters of the agents are malicious, but the system is still secure) [18].
The basic idea is to create virtual players in a quorum or secure multi-party computation system
such that a single virtual player is potentially simulated via multiple real agents’ interaction [49, 8].

Threshold Cryptography Systems: Two other related techniques include threshold cryp-
tography [32, 30, 31] and proactive security [23]. Threshold cryptography can be thought of as an
extension of threshold secret sharing. In general, secret sharing is a technique that can be used to
distribute a TTP functionality to multiple agents. If a k-out-of-n secret-sharing scheme is used, an
adversary must corrupt k servers to break security, or fault n-k+1 servers to break availability [62].
However, in secret-sharing schemes [80, 14], there are two main problems: the trusted distributor
problem and the trusted combiner problem [62]. The trusted distributor problem is addressed
using (publicly) verifiable secret-sharing schemes [38, 74, 43], and the trusted combiner problem is
addressed via threshold cryptography [32, 30, 31]. Using verifiable secret sharing, one may make
sure that the initial distribution of shares to distributed TTP agents is done correctly. In some
cases, this is not enough of a guarantee, since this still necessitates an initial secret creator who is
trusted. Furthermore, secret-sharing schemes, in general, require secure (encrypted and authenti-
cated) channels between the agents. If the distributed TTP job is an authentication service, this
creates a chicken-and-egg issue. The better alternative is joint generation of secrets [75, 44, 48, 40].

Jointly generating the secret is the first step toward distributing some TTPs, but it is not
enough from a security standpoint. When the secret needs to be reconstructed, normally, one of
the agents will be responsible for combining the shares, and will thus obtain the initial secret.
If that single agent is corrupted, then the adversary obtains the whole secret, and the system is
completely broken. The solution is two-fold: either (1) the reconstruction must be done by the
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client contacting the TTP [5], or (2) threshold cryptography must be employed. In threshold
cryptosystems [32, 30, 31], the secret is never reconstructed; rather, each agent contributes to the
final output (e.g., final ciphertext or signature) using her own secret, and only this final output will
be revealed instead of the secret. It makes perfect sense, for example, when the final output is a
signature on a message using a key that was secret-shared: The signature is revealed, but the key
is not. This way, it is possible to distribute the job of a certificate authority easily: As long as some
k-out-of-n agents in the distributed certificate authority sign the certificate, then it is possible to
obtain a valid certificate. To break such a system, an adversary must corrupt at least k agents.
Note that, the reason we have listed such a solution under non-autonomous category is that, even
though the agents need not communicate with each other (especially if the client contacting the
TTP performs reconstruction), there is still the initial setup phase that involves all distributed
TTP agents.

Proactive security takes the idea one step further, and combines such a distributed system with
periodic key refresh [23]. The main idea is that, even when threshold cryptography is employed,
it is conceivable that the adversary corrupts many parties, just not at the same time. With each
corrupted party, the adversary learns a share of the secret, and with enough corrupted parties
(not necessarily corrupted simultaneously; thus this scenario is not considered in the system’s
security definition) the adversary obtains enough shares to reconstruct the original secret, hence
completely breaking the security of the system. With periodic refreshes, it is now necessary that the
adversary must corrupt enough parties (again, not necessarily simultaneously) before the next time
period (epoch) begins, thus increasing security and longevity of such distributed systems greatly
in practice.

Trusted Hardware/Software Systems: In some systems, a central TTP is deemed trusted
based on hardware or software assumptions, including secure execution environments (e.g., Java
applets), smartcards, or trusted computing modules [29, 1]. If such hardware or software trust
assumptions are realistic, then the load will definitely be distributed, but not necessarily the trust.
Firstly, if all of the distributed TTP agents employ the same hardware or software trust assumption
(e.g., same tamper-resistant smartcard technology or operating system is used), then the security
of such a distributed TTP system still relies on a central assumption; if that trust assumption
is broken, it does not matter much that the system is distributed. Second, synchronization still
constitutes a huge problem: If the distributed TTP is a timestamping service, then all clocks must
be synchronized, if a certificate authority is distributed this way, the certificate revocation lists
must be synchronized [29]. Yet, some benefits of such approaches include potentially increased
security in situations where each user essentially runs its own TTP based on such a hardware or
software assumption. In such a case, if a single agent is compromised, then generally only a single
user will be affected (although this does not address the first issue above). Furthermore, such a
distribution may be useful in many scenarios, provided that the trust assumption holds, including
type checking, verifying proof-carrying code, certificate checking, timestamping, virus confinement,
censorship (e.g., DRM) [1].

State-Machine Replication Systems: Finally, as a general technique, some works have
employed the finite state machines of the TTPs to be distributed in their protocols [76, 58, 78, 55,
81], referred to as state-machine replication. In particular, Shmatikov and Mitchell [81] provide
finite-state machine representation of the participants in two contract signing (i.e., fair signature
exchange) protocols, and use a finite-state verification tool to analyze their weaknesses.

Yet, state-machine replication technique is not limited to non-autonomous scenarios. Küpçü
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and Lysyanskaya [55] employ a similar technique (without a tool) to find general impossibility
results regarding distributing the TTP. We will discuss details of this technique in Section 4. We
believe the technique is widely-applicable to other scenarios.

3.2 Specific Scenarios

E-Commerce Systems: TTP in e-commerce has been one of the concentration areas for dis-
tribution. Some systems employ a hierarchical TTP structure not for distributing trust but for
scalability [70], some look at strategies of buyers and sellers and conclude that TTPs are required
to incentivize honest trading behavior and to keep the risk and thus prices low [50], and some
realize that there are at least two types of different TTPs required in such systems: The first is a
TTP who certifies the quality of the good being sold. In reality, forums, review sites, or reputation
systems play the role of such a (possibly distributed) TTP [56, 57, 79, 77, 28]. The second is a
TTP who has legal authority on the parties, and able to fine them or revoke their reputation [54].

E-commerce systems such as Bitcoin [68] try to improve the efficiency and fault tolerance of the
system while reducing the trust requirements by distributing the job of the trusted central bank
to peers in a peer-to-peer system. The system uses the proof-of-work idea [36, 35, 52, 6, 61, 65],
leading to a secure system as long as the total CPU time spent by honest parties is much more than
that of the attacker. As with almost all other non-autonomous distribution systems, it employs
broadcast messaging or public announcements.

Timestamping Systems: This requirement of broadcast messaging or public announcements
is also tied to the use of digital timestamping services [46, 13, 64]. The ideas used in digital
timestamping is almost the same as byzantine agreement techniques. Some systems, for efficiency
reasons, allow for a mixed approach: If the participants agree on a single trusted TTP, such a
central TTP may be employed, otherwise a costly distributed approach must be used [15].

Fair Exchange Systems: In secure two-party computation (2PC) and secure multi-party
computation (SMPC) [86, 45, 11, 24, 22], a general problem is fairness: how can one guarantee
that the output is fairly delivered to all participants. While trying to address this issue, the use of
external or internal TTPs have been proposed. External TTP systems require an additional party
to play the role of TTP, whereas internal TTP systems employ some or all of the participants in
the system to create a TTP. Lindell [63] proposes a 2PC system with an external TTP who can
enforce that if a malicious party breaks fairness, then he must pay the honest party for his loss.
Cachin and Camenisch [19] similarly proposes a 2PC extension where basically the TTP ensures
fair exchange of the computation results. The techniques used are very similar to those used in the
optimistic fair exchange setting [2, 56, 57].

In addition to the use of such external TTPs, internal TTP usage has also been proposed. If
a 2PC protocol using a TTP exists for some task, it may be possible to use other participants in
an SMPC protocol as the internal TTP [83]. It is possible to imagine a tree hierarchy of SMPC
participants. For each pair of parties in this hierarchy, their parent will act as the TTP in their
2PC protocol execution. Unfortunately, this technique cannot be employed directly for all tasks,
and extreme care must be taken to ensure the security properties are preserved.

Group Signature Systems: Group signatures introduce yet another type of TTP: group
managers. In a group signature, any member of the group can sign on behalf of the group, without
revealing his identity [26]. In general, a group manager needs to be able to identify, if necessary,
the member who signed a particular message. When a group manager misbehaves, anonymity
is lost. Yet, an interesting property of group signature schemes require that, at least, the group
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manager cannot frame a member by claiming that she signed a message that she did not sign in
reality. Hierarchical group signatures [82] are proposed to distribute the load and also trust of
group managers, such that a group manager in the hierarchy can identify only users that are one
level below. As an example scenario, a group manager bank can identify which one of the credit
card holders signed a message, and the credit card company can identify which bank’s card was
used to sign that purchase message. This way, even though there are multiple group managers, a
customer is required to only trust her bank (in terms of her identity in the trade), rather than the
credit card company or any other bank (who may be the manager of some other group, and who
may issue the same brand credit cards).

Outsourced Computation Systems: Looking at the issue from a different angle, one may
consider outsourced computation systems [9, 79, 77]. Such systems have multiple TTPs: a boss
who assigns the jobs and decides if it has been done correctly, and a bank who rewards or fines the
contractors using credits or reputation. Interestingly, though, one may think of such systems as
distributing the trust in some other way. When a group of contractors are employed to perform some
job and their results are compared, instead of employing just a single contractor, such systems are
effectively distributing the trust put on any one contractor. Indeed, the Belenkiy et al. [9] scheme
does this using autonomous contractors, but the setting is much different than the one we consider
here: they assume these distributed agents can be fined and rewarded (by possibly yet another
TTP). When we distribute a TTP, ideally we do not want to rely on yet another TTP. But in some
situations, for example situations as above where this technique is employed to reduce the number
of TTPs in the system (the contractor is no longer a TTP), this strategy may make perfect sense.

Forms of TTPs: Lastly, TTPs are sometimes referred to as trusted neutral parties (since
the trust is on their neutrality: they do not collude with participants of the underlying system),
semi-trusted parties, or even untrusted third parties (since they are not trusted in terms of the
privacy of the messages in the underlying protocol) [83, 41]. Moreover, public bulletin boards or
trusted hardware may also be considered as TTPs [72]. In some settings TTP is called the judge
emphasizing the fact that the TTP has legal authority over the participants [54]. In essence, these
are all trusted parties in one sense or the other.

4 Autonomous Distribution of Trust

There is no known generic system proposed for autonomous distribution of trust, but the technique
is used for several applications. Indeed, autonomous techniques are applied in distributed storage
and shared memory scenarios [4, 73, 59, 47]. In general, in those systems, a writer is supposed to
contact multiple entities for writing a single value. Similarly, a reader retrieves the value from mul-
tiple entities as well. In the setting where the storage servers do not communicate, this constitutes
an autonomous system (assuming a static set of servers, since otherwise the initialization will be
non-autonomous). Some other solutions do employ non-autonomous techniques though [37]. See
[27, 85] for more discussion about distributed storage techniques.

In this section, we will concentrate on a method for analyzing autonomous TTP distribution
for optimistic fair exchange protocols [55]. The main goal and hope is that these techniques may
be widely applicable, thus leading to interesting open problems, and possible solution techniques
for other types of protocols.

We will first explain the general technique of using finite state machine abstraction, as presented
by Küpçü and Lysyanskaya [55]. Then, we will summarize the known results for distributing
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the TTP in optimistic fair exchange protocols, based on this finite state machine abstraction.
Following that, we will discuss the role of synchrony, and summarize a technique that is known
to distribute the trust using autonomous agents, assuming all agents have synchronized clocks
(though communication is asynchronous).

Informally, an optimistic fair exchange protocol involves three participants: Alice and Bob who
would like to exchange items, and the arbiter (TTP) who is involved only if there is a dispute
between Alice and Bob. Alice and Bob each have some item that they would like to exchange.
They want the exchange to be fair: At the end, either both Alice and Bob obtain each other’s
item, or neither party obtains anything useful. In the case that there is a dispute, they contact the
arbiter.

Slightly more formally, a fair exchange protocol is composed of three interactive algorithms:
Alice running algorithm A, Bob running algorithm B, and the arbiter running the trusted algorithm
T . Alice has content fA, and Bob has content fB. Bob would like to obtain fA from Alice, and
Alice would like to obtain fB from Bob.

Completeness for an optimistic fair exchange protocol states that the interactive run of A and
B by honest parties results in A getting fB and B getting fA. The arbiter’s algorithm T is not
involved, assuming an ideal network where messages are not delayed or lost.

Fairness states that at the end of the protocol, either A obtains fB and B obtains fA, or neither
Alice nor Bob gets anything useful. If something goes wrong, Alice and/or Bob contact the arbiter
(TTP) to either resolve the issue, or abort the protocol. For formal definitions, we refer the reader
to the paper by Küpçü and Lysyanskaya [56].

4.1 Finite State Machine Abstraction

Figure 1: Semantic view of
the state machines of the
participants.

We start by defining a general optimistic fair exchange model that
fits currently known state-of-the-art optimistic fair exchange schemes.
Our model uses an arbiter, and has semantics for aborting and resolv-
ing, which we define below.

All the participants (Alice, Bob and the agents that form the dis-
tributed TTP) are interactive Turing Machines (ITMs). Those ITMs
have the following 4 semantic states: working, aborted, resolved, dis-
pute (see Figure 1). These semantic states can correspond to multiple
states in the actual ITM definitions of the participants, but these ab-
stractions will be used to prove the results. A dispute state is not
absolutely necessary for our analysis, but is included for the sake of
intuitive formulation.

The ITM of each participant starts in the working state. Semantically, working state denotes
any state that the actual ITM of a participant is in when the protocol is still taking place. When
a participant does not receive the expected correctly-formed message from the other participant,
(s)he can possibly abort or decide to contact the TTP agents for resolving or aborting with them,
in which case the ITM of that participant enters her/his dispute state. If everything goes well in
the protocol execution (all messages received from the other party are correctly formed), then the
ITM of a participant transitions to the resolved state directly from the working state. Otherwise,
if the TTP agents must be contacted, the ITM first enters the dispute state, and then transitions
to either resolved or aborted state. Arbiters’ dispute state is not needed in our analysis, and one
may safely ignore it.
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When the optimistic fair exchange protocol ends, Alice and Bob are allowed to end only in
aborted or resolved states. If Alice ends at her resolved state, then, by definition, she must have
obtained fB. Similarly, if Bob ends at his resolved state, this means he obtained fA. When the
protocol ends, if the ITM of a participant is not in its resolved state, it is considered to be in
its aborted state. Using these semantic definitions, even an adversarial ITM can be considered to
have resolved and aborted states (since the adversary either obtains the honest party’s item and
hence ends at its resolved state, or not therefore ending at its aborted state). Thus, if both parties
are honest, then both end at their resolved states. If both are malicious, then the protocol is not
supposed to guarantee fairness. Therefore, these two cases are not interesting, and hence will not
be covered in this paper. If one party is malicious and the other is honest, then we need to analyze
possible scenarios.

Definition 4.1 (End of the Protocol). We say that the protocol has ended if both participants
satisfy one of the following based on them being honest or adversarial:

• The honest party ended up being in her either resolved or aborted state.

• The adversarial party produced its final output at its either resolved or aborted state, after
running at most a polynomial number of steps (polynomial in some security parameter).

To be able to meaningfully conclude anything from the finite state machine representations
of the participants, we need to rely on some observations, assumptions, specifications, possible
generalizations, and most importantly, dependence between states of different parties. To do this,
we adopt the DAFE (Distributed Arbiter Fair Exchange) framework [55]. We will assume that
instead of using a single TTP, the optimistic fair exchange protocol now uses multiple agents
(arbiters). DAFE protocols are optimistic fair exchange protocols that satisfy the following three
properties, which are defined immediately afterward:

• Exclusive states assumption

• Dependence between arbiters’ state and Alice’s and Bob’s

• Autonomous arbiters assumption

Exclusive states assumption: This assumption states that the resolved and aborted states
are mutually exclusive. For an arbiter, those states informally mean whether or not the arbiter
helped one of the parties to resolve or abort. We assume that there is no combination of state
transitions that can take an honest arbiter from the aborted state to the resolved state, or vice
versa. In most existing protocols, this corresponds to the fact that the arbiter will not abort with
a participant first and then decide to resolve with him or the other participant, or vice versa.
An honest arbiter can keep executing abort (or resolve) protocols with other participants in the
exchange while he is in the aborted (or resolved, respectively) state, but cannot switch between
these states.

Definition 4.2 (Aborting and Resolving with an arbiter). If a participant interacts with an arbiter
and aborts with him, the arbiter goes to his aborted state. Similarly, if a participant resolves with
an arbiter, the arbiter goes to his resolved state.

Definition 4.3 (Aborted and Resolved Protocol Instance). A protocol instance is called aborted
if both Alice and Bob end at their aborted states, and called resolved if both Alice and Bob end at
their resolved states.
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Dependence between arbiters’ state and Alice’s and Bob’s: A resolution makes sense
if at least one of the parties has not resolved yet (i.e., there is a dispute). In such a case, at least
one or both of Alice and Bob is not already in their resolved state. The party who is not yet in its
resolved state can end in its resolved state (unless (s)he already is in her/his aborted state) if and
only if a set of arbiters end in their resolved states. This set of arbiters can be different for Alice or
Bob. Actually, there can be more than one set of arbiters that is enough for this resolution. One
may consider a threshold of arbiters to be necessary, or maybe some well-defined subset [49, 8].

Autonomous arbiters assumption: We assume that the honest arbiters’ decisions are made
autonomously, without taking into account the decisions of the other arbiters. Arbiters can arrive
at the same decision seeing the same input, but they will not consider each other’s decision while
making their own decisions. In particular, this means no communication takes place between honest
arbiters (malicious arbiters can do anything they want).

Yet, a dependence between the arbiters’ decisions can be generated by Alice or Bob, by con-
tacting the arbiters with some specific order. Therefore, to model the autonomy, we require the
protocol design to state that when the ITM of an honest participant decides to contact the arbiters
for dispute resolution, the participant creates the message to send to all of the arbiters before
receiving any response from any arbiter. One can model this with the dispute state in which the
message to send to the arbiters are prepared all at once. Note that a malicious party can freely
introduce dependence between messages to arbiters. Interestingly, Küpçü and Lysyanskaya [55]
find that this indirect autonomy assumption is not necessary for most of their results, and only
the direct autonomy (i.e., no communication between arbiters) suffices to prove meaningful results
based on this finite state machine abstraction of optimistic fair exchange protocols.

To argue about fairness of protocols in this finite state machine abstraction model, we define
semantic fairness property that must be satisfied by all optimistic fair exchange protocols.

Semantic Fairness: The semantic fairness property states that at the end of the protocol,
Alice and Bob both end at the same state (they both end at their aborted states, or they both
end at their resolved states). In other words, we need the protocol instance to be either resolved
or aborted as in Definition 4.3, for every possible instance of the protocol. Note that, due to our
aborted and resolved state definitions, semantic fairness implies fairness.

Notation: Let N denote the set of all arbiters, where there are a total of n of them (|N | = n).
An honest arbiter acts as specified by the protocol. Let F be the set of arbiters who are friends
with a malicious participant. Those arbiters are adversarial (e.g., may appear as aborted to the
honest party, but still resolve with the malicious party).

Define two sets HR and MR, which are sets of sets. Any set HR ∈ HR is a set of arbiters that
is sufficient for the honest party to resolve. Similarly, any set MR ∈ MR is a set of arbiters that
is sufficient for the malicious party to resolve. Therefore, by definition, in case of a dispute, the
honest party will end at her resolved state if and only if she resolves with all the arbiters in any
one of the sets in HR (assuming she is not already in her resolved or aborted state). Similarly,
the malicious party will end at his resolved state if and only if he resolves with all the arbiters
in any one of the sets in MR (assuming he is not already in his resolved or aborted state). For
DAFE protocols, these sets are well-defined by the protocol description, and do not change once
the honest party enters its dispute state.

A special case of these sets can be represented as thresholds. Let TH be the number of arbiters
the honest party needs to contact for resolution. Similarly, TM denotes the number of arbiters the
malicious party needs to contact for resolution. Thus, the set HR is composed of all subsets of N
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with TH or more arbiters. Similarly, the set MR is composed of all subsets of N with TM or more
arbiters.

Define RH as the set of arbiters the honest party H has already resolved with, and RM as the
set of arbiters the malicious party M has already resolved with. Also define RA as the set of all
arbiters that are available for H for resolution. Initially, when the dispute resolution begins, we
assume that RH = ∅, RM = F , and RA = N − F (and all arbiters are available for resolution to
the malicious party). We furthermore have the following actions and their effects on these sets:

Action 1. H resolves with an arbiter X: As a result, RH becomes RH ∪ {X}.

Action 2. M resolves with an arbiter X: As a result, RM becomes RM ∪ {X}.

Action 3. H aborts with an arbiter X ∈ RA: As a result, RA becomes RA − {X}.

Action 4. M aborts with an arbiter X ∈ RA: As a result, RA becomes RA − {X}.

As a final note, the DAFE protocols do not assume that the arbiters have access to synchronized
clocks. We assume that the adversary can re-order messages, delay the honest party’s messages to
the arbiters, insert his own messages, etc. But he cannot delay honest party’s messages indefinitely :
the honest party eventually reaches the arbiters that he wants to contact initially.

4.2 Applying DAFE Framework

In this section, we provide a sample use of such a finite state machine abstraction framework. Full
results have been presented by Küpçü and Lysyanskaya [55]. The idea is to first prove smaller
results, called scenarios, and then use these in proving results for full protocols. In these proofs,
only the state machine semantics described in Section 4.1 are used, and no particular assumption
about the underlying protocol are employed. This way, the results are as general as possible.

4.2.1 Scenario 1: M can Abort

In this scenario, we consider a protocol instance where the malicious party has the ability to abort
and resolve. The honest party can possibly abort and resolve too, but this does not affect the
results. In this scenario, actions 1, 2, and 4 are possible. The results will remain valid regardless
of action 3 being possible.

Lemma 4.1. For every DAFE protocol instance where M can abort, there must exist a time t
when ∀MR ∈ MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any time in the protocol instance ∃MR ∈ MR(t) s.t. ∀HR ∈ HR(t)
HR ̸⊆ MR − F (t). The malicious party can break fairness as follows: He aborts with the set of
arbiters RA − MR, and resolves with the set of arbiters MR. Since no HR is now a subset of the
available arbiters RA = MR − F (t), the honest party cannot resolve, while the malicious party
already resolved. Thus this protocol instance is unfair (does not satisfy semantic fairness).

Corollary 4.1.1. Using threshold-based mechanisms, there must exist a time t that satisfies TH ≤
TM − |F (t)|.
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4.2.2 Scenario 2: Only H can Abort

In this scenario, we assume that the malicious party has the ability to resolve only (since the case
where he can abort is already covered in the previous scenario), whereas the honest party can abort
and resolve. In this scenario, actions 1 to 3 are possible (action 4 is not possible).

Lemma 4.2. For every DAFE protocol instance where only H can abort, there must exist a time
t when ∀MR ∈ MR(t) ∃HR ∈ HR(t) s.t. HR ⊆ MR − F (t).

Proof. Assume otherwise: At any given time ∃MR ∈ MR(t) s.t. ∀HR ∈ HR(t) HR ̸⊆ MR − F (t).
The malicious party can break fairness as follows: When H wants to abort the protocol, M lets
abort messages to all arbiters in RA −MR reach their destinations, but intercept the messages to
MR −F (t). He then resolves with MR. Even if H notices this, he cannot go and resolve since there
is no set HR ∈ HR(t) that will allow him to. Therefore, this protocol instance also does not satisfy
semantic fairness.

Note that the result of Lemma 4.2 is the same as Lemma 4.1, and therefore all the corollaries
apply to this scenario too.

4.2.3 Protocols where only one party can Abort

In this section, we consider protocols where only one party may initiate an abort. Without loss of
generality, Alice is given the ability to abort and resolve, whereas Bob is given only the ability to
resolve. Consider the following two cases when such a protocol is run:
Case 1: Honest Alice and Malicious Bob: This case falls under Scenario 2, which requires
that ∀BR ∈ BR ∃AR ∈ AR s.t. AR ⊆ BR − FB .
Case 2: Malicious Alice and Honest Bob: This case falls under Scenario 1, which requires
that ∀AR ∈ AR ∃BR ∈ BR s.t. BR ⊆ AR − FA.

These two cases lead to the conclusion that every protocol instance needs two sets AR ∈ AR
and BR ∈ BR s.t. AR = BR ⊆ TR, where TR denotes the set composed of all trusted arbiters.
These arbiters must be trusted, and so there is no point in distributing the TTP to multiple agents.
It is even worse: If any of these arbiters are corrupted, the DAFE protocol fails to be fair. When
considering threshold-based schemes, this corresponds to the requirement that TB ≤ TB−FA−FB ,
which means no party should have any friends for such a protocol to be fair. If even one arbiter is
corrupted, the protocol becomes unfair.

Therefore, we conclude that for DAFE protocols where only one party can abort, distributing
the TTP is worse than not distributing (since having multiple arbiters means higher chance of
corrupting one of them). Küpçü and Lysyanskaya [55] present even more impossibility results
regarding other types of DAFE protocols.

4.3 Implications for Existing Optimistic Fair Exchange Protocols

We have observed, in the context of optimistic fair exchange protocols, how a finite state machine
abstraction can be employed to prove general results about protocols having common semantics.
Before commenting on the results about protocols where only one party can abort, as discussed
above, let us investigate a generic mechanism of converting a regular optimistic fair exchange
protocol to a DAFE protocol; equivalently, distributing the trust put on the TTP to multiple
autonomous arbiters.
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As a representative of optimistic fair exchange protocols, we consider a state-of-the-art protocol
due to Asokan, Shoup and Waidner (ASW) [2]. Their protocol employs verifiable escrow [20, 21,
2, 56] under the (one and only) arbiter’s public key. The intuition behind using verifiable escrows
is that the recipient can verify, without learning the actual content, that the encrypted content is
the content that is promised and the arbiter can decrypt it. Verifiable secret sharing techniques
can be employed to split the promised secret to multiple arbiters. Each of these secrets will be
encrypted under a different arbiter’s public key. The recipient can still verify those encrypted
shares can be decrypted and combined to obtain the promised secret, thereby effectively achieving
the same goal as a verifiable escrow, but for multiple arbiters. The resolution procedure now
requires contacting multiple arbiters. For example, if the threshold for the secret sharing method
used is k, the resolution will involve contacting at least k arbiters. For a detailed explanation of
how to use verifiable secret sharing in distributing the arbiters, we refer the reader to [5].

In terms of the state semantics of the participants, it is clear that the ending states of the
participants can be parsed into aborted and resolved states which are mutually exclusive. There is
no message exchange between the arbiters; they are autonomous. As for the dependence between
arbiters’ state and Alice’s and Bob’s, since resolution needs k shares, and secure secret sharing
and encryption methods are used, a participant can obtain the other participant’s exchange item
if and only if (s)he resolves with at least k arbiters (in case of a dispute). This relationship makes
perfect sense when multiple autonomous arbiters are used, since the main goal in distributing the
arbiter is distributing the trust. Therefore, the goal is to find some number of honest arbiters each
one of which will individually contribute to dispute resolution between participants by resolving or
aborting with them. When arbitrary sets are used instead of thresholds, it is easy to see all these
arguments will still apply.

Unfortunately, the ASW protocol allows Alice to abort and resolve whenever necessary, and Bob
to resolve if necessary. Considering the extension presented above where the TTP job is distributed
to multiple autonomous arbiters, this protocol fits the definition of protocols where only one party
can abort. This means, using static resolution sets and autonomous arbiters, ASW-type protocols
cannot be extended to use multiple arbiters to distribute trust in an asynchronous system.

4.4 Role of Synchrony

Remember that the DAFE framework explicitly stated that the arbiters do not have access to
synchronized clocks. In this section, we extend the DAFE framework with timeouts of arbiters (ac-
complished via synchronized clocks), and present the DAFET framework (DAFE with Timeouts).
We first present the changes to the original framework, and then present possibility and optimality
results regarding the synchronous setting.

4.4.1 DAFET Framework

In DAFET protocols, we allow for timeouts by giving the arbiters access to loosely synchronized
clocks. To reflect existing constructions, instead of actions 3 and 4 in DAFE protocols (honest or
malicious party aborting), the following action is allowed:

Action 5. An arbiter X ∈ RA − RH − RM times out: As a result, RA becomes RA − {X}.

Another difference between DAFE and DAFET protocols is the sets HR and MR being static
and dynamic, respectively. DAFE protocols define such sets as static: the overall set of arbiters
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that needs to be contacted for resolution does not change with time once the honest party enters
its dispute state (hence the notation HR and MR).

Consider a DAFE type protocol that employs dynamic sets like this: Bob can resolve only with
arbiters that Alice has already resolved with. We can think of it as Bob’s set initially being empty,
and then getting populated. Unfortunately, this protocol does not guarantee timely resolution
(unless there is a timeout in the protocol) since Bob may need to wait indefinitely for Alice.

In contrast, we allow DAFET protocols to employ dynamic sets (hence the notation HR(t) and
MR(t)). These sets may depend on the timeout and possibly the parties’ actions in that particular
instance of the protocol. Consider the following two cases as illustrative examples: Some type
of protocols allow, let’s say, Alice to resolve only after a timeout. Some other type of protocols
allow Alice to resolve only with an arbiter that Bob has already resolved with (or vice versa). In
analyzing such types of protocols, we will consider HR(t) and MR(t) as dynamic, letting them
change with those actions.

Lastly, the set of friends of a malicious party can also change with time, if the adversary is
allowed to adaptively corrupt arbiters. In that case, we will use the notation F (t). As for DAFE
protocols, we assume that the adversary can re-order messages, delay the honest party’s messages
to the arbiters, insert his own messages, etc. But we assume that the honest party reaches the
arbiters that he wants to contact before the timeout, whenever necessary.

4.4.2 Results in the Synchronous Setting

When one considers synchrony between distributed agents forming the TTP, the results may change.
In particular, using the DAFET framework, we allow the arbiters to have access to a synchronized
clock, and employ timeouts. Timeouts are tied to the use of dynamic sets in general. When only one
party can resolve before the timeout, static resolution sets lose their meaning since the resolution
set for the party who cannot resolve before the timeout is empty until the timeout. That set gets
defined only after the timeout, which results in that set being dynamic in a very basic sense. Thus,
the set of arbiters needed by a party for resolution changes during the course of the execution of
the protocol instance. By adjusting resolution sets reactively, a protocol may provide semantic
fairness. One such existing protocol is due to Avoine and Vaudenay (AV) [5].

They present a three-step protocol: (1) Alice starts by sending verifiable secret shares of her
item encrypted under each arbiter’s public key. (2) Bob responds with his item. (3) Alice responds
with her item. To resolve, Bob contacts k arbiters before the timeout to get the decrypted shares
and reconstruct the secret of Alice (where k is the threshold for the secret sharing scheme). Before
giving the decrypted share, each honest arbiter asks for the item of Bob. When Alice, after the
timeout, contacts an arbiter who has resolved with Bob, then she is given Bob’s item. Alice may
need to contact up to n − k + 1 arbiters. Note that the moment Bob resolves with any honest
arbiter, Alice is guaranteed to be able to resolve. It is relatively straightforward to see that this
constitutes a DAFET protocol.

In this protocol, sets HR(t) and MR(t) are dynamic. The set BR(t) contains all subsets of
N with k or more arbiters and AR(t) is initially empty1. We further have the following action
(specific to this protocol):

1It does not contain the empty set, it is empty. This means initially no set of arbiters is sufficient for Alice to
resolve.
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Action 6 (Bob resolves with an arbiter X ∈ RA). As a result, the set {X} is added to the set of
sets AR(t).

Küpçü and Lysyanskaya [55] present a detailed analysis of this protocol using the finite state
machine abstraction, and considering further scenarios and protocol types. We will only re-iterate
their results to discuss the effectiveness of such a framework.

Lemma 4.3. AV protocol cannot provide semantic fairness unless for all times t ∀BR ∈ BR(t)
BR ̸⊆ FB AND for some time t ∃BR ∈ BR(t) s.t. BR ∩ FA = ∅.

Corollary 4.3.1. AV protocol cannot provide semantic fairness unless |FB | < TB AND TB ≤
n − |FA|.

It is important to notice that the AV paper [5] proves essentially the same result: They prove
that the same bound is also sufficient for their protocol. Importantly, the result above is applicable
to all protocols of the same type; no DAFET protocol of the same type can achieve better bounds.
In particular, the same technique of employing multiple autonomous arbiters can be used on the
ASW protocol [2] to convert their timeout-based version to a DAFET protocol, and the same lemma
will hold. This shows how such a framework can easily be applied to prove optimality of a protocol
and extended to other protocols of the same type.

As the corollary immediately reveals, when using n arbiters, to obtain maximum tolerance,
one should set the threshold for Bob TB = n/2 so that the protocol tolerates up to n/2 − 1
friends of each participant. Of course, this greatly reduces the efficiency of the resolution of the
optimistic fair exchange protocol, but still provides a much more efficient solution than using
byzantine agreement or secure multi-party computation. Essentially, there is no communication
between arbiters themselves; only the client communicates with TB arbiters, and can do so in
parallel.

5 Conclusion and Open Problems

Throughout this article, we presented various methods to distribute trusted third parties (TTPs).
TTPs play a crucial role in many useful scenarios and applications, including fair exchange, elec-
tronic commerce, certificate authorities, authentication services, etc. Therefore, it is a very impor-
tant research topic to consider distributing the trust put on TTPs to multiple entities.

It is possible to effectively distribute the trust put on any TTP using byzantine agreement or
secure multi-party computation techniques. Unfortunately, such generic techniques are very costly;
they incur quadratic communication complexity, and sometimes have high coordination costs. As
an alternative TTP distribution technique, one may consider employing autonomous agents, and
form a framework to analyze classes of protocols that have some common finite machine semantics.
To this end, we have re-presented some of the results by Küpçü and Lysyanskaya [55] showing the
effectiveness of such a finite state machine abstraction approach.

Yet, their results apply only to distributing the TTP of optimistic fair exchange protocols. It
is interesting to apply similar frameworks on other topics. Thus, analyzing the distribution of
trust put on the TTP employing autonomous agents in other scenarios, including digital notary
(timestamping) services, online bidding applications, certification authorities, directory services,
and authentication services remain as open problems. Analyzing the effect of timeouts, or in general
synchrony, in those scenarios is also useful. Alternatively, it may always be beneficial to reduce
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the number of TTPs in a system. One such approach is used in outsourced computation schemes
(where reliance on a single TTP –the contractor who is trusted to perform the job correctly– is
removed by employing multiple contractors) [9], and further applications should be sought. Lastly,
finding fast non-autonomous ways of distributing TTPs for specific protocols (not general ones),
possibly employing threshold cryptography, may constitute a valid research direction.

Finally, already there are many legal issues surrounding the use of TTPs in various applications.
Just as an example, consider the electronic cash usage [25]. If offline e-cash is employed, once double-
spending occurs, there is theft. But can the TTP (the bank) really charge the double-spender? The
answer depends on the relevant jurisdiction, and the issue is especially complicated when buyer
and seller are under different jurisdictions [42]. Ironically, some TTPs present disclaimers; they do
not provide any legal warranty about the service they provide and reject responsibility [84]. If a
TTP disclaims any warranty, how can it be a trusted party?
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