Spectral Singularities, Unidirectional Invisibility, and Dynamical Formulation of 1-Dim. Scattering Theory Ali Mostafazadeh

Koç University, Istanbul

Outline:

- -Motivation: Pseudo-Hermitian QM
- -Transfer Matrix, Spectral Singularities, & Unidirectional Invisibility
- Transfer Matrix as a Non-Unitary S-Matrix
- Dynamical Equation for Transfer Matrix
- Adiabatic Approximations, Semiclassical Scattering & Geometric Phases
- Local Inverse Scattering

Bender & Boettcher, PRL **80**, 5243 (1998): $H = p^2 + ix^3$ has a real spectrum. Why?

Bender & Boettcher, PRL **80**, 5243 (1998): $H = p^2 + ix^3$ has a real spectrum. Why?

• This operator commutes with \mathcal{PT} , where

$$\mathcal{P}\psi(x) := \psi(-x), \quad \mathcal{T}\psi(x) := \psi(x)^*$$

Bender & Boettcher, PRL **80**, 5243 (1998): $H = p^2 + ix^3$ has a real spectrum. Why?

• This operator commutes with \mathcal{PT} , where

$$\mathcal{P}\psi(x) := \psi(-x), \quad \mathcal{T}\psi(x) := \psi(x)^*$$

- H = ix is \mathcal{PT} -symmetric but its spectrum is imaginary.
- What about non- \mathcal{PT} -symmetric operators such as $H = (p + \mathfrak{z} x)^2 + x^2$ or $H = p^2 + \mathfrak{z} \delta(x)$ with $\mathfrak{z} \in \mathbb{C}$,

which have a real spectrum?

Bender & Boettcher, PRL **80**, 5243 (1998): $H = p^2 + ix^3$ has a real spectrum. Why?

• This operator commutes with \mathcal{PT} , where

$$\mathcal{P}\psi(x) := \psi(-x), \quad \mathcal{T}\psi(x) := \psi(x)^*$$

- H = ix is \mathcal{PT} -symmetric but its spectrum is imaginary.
- What about non- \mathcal{PT} -symmetric operators such as

 $H = (p + \mathfrak{z} x)^2 + x^2 \quad \text{or} \quad H = p^2 + \mathfrak{z} \,\delta(x) \quad \text{with } \mathfrak{z} \in \mathbb{C},$ which have a real spectrum?

 Can we use such operators in QM as Hamiltonians operators or observables?

Measurement Axiom of QM \Rightarrow

Observables are diagonalizable operators with real spectrum.

Measurement Axiom of QM \Rightarrow

Observables are diagonalizable operators with real spectrum.

Let $H : \mathscr{H} \to \mathscr{H}$ be an operator with a discrete spectrum. Diagonalizability of H means the existence of a complete biorthonormal eigensystem $\{(\phi_n, \psi_n)\}$:

 $H\psi_n = E_n \psi_n, \quad H^{\dagger} \phi_n = E_n^* \phi_n, \quad \langle \phi_m | \psi_n \rangle = \delta_{mn}, \quad \sum_n |\psi_n \rangle \langle \phi_n | = 1$

Let $H : \mathscr{H} \to \mathscr{H}$ be an operator with a discrete spectrum. Diagonalizability of H means the existence of a complete biorthonormal eigensystem $\{(\phi_n, \psi_n)\}$:

$$H\psi_n = E_n\psi_n, \quad H^{\dagger}\phi_n = E_n^*\phi_n, \quad \langle \phi_m | \psi_n \rangle = \delta_{mn}, \quad \sum_n |\psi_n \rangle \langle \phi_n | = 1$$

Qxn: What are the necessary and sufficient conditions for an operator to be diagonalizable and have a real spectrum.

Let $H : \mathscr{H} \to \mathscr{H}$ be an operator with a discrete spectrum. Diagonalizability of H means the existence of a complete biorthonormal eigensystem $\{(\phi_n, \psi_n)\}$:

$$H\psi_n = E_n\psi_n, \quad H^{\dagger}\phi_n = E_n^*\phi_n, \quad \langle \phi_m | \psi_n \rangle = \delta_{mn}, \quad \sum_n |\psi_n \rangle \langle \phi_n | = 1$$

Qxn: What are the necessary and sufficient conditions for an operator to be diagonalizable and have a real spectrum.

Ans: It must satisfy $H^{\dagger} = \eta_{+} H \eta_{+}^{-1}$ for some positive-definite metric operator η_{+} .

Let $H : \mathscr{H} \to \mathscr{H}$ be an operator with a discrete spectrum. Diagonalizability of H means the existence of a complete biorthonormal eigensystem $\{(\phi_n, \psi_n)\}$:

$$H\psi_n = E_n\psi_n, \quad H^{\dagger}\phi_n = E_n^*\phi_n, \quad \langle \phi_m | \psi_n \rangle = \delta_{mn}, \quad \sum_n |\psi_n \rangle \langle \phi_n | = 1$$

Qxn: What are the necessary and sufficient conditions for an operator to be diagonalizable and have a real spectrum.

Ans: It must satisfy $H^{\dagger} = \eta_{+} H \eta_{+}^{-1}$ for some positive-definite metric operator η_{+} .

In this case it becomes Hermitian if we change the inner product of the Hilbert space:

$$\langle \psi | \phi \rangle \rightarrow \langle \psi, \phi \rangle_{\eta_+} := \langle \psi | \eta_+ \phi \rangle$$

Let $H : \mathscr{H} \to \mathscr{H}$ be an operator with a discrete spectrum. Diagonalizability of H means the existence of a complete biorthonormal eigensystem $\{(\phi_n, \psi_n)\}$:

$$H\psi_n = E_n\psi_n, \quad H^{\dagger}\phi_n = E_n^*\phi_n, \quad \langle \phi_m | \psi_n \rangle = \delta_{mn}, \quad \sum_n |\psi_n \rangle \langle \phi_n | = 1$$

Qxn: What are the necessary and sufficient conditions for an operator to be diagonalizable and have a real spectrum.

Ans: It must satisfy $H^{\dagger} = \eta_{+} H \eta_{+}^{-1}$ for some positive-definite metric operator η_{+} .

In this case it becomes Hermitian if we change the inner product of the Hilbert space:

$$\langle \psi | \phi \rangle \rightarrow \langle \psi, \phi \rangle_{\eta_+} := \langle \psi | \eta_+ \phi \rangle \qquad \eta_+ = \sum_n |\phi_n \rangle \langle \phi_n |$$

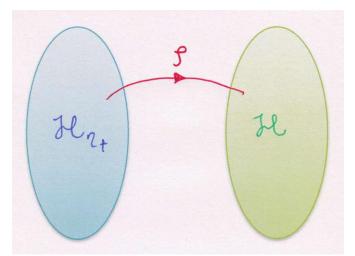
A.M., "Pseudo-Hermiticity versus \mathcal{PT} -Symmetry I, II, III," JMP **43**, 205, 2814, 3944 (2002).

Pseudo-Hermitian QM:

- Use $\langle \cdot, \cdot \rangle_{\eta_+}$ to construct a Hilbert space, \mathscr{H}_{η_+} .
- Because $H: \mathscr{H}_{\eta_+} \to \mathscr{H}_{\eta_+}$ is Hermitian, $(\mathscr{H}_{\eta_+}, H)$ defines a unitary quantum system.

Pseudo-Hermitian QM:

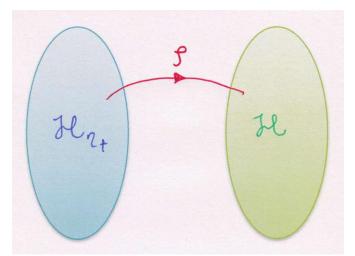
- Use $\langle \cdot, \cdot \rangle_{\eta_+}$ to construct a Hilbert space, \mathscr{H}_{η_+} .
- Because $H: \mathscr{H}_{\eta_+} \to \mathscr{H}_{\eta_+}$ is Hermitian, $(\mathscr{H}_{\eta_+}, H)$ defines a unitary quantum system.
- $\rho := \sqrt{\eta_+} : \mathscr{H}_{\eta_+} \to \mathscr{H}$ is a unitary operator.
- $h := \rho H \rho^{-1} : \mathscr{H} \to \mathscr{H}$ is Hermitian.



 $(\mathscr{H}_{\eta_+}, H)$ and (\mathscr{H}, h) are unitary-equivalent.

Pseudo-Hermitian QM:

- Use $\langle \cdot, \cdot \rangle_{\eta_+}$ to construct a Hilbert space, \mathscr{H}_{η_+} .
- Because $H: \mathscr{H}_{\eta_+} \to \mathscr{H}_{\eta_+}$ is Hermitian, $(\mathscr{H}_{\eta_+}, H)$ defines a unitary quantum system.
- $\rho := \sqrt{\eta_+} : \mathscr{H}_{\eta_+} \to \mathscr{H}$ is a unitary operator.
- $h := \rho H \rho^{-1} : \mathscr{H} \to \mathscr{H}$ is Hermitian.



 $(\mathscr{H}_{\eta_+}, H)$ and (\mathscr{H}, h) are unitary-equivalent.

- The basic ingredient is the metric operator η_+ .
- A. M. Int. J. Geom. Meth. Mod. Phys. 7, 1191 (2010); arXiv:0810.5643.

Examples:

$$H = \frac{p^2}{2m} + \frac{\mu^2}{2}x^2 + i\epsilon x^3$$

$$h = \frac{p^2}{2m} + \frac{1}{2}\mu^2 x^2 + \frac{3}{2\mu^4} \left(\frac{1}{m} \{x^2, p^2\} + \mu^2 x^4 + \frac{2\hbar^2}{3m} \right) \epsilon^2 + \frac{2}{\mu^{12}} \left(\frac{p^6}{m^3} - \frac{9\mu^2}{m^2} \{x^2, p^4\} - \frac{51\mu^4}{8m} \{x^4, p^2\} - \frac{7\mu^6}{4} x^6 - \frac{81\hbar^2\mu^2}{2m^2} p^2 - \frac{69\hbar^2\mu^4}{2m} x^2 \right) \epsilon^4 + \mathcal{O}(\epsilon^6)$$

[JPA 38 (2005) 6557 & 39 (2006) 13495]

δ -Function Potential with Complex Coupling

$$H = \frac{p^2}{2m} + z \,\delta(x), \qquad \Re(z) > 0$$

H is not \mathcal{PT} -symmetric.

 δ -Function Potential with Complex Coupling

$$H = \frac{p^2}{2m} + z \,\delta(x), \qquad \Re(z) > 0$$

H is not \mathcal{PT} -symmetric.

 $h = \frac{p^2}{2m} + \Re(z)\delta(x) + \frac{h_2}{2}\Im(z)^2 + \mathcal{O}(\Im(z))^3$

$$h_2 \Psi(x) := A_{\psi} e^{-|x|/L} + B_{\psi} \delta(x)$$

$$A_{\psi} := \frac{m\Psi(0)}{8\hbar^2}, \qquad B_{\psi} = \frac{m}{8\hbar^2} \int_{-\infty}^{\infty} dx \ e^{-|x|/L} \Psi(x).$$
$$L := \frac{\hbar^2}{m\Re(z)}$$

[A. M., JPA 39 (2006) 13506]

 δ -Function Potential with Complex Coupling

$$H = \frac{p^2}{2m} + z \,\delta(x), \qquad \Re(z) > 0$$

H is not \mathcal{PT} -symmetric.

 $h = \frac{p^2}{2m} + \Re(z)\delta(x) + \frac{h_2}{2}\Im(z)^2 + \mathcal{O}(\Im(z))^3$

$$h_2 \Psi(x) := A_{\psi} e^{-|x|/L} + B_{\psi} \delta(x)$$

$$A_{\psi} := \frac{m\Psi(0)}{8\hbar^2}, \qquad B_{\psi} = \frac{m}{8\hbar^2} \int_{-\infty}^{\infty} dx \ e^{-|x|/L} \Psi(x).$$
$$L := \frac{\hbar^2}{m\Re(z)}$$

What happens if $\Re(z) = 0$?

1-Dim. Scattering & Spectral Singularities

- Time-Indep. Schrödinger Eq.: $-\psi(x)'' + v(x)\psi(x) = k^2\psi(x)$
- $v: \mathbb{R} \to \mathbb{C}$ is a possibly k-dependent potential &

 $v(x) \to 0$ for $x \to \pm \infty$.

1-Dim. Scattering & Spectral Singularities

- Time-Indep. Schrödinger Eq.: $-\psi(x)'' + v(x)\psi(x) = k^2\psi(x)$
- $v:\mathbb{R}\to\mathbb{C}$ is a possibly k-dependent potential &

$$v(x) \to 0$$
 for $x \to \pm \infty$.

• Asymptotic solutions:

$$\psi(x) = A_{\pm}e^{ikx} + B_{\pm}e^{-ikx}$$
 for $x \to \pm \infty$.

- Transfer matrix: $\begin{bmatrix} A_+\\ B_+ \end{bmatrix} = \begin{bmatrix} M_{11}(k) & M_{12}(k)\\ M_{21}(k) & M_{22}(k) \end{bmatrix} \begin{bmatrix} A_-\\ B_- \end{bmatrix}.$
- det M = 1.

Spectral Singularities are the real zeros of $M_{22}(k)$.

• Example: $v(x) = z \,\delta(x), \ z \in \mathbb{C}$:

- Transfer matrix:
$$\mathbf{M} = \begin{bmatrix} 1 - \frac{iz}{2k} & -\frac{iz}{2k} \\ \frac{iz}{2k} & 1 + \frac{iz}{2k} \end{bmatrix}$$
There is a spectral singularity for $z \in i\mathbb{D}$ at $k^2 = \frac{z^2}{2k}$

- There is a spectral singularity for $z \in i\mathbb{R}$ at $k^2 = -\frac{\sim}{4}$.

[A. M., JPA 39 (2006) 13506]

$$\psi^{\text{left}}(x) = \begin{cases} e^{ikx} + R^{l}e^{-ikx} & \text{for } x \to -\infty \\ T^{l}e^{ikx} & \text{for } x \to +\infty \end{cases}$$
$$\psi^{\text{right}}(x) = \begin{cases} T^{r}e^{-ikx} & \text{for } x \to -\infty \\ e^{-ikx} + R^{r}e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$\psi^{\text{left}}(x) = \begin{cases} e^{ikx} + R^l e^{-ikx} & \text{for } x \to -\infty \\ T^l e^{ikx} & \text{for } x \to +\infty \end{cases}$$
$$\psi^{\text{right}}(x) = \begin{cases} T^r e^{-ikx} & \text{for } x \to -\infty \\ e^{-ikx} + R^r e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$T^{l} = T^{r} =: T$$
$$R^{l} = -\frac{M_{21}}{M_{22}}, \qquad R^{r} = \frac{M_{12}}{M_{22}}, \qquad T = \frac{1}{M_{22}}$$

$$\psi^{\text{left}}(x) = \begin{cases} e^{ikx} + R^l e^{-ikx} & \text{for } x \to -\infty \\ T^l e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$\psi^{\text{right}}(x) = \begin{cases} T^r e^{-ikx} & \text{for } x \to -\infty \\ e^{-ikx} + R^r e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$T^l = T^r =: T$$

$$R^l = -\frac{M_{21}}{M_{22}}, \qquad R^r = \frac{M_{12}}{M_{22}}, \qquad T = \frac{1}{M_{22}}$$

• Reflection and Transmission amplitudes diverge at a spectral singularity.

 \Rightarrow infinite amplification of incident waves.

$$\psi^{\text{left}}(x) = \begin{cases} e^{ikx} + R^{l}e^{-ikx} & \text{for } x \to -\infty \\ T^{l}e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$\psi^{\text{right}}(x) = \begin{cases} T^{r}e^{-ikx} & \text{for } x \to -\infty \\ e^{-ikx} + R^{r}e^{ikx} & \text{for } x \to +\infty \end{cases}$$

$$T^{l} = T^{r} =: T$$

$$R^{l} = -\frac{M_{21}}{M_{22}}, \qquad R^{r} = \frac{M_{12}}{M_{22}}, \qquad T = \frac{1}{M_{22}}$$

Reflection and Transmission amplitudes diverge at a spectral singularity.

 \Rightarrow infinite amplification of incident waves.

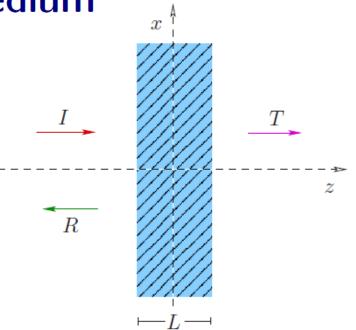
• Physically they correspond to scattering states that behave like resonances: Zero-width resonances.

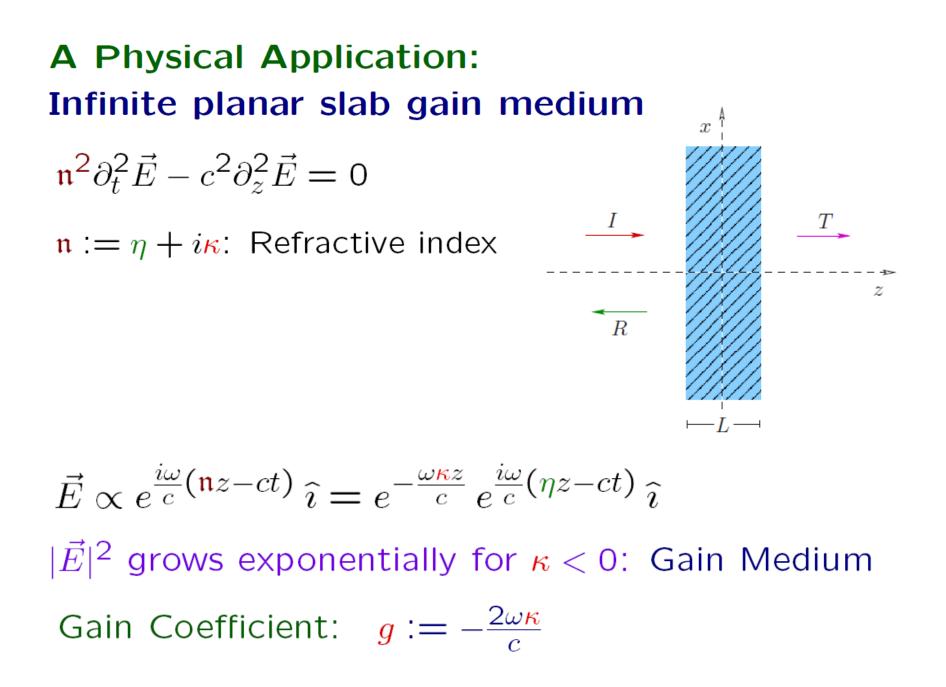
[PRL 102, 220402 (2009); arXiv:0901.4472]

A Physical Application: Infinite planar slab gain medium

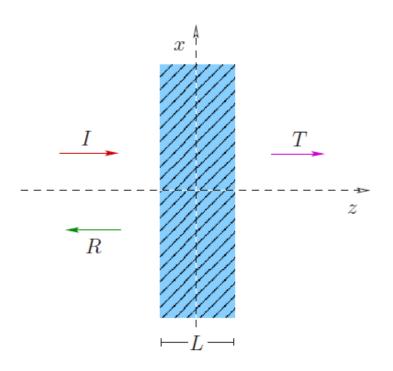
$$\mathfrak{n}^2 \partial_t^2 \vec{E} - c^2 \partial_z^2 \vec{E} = 0$$

 $\mathbf{n} := \eta + i\kappa$: Refractive index





 $\mathbf{n}^2 \partial_t^2 \vec{E} - c^2 \partial_z^2 \vec{E} = \mathbf{0}$ $\vec{E}(z,t) = E e^{-i\omega t} \psi(z) \hat{\imath}$



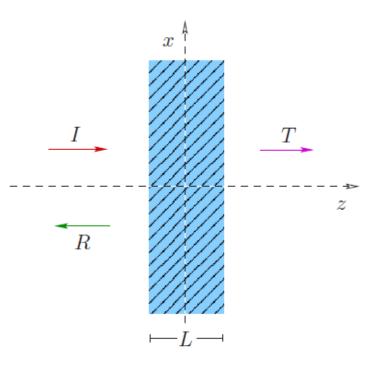
$$\mathfrak{n}^{2}\partial_{t}^{2}\vec{E} - c^{2}\partial_{z}^{2}\vec{E} = 0$$
$$\vec{E}(z,t) = E e^{-i\omega t} \psi(z) \hat{\imath}$$
$$-\psi''(z) + v(z)\psi(z) = k^{2}\psi(z)$$

Complex Barrier Potential:

$$v(z) := \begin{cases} \mathfrak{z} & \text{for } |z| \leq L/2 \\ 0 & \text{for } |z| > L/2 \end{cases}$$

$$\mathfrak{z} := k^2(1 - \mathfrak{n}^2) \in \mathbb{C}, \quad k := \omega/c$$

 $\mathbf{n} := \eta + i \kappa$: Refractive index



$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

Taking Absolute value of both sides gives:

$$e^{-2gL} = |\mathcal{R}|^2 \quad \Rightarrow \quad g = \frac{1}{2L} \ln \frac{1}{|\mathcal{R}|^2}$$

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

Taking Absolute value of both sides gives:

$$e^{-2gL} = |\mathcal{R}|^2 \quad \Rightarrow \quad g = \frac{1}{2L} \ln \frac{1}{|\mathcal{R}|^2}$$

This is known as the Laser Threshold Condition.

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

Taking Absolute value of both sides gives:

$$e^{-2gL} = |\mathcal{R}|^2 \quad \Rightarrow \quad g = \frac{1}{2L} \ln \frac{1}{|\mathcal{R}|^2}$$

This is known as the Laser Threshold Condition.

Optical Spectral Singularity \Rightarrow **Lasing at threshold gain** [A. M. PRA **83**, 045801 (2011); arXiv:1102.4695]

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

Taking Absolute value of both sides gives:

$$e^{-2gL} = |\mathcal{R}|^2 \quad \Rightarrow \quad g = \frac{1}{2L} \ln \frac{1}{|\mathcal{R}|^2}$$

This is known as the Laser Threshold Condition.

Optical Spectral Singularity \Rightarrow **Lasing at threshold gain** [A. M. PRA **83**, 045801 (2011); arXiv:1102.4695] Time-reversal transformation: $\mathbf{M} \xrightarrow{\mathcal{T}} \sigma_1 \mathbf{M}^* \sigma_1$ $\Rightarrow M_{22} \xleftarrow{\mathcal{T}} M_{11}^*.$ Spectral singularities of complex barrier potential:

$$M_{22} = 0 \quad \Rightarrow \quad e^{-2i\mathfrak{n}Lk} = \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$$

 $\mathcal{R} := \left(\frac{\mathfrak{n}-1}{\mathfrak{n}+1}\right)^2$ is called Reflectivity in optics.

Taking Absolute value of both sides gives:

$$e^{-2gL} = |\mathcal{R}|^2 \quad \Rightarrow \quad g = \frac{1}{2L} \ln \frac{1}{|\mathcal{R}|^2}$$

This is known as the Laser Threshold Condition.

Optical Spectral Singularity \Rightarrow **Lasing at threshold gain** [A. M. PRA **83**, 045801 (2011); arXiv:1102.4695] Time-reversal transformation: $\mathbf{M} \xrightarrow{\mathcal{T}} \sigma_1 \mathbf{M}^* \sigma_1$ $\Rightarrow M_{22} \xleftarrow{\mathcal{T}} M_{11}^*.$

• Time-reversed optical spectral singularities:

 \Rightarrow Antilasing (CPA) [Wan et al Science 2010]

Unidirectional Invisibility

$$\mathbf{M} = \begin{bmatrix} T - \frac{R^l R^r}{T} & \frac{R^r}{T} \\ -\frac{R^l}{T} & \frac{1}{T} \end{bmatrix}$$

Unidir. Reflectionlessness: $R^l = 0 \neq R^r$ or $R^r = 0 \neq R^l$ Only one of M_{12} and M_{21} is zero.

Unidir. Invisibility: $R^l = 0 \neq R^r$ or $R^r = 0 \neq R^l \& T = 1$ Only one of M_{12} and M_{21} is zero & $M_{11} = M_{22} = 1$.

Lin et al, PRL **106**, 213901 (2011) Regensburger et al, Nature **488**, 167 (2012) A. M. PRA **87**, 012103 (2013) If v(x) is a real potential,

$$|R^{r}| = |R^{l}|, \qquad |R^{l/r}|^{2} + |T|^{2} = 1$$

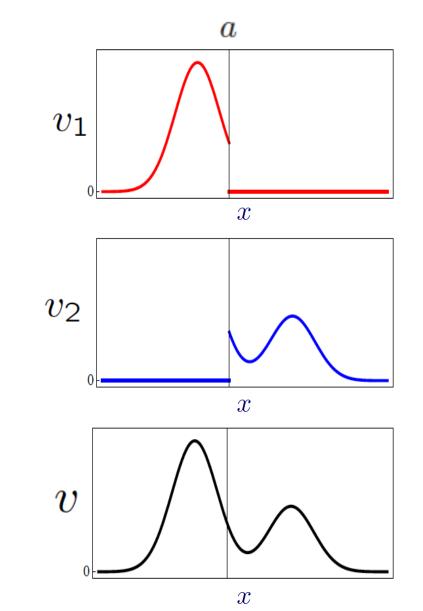
⇒ Spectral singularities and unidirectional reflectionlessness & invisibility cannot happen for a real potential.

Composition Property of M

Let v_1 and v_2 be scattering potentials such that

 $v_1(x) = 0$ for x > a, $v_2(x) = 0$ for x < a $v(x) = v_1(x) + v_2(x)$.

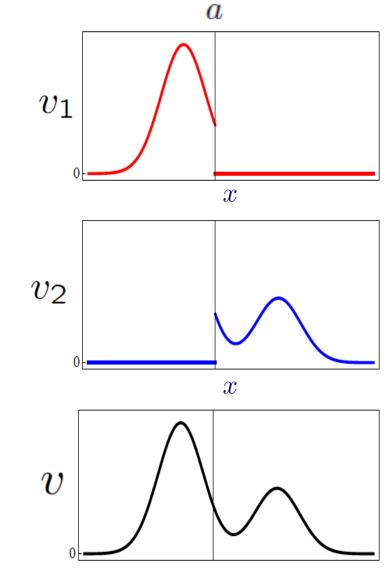
- M_1 : Transfer matrix of v_1
- M_2 : Transfer matrix of v_2
- M: Transfer matrix of $v = v_1 + v_2$



Composition Property of M

Let v_1 and v_2 be scattering potentials such that

 $v_1(x) = 0$ for x > a, $v_2(x) = 0$ for x < a $v(x) = v_1(x) + v_2(x)$. M_1 : Transfer matrix of v_1 M_2 : Transfer matrix of v_2 M: Transfer matrix of $v = v_1 + v_2$ Then $M = M_2 M_1$.



Composition Property of ${\bf M}$

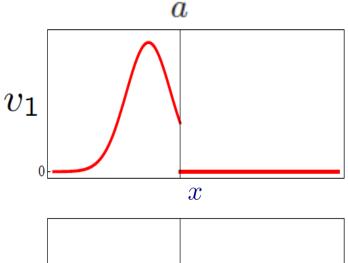
Let v_1 and v_2 be scattering potentials such that

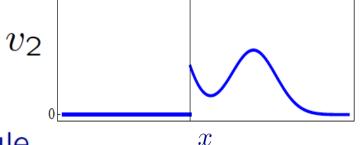
 $v_1(x) = 0$ for x > a, $v_2(x) = 0$ for x < a $v(x) = v_1(x) + v_2(x)$. M_1 : Transfer matrix of v_1 M_2 : Transfer matrix of v_2 M: Transfer matrix of $v = v_1 + v_2$ Then $\mathbf{M} = \mathbf{M}_2 \mathbf{M}_1$.

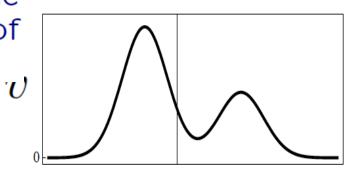
This resembles the composition rule for the evolution operator $U(t,t_0)$ of a quantum system:

$$U(t_2, t_0) = U(t_2, t_1)U(t_1, t_0)$$

for $t_0 \le t_1 \le t_2$.







Time-indep. Schrödinger Eq.: $-\psi''(x) + v(x)\psi(x) = k^2\psi(x)$

 $i\dot{\Psi}(\tau) = \mathbf{H}(\tau)\Psi(\tau)$

Time-indep. Schrödinger Eq.: $-\psi''(x) + v(x)\psi(x) = k^2\psi(x)$

$$\tau := kx, \quad \phi(\tau) := \psi(\tau/k), \quad \dot{\phi}(\tau) := \frac{d\phi(\tau)}{d\tau}, \quad w(\tau) := \frac{v(\frac{\tau}{k})}{2k^2}$$

$$\Psi(\tau) := \frac{1}{2} \begin{bmatrix} \phi(\tau) - i\dot{\phi}(\tau) \\ \phi(\tau) + i\dot{\phi}(\tau) \end{bmatrix}, \quad \mathbf{N} := \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} = i\sigma_2 + \sigma_3$$

$$\mathbf{H}(\tau) := \begin{bmatrix} w(\tau) - 1 & w(\tau) \\ -w(\tau) & -w(\tau) + 1 \end{bmatrix} = -\sigma_3 + w(\tau)\mathbf{N}$$

 $i\Psi(\tau) = \mathbf{H}(\tau)\Psi(\tau)$

Time-indep. Schrödinger Eq.: $-\psi''(x) + v(x)\psi(x) = k^2\psi(x)$

$$\mathbf{H}(\tau) := \begin{bmatrix} w(\tau) - 1 & w(\tau) \\ -w(\tau) & -w(\tau) + 1 \end{bmatrix}$$
$$i\dot{\Psi}(\tau) = \mathbf{H}(\tau)\Psi(\tau)$$

- $H(\tau)$ is a 2-level non-Hermitian Hamiltonian.
- $H(\tau)$ is σ_3 -pseudo-Hermitian, if v is real; $H(\tau)^{\dagger} = \sigma_3 H(\tau) \sigma_3^{-1}$.
- Eigenvalues of $H(\tau) = \pm \mathfrak{n}(\tau)$, $\mathfrak{n} := \sqrt{1 2w} = \sqrt{1 v/k^2}$.
- Classical turning points are exceptional points of $H(\tau)$.

$$\mathbf{H}(\tau) := -\sigma_3 + w(\tau)\mathbf{N}, \quad \mathbf{N} := \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

• Evolution operator: $\mathbf{U}(\tau, \tau_0) := \mathscr{T}e^{-i\int_{\tau_0}^{\tau}\mathbf{H}(t)dt}$;

 $i\dot{\mathbf{U}}(\tau,\tau_0) = \mathbf{H}(\tau)\mathbf{U}(\tau,\tau_0), \quad \mathbf{U}(\tau_0,\tau_0) = 1$ $\Psi(\tau) = \mathbf{U}(\tau,\tau_0)\Psi(\tau_0)$

• Free particle: $\mathbf{H}(\tau) = -\sigma_3$, $\mathbf{U}(\tau, \tau_0) = \mathbf{U}_0(\tau - \tau_0)$. $\mathbf{U}_0(\tau) := e^{i\tau\sigma_3}$

$$\mathbf{H}(\tau) := -\sigma_3 + w(\tau)\mathbf{N}, \quad \mathbf{N} := \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

• Evolution operator: $\mathbf{U}(\tau, \tau_0) := \mathscr{T}e^{-i\int_{\tau_0}^{\tau}\mathbf{H}(t)dt}$;

 $i\dot{\mathbf{U}}(\tau,\tau_0) = \mathbf{H}(\tau)\mathbf{U}(\tau,\tau_0), \quad \mathbf{U}(\tau_0,\tau_0) = 1$ $\Psi(\tau) = \mathbf{U}(\tau,\tau_0)\Psi(\tau_0)$

• Free particle: $\mathbf{H}(\tau) = -\sigma_3$, $\mathbf{U}(\tau, \tau_0) = \mathbf{U}_0(\tau - \tau_0)$. $\mathbf{U}_0(\tau) := e^{i\tau\sigma_3}$

Theorem: The *S*-matrix of $H(\tau)$ is the transfer matrix of v; $M = U_0(+\infty)^{-1}U(+\infty, -\infty)U_0(-\infty).$

A. M. PRA. 89, 012709 (2014)

- Free particle: $\mathbf{H}(\tau) = -\sigma_3$, $\mathbf{U}(\tau, \tau_0) = \mathbf{U}_0(\tau \tau_0)$.
- Interaction-picture Hamiltonian: $\Psi(\tau) \rightarrow U_0(\tau)^{-1} \Psi(\tau)$

$$\begin{aligned} \mathscr{H}(\tau) &:= \mathbf{U}_0(\tau)^{-1} \mathbf{H}(\tau) \mathbf{U}_0(\tau) - i \mathbf{U}_0(\tau)^{-1} \dot{\mathbf{U}}_0(\tau) \\ &= w(\tau) \begin{bmatrix} 1 & e^{-2i\tau} \\ -e^{2i\tau} & -1 \end{bmatrix} \end{aligned}$$

- Free particle: $H(\tau) = -\sigma_3$, $U(\tau, \tau_0) = U_0(\tau \tau_0)$.
- Interaction-picture Hamiltonian: $\Psi(\tau) \rightarrow U_0(\tau)^{-1} \Psi(\tau)$

$$\begin{aligned} \mathscr{H}(\tau) &:= \mathbf{U}_0(\tau)^{-1} \mathbf{H}(\tau) \mathbf{U}_0(\tau) - i \mathbf{U}_0(\tau)^{-1} \dot{\mathbf{U}}_0(\tau) \\ &= w(\tau) \begin{bmatrix} 1 & e^{-2i\tau} \\ -e^{2i\tau} & -1 \end{bmatrix} \end{aligned}$$

- $\mathscr{H}(\tau)$ is non-diagonalizable matrix.
- Spectrum of $\mathscr{H}(\tau)$ is $\{0\}$.
- $\mathscr{H}(\tau)$ is σ_3 -pseudo-normal, i.e., $[\mathscr{H}(\tau), \mathscr{H}(\tau)^{\sharp}] = 0$, where $\mathscr{H}^{\sharp} := \sigma_3^{-1} \mathscr{H}^{\dagger} \sigma_3$.
- $\mathscr{H}(\tau)$ is σ_3 -pseudo-Hermitian, if v is real.

- Free particle: $H(\tau) = -\sigma_3$, $U(\tau, \tau_0) = U_0(\tau \tau_0)$.
- Interaction-picture Hamiltonian: $\Psi(\tau) \rightarrow U_0(\tau)^{-1} \Psi(\tau)$

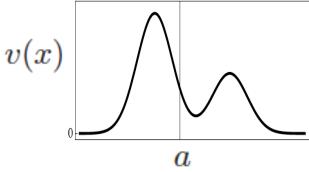
$$\begin{aligned} \mathscr{H}(\tau) &:= \mathbf{U}_0(\tau)^{-1} \mathbf{H}(\tau) \mathbf{U}_0(\tau) - i \mathbf{U}_0(\tau)^{-1} \dot{\mathbf{U}}_0(\tau) \\ &= w(\tau) \begin{bmatrix} 1 & e^{-2i\tau} \\ -e^{2i\tau} & -1 \end{bmatrix} \end{aligned}$$

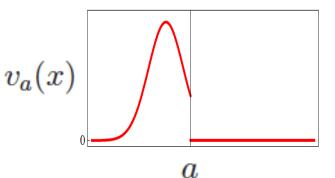
Theorem: Let $\mathscr{U}(\tau, \tau_0)$ be the Interaction-picture evolution operator. Then $\mathbf{M} = \mathscr{U}(+\infty, -\infty)$.

Motivation: \exists a dynamical eq. for $\mathscr{U}(\tau, \tau_0)$. $i\mathscr{U}(\tau, \tau_0) = \mathscr{H}(\tau)\mathscr{U}(\tau, \tau_0) \& \mathscr{U}(\tau_0, \tau_0) = 1$ Can we find a dynamical eq. for M? Motivation: \exists a dynamical eq. for $\mathscr{U}(\tau, \tau_0)$. $i\dot{\mathscr{U}}(\tau, \tau_0) = \mathscr{H}(\tau)\mathscr{U}(\tau, \tau_0) \& \mathscr{U}(\tau_0, \tau_0) = 1$ Can we find a dynamical eq. for M?

For each $a \in \mathbb{R}$, let $\alpha := ak$, $v_a(x) := \begin{cases} v(x) & \text{for } x \leq a \\ 0 & \text{for } x > a \end{cases}$,

and $M(\alpha) :=$ transfer matrix of v_a .

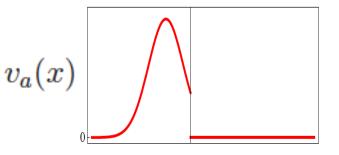




Motivation: \exists a dynamical eq. for $\mathscr{U}(\tau, \tau_0)$. $i\mathscr{U}(\tau, \tau_0) = \mathscr{H}(\tau)\mathscr{U}(\tau, \tau_0) & \mathscr{U}(\tau_0, \tau_0) = 1$ Can we find a dynamical eq. for M?

For each $a \in \mathbb{R}$, let $\alpha := ak$, $v_a(x) := \begin{cases} v(x) & \text{for } x \leq a \\ 0 & \text{for } x > a \end{cases}$,

and $M(\alpha) :=$ transfer matrix of v_a .



 \boldsymbol{a}

Then $\mathbf{M}(\alpha) = \mathscr{U}(\alpha, -\infty)$. Therefore, $i\partial_{\alpha}\mathbf{M}(\alpha) = \mathscr{H}(\alpha)\mathbf{M}(\alpha), \quad \mathbf{M}(-\infty) = 1.$ We also have $\mathbf{M} = \mathbf{M}(\infty)$.

$$\begin{split} &i\partial_{\alpha} \mathbf{M}(\alpha) = \mathscr{H}(\alpha) \mathbf{M}(\alpha) \ \& \ \det \mathbf{M} \neq \mathbf{0} \Rightarrow \\ &i[\partial_{\alpha} \mathbf{M}(\alpha)] \mathbf{M}(\alpha)^{-1} = \mathscr{H}(\alpha) = w(\alpha) \begin{bmatrix} 1 & e^{-2i\alpha} \\ -e^{2i\alpha} & -1 \end{bmatrix} \\ & \mathsf{Recall} \ w(\alpha) = v(\alpha)/2k^2. \end{split}$$

$$\begin{split} &i\partial_{\alpha} \mathbf{M}(\alpha) = \mathscr{H}(\alpha) \mathbf{M}(\alpha) \ \& \ \det \mathbf{M} \neq \mathbf{0} \Rightarrow \\ &i[\partial_{\alpha} \mathbf{M}(\alpha)] \mathbf{M}(\alpha)^{-1} = \mathscr{H}(\alpha) = w(\alpha) \begin{bmatrix} 1 & e^{-2i\alpha} \\ -e^{2i\alpha} & -1 \end{bmatrix} \\ & \mathsf{Recall} \ w(\alpha) = v(\alpha)/2k^2. \end{split}$$

Eg: Square Barrier Potential of height $\mathfrak{z} \in \mathbb{C}$,

$$v(x) = v_L(x) := \begin{cases} \mathfrak{z} & \text{for } x \in [0, L] \\ 0 & \text{for } x \notin [0, L] \end{cases}$$

$$\begin{split} &i\partial_{\alpha} \mathbf{M}(\alpha) = \mathscr{H}(\alpha) \mathbf{M}(\alpha) \ \& \ \det \mathbf{M} \neq \mathbf{0} \Rightarrow \\ &i[\partial_{\alpha} \mathbf{M}(\alpha)] \mathbf{M}(\alpha)^{-1} = \mathscr{H}(\alpha) = w(\alpha) \begin{bmatrix} 1 & e^{-2i\alpha} \\ -e^{2i\alpha} & -1 \end{bmatrix} \\ & \mathsf{Recall} \ w(\alpha) = v(\alpha)/2k^2. \end{split}$$

Eg: Square Barrier Potential of height $\mathfrak{z} \in \mathbb{C}$,

$$v(x) = v_L(x) := \begin{cases} \mathfrak{z} & \text{for } x \in [0, L] \\ 0 & \text{for } x \notin [0, L] \end{cases}$$

$$M_{11}(\alpha) = \left[\cos(\mathfrak{n}\,\alpha) + i(\,\mathfrak{n}^{\,2} + 1)\sin(\mathfrak{n}\,\alpha)/2\,\mathfrak{n}\,\right]e^{-i\alpha},$$

$$M_{12}(\alpha) = i(\,\mathfrak{n}^{\,2} - 1)\sin(\mathfrak{n}\,\alpha)e^{-i\alpha}/2\,\mathfrak{n}\,,$$

$$M_{21}(\alpha) = M_{12}(-\alpha), \qquad M_{22}(\alpha) = M_{11}(-\alpha),$$

$$\mathfrak{n} := \sqrt{1 - \mathfrak{z}/k^2}$$

$i\partial_{\alpha} \mathbf{M}(\alpha) = \mathscr{H}(\alpha)\mathbf{M}(\alpha), \qquad \mathbf{M}(-\infty) = 1$

$i\partial_{\alpha}\mathbf{M}(\alpha) = \mathscr{H}(\alpha)\mathbf{M}(\alpha), \qquad \mathbf{M}(-\infty) = 1$

$$\mathbf{M} = \begin{bmatrix} T - \frac{R^l R^r}{T} & \frac{R^r}{T} \\ -\frac{R^l}{T} & \frac{1}{T} \end{bmatrix}$$

 $R^{l/r}(\alpha) := R^{l/r}$ for $v_a \& T(\alpha) :=: T$ for $v_a \Rightarrow R^{l/r}(\alpha)$ and $T(\alpha)$ satisfy dynamical eqs.

 $z := e^{-2i\alpha} \in S^1 \subsetneq \mathbb{C} \& z_{\pm} := e^{-2i\tau_{\pm}} \in S^1 \subsetneq \mathbb{C}$

 $z := e^{-2i\alpha} \in S^1 \subsetneq \mathbb{C} \& z_{\pm} := e^{-2i\tau_{\pm}} \in S^1 \subsetneq \mathbb{C}$

$$R^{r}(z) = \frac{S(z)}{S'(z)} - z,$$

$$R^{l}(z) = -\int_{z_{-}}^{z} d\zeta \frac{S''(\zeta)}{S(\zeta)S'(\zeta)^{2}},$$

$$T(z) = \frac{1}{S'(z)}.$$

 $z := e^{-2i\alpha} \in S^1 \subsetneq \mathbb{C} \And z_{\pm} := e^{-2i\tau_{\pm}} \in S^1 \subsetneq \mathbb{C}$

$$R^{r}(z) = \frac{S(z)}{S'(z)} - z,$$

$$R^{l}(z) = -\int_{z_{-}}^{z} d\zeta \frac{S''(\zeta)}{S(\zeta)S'(\zeta)^{2}},$$

$$T(z) = \frac{1}{S'(z)}.$$

$$z^{2}S''(z) + \left[\frac{\check{v}(z)}{4k^{2}}\right]S(z) = 0$$
$$S(z_{-}) = z_{-}, \qquad S'(z_{-}) = 1$$
$$\check{v}(z) := v(i\ln z/2k) = v(a)$$

Finite-range potentials: $w(\tau) = 0$ for $x \notin [\tau_-, \tau_+]$. $z := e^{-2i\alpha} \in S^1 \subsetneq \mathbb{C} \& z_{\pm} := e^{-2i\tau_{\pm}} \in S^1 \subsetneq \mathbb{C}$

$$R^{r}(z) = \frac{S(z)}{S'(z)} - z,$$

$$R^{l}(z) = -\int_{z_{-}}^{z} d\zeta \frac{S''(\zeta)}{S(\zeta)S'(\zeta)^{2}},$$

$$T(z) = \frac{1}{S'(z)}.$$

$$z^{2}S''(z) + \left[\frac{\check{v}(z)}{4k^{2}}\right]S(z) = 0$$
$$S(z_{-}) = z_{-}, \qquad S'(z_{-}) = 1$$
$$\check{v}(z) := v(i\ln z/2k) = v(a)$$

Can use these for inverse scattering.

$$\mathbf{M} = \begin{bmatrix} T - \frac{R^{l}R^{r}}{T} & \frac{R^{r}}{T} \\ -\frac{R^{l}}{T} & \frac{1}{T} \end{bmatrix}$$

A finite-range potential with a SS at $k = k_0$: T = 1/S' should have a pole at $k = k_0$.

A. M. Ann. Phys. 341, 77 (2014)

$$\mathbf{M} = \begin{bmatrix} T - \frac{R^{l}R^{r}}{T} & \frac{R^{r}}{T} \\ -\frac{R^{l}}{T} & \frac{1}{T} \end{bmatrix}$$

A finite-range potential with a SS at $k = k_0$: T = 1/S' should have a pole at $k = k_0$.

Choose
$$S(z) = \frac{z^2 - 2z_+ z + 1}{2(1 - z_+)}, \ \tau_- = 0, \ \tau_+ = kL, \ k_0 L \notin 2\pi \mathbb{Z}.$$

$$\mathfrak{n}^{2}(x) = 1 - \frac{v(x)}{k^{2}} = \begin{cases} 1 + 8 \left[e^{-i \kappa_{0} x} - 2e^{-2i \kappa_{0}(L-x)} + 1 \right] & x \in [0, L] \\ 1 & x \notin [0, L] \end{cases}$$

A. M. Ann. Phys. 341, 77 (2014)

Finite-range right-invisible potential at $k = k_0$: $R^r = \frac{S}{S'} - z = 0 \& T = \frac{1}{S'} = 1$ for $z = z_+ = e^{-2i\tau_+}$. Finite-range right-invisible potential at $k = k_0$: $R^r = \frac{S}{S'} - z = 0 \& T = \frac{1}{S'} = 1$ for $z = z_+ = e^{-2i\tau_+}$. Choose $S(z) = z[\alpha(z-1)^2 + 1]$, $\tau_- = 0, \ \tau_+ = k_0 L_n := \pi n, \ \& \ n \in \mathbb{Z}^+$:

Finite-range right-invisible potential at $k = k_0$: $R^r = \frac{S}{S'} - z = 0 \& T = \frac{1}{S'} = 1$ for $z = z_+ = e^{-2i\tau_+}$. Choose $S(z) = z[\alpha(z-1)^2 + 1]$, $\tau_{-} = 0, \ \tau_{+} = k_0 L_n := \pi n, \& n \in \mathbb{Z}^+$: $\mathfrak{n}^{2}(x) = \begin{cases} 1 + nf_{\alpha}(x) & x \in [0, L_{n}] \\ 1 & x \notin [0, L_{n}] \end{cases}$ $v(x) = v_{\alpha,n}(x) := \begin{cases} -k^2 n f_{\alpha}(x) & x \in [0, L_n] \\ 0 & x \notin [0, L_n] \end{cases}$ $f_{\alpha}(x) := \frac{8\pi i \alpha (3 - 2e^{2ik_0 x})}{e^{4ik_0 x} + \alpha (1 - e^{2ik_0 x})^2}$

Finite-range right-invisible potential at $k = k_0$: $R^r = \frac{S}{S'} - z = 0 \& T = \frac{1}{S'} = 1$ for $z = z_+ = e^{-2i\tau_+}$. Choose $S(z) = z[\alpha(z-1)^2 + 1]$, $\tau_{-} = 0, \ \tau_{+} = k_0 L_n := \pi n, \& n \in \mathbb{Z}^+$: $\mathfrak{n}^{2}(x) = \begin{cases} 1 + nf_{\alpha}(x) & x \in [0, L_{n}] \\ 1 & x \notin [0, L_{n}] \end{cases}$ $v(x) = v_{\alpha,n}(x) := \begin{cases} -k^2 n f_{\alpha}(x) & x \in [0, L_n] \\ 0 & x \notin [0, L_n] \end{cases}$ $f_{\alpha}(x) := \frac{8\pi i \alpha (3 - 2e^{2ik_0 x})}{e^{4ik_0 x} + \alpha (1 - e^{2ik_0 x})^2}$ $R^r = 0, \quad T = 1$ At $k = k_0$: For $\alpha > -\frac{1}{\Lambda}$: $R^{l} = \frac{-8\pi i n \alpha}{(\alpha + 1)^{2}}$

$$\begin{aligned} v_{\alpha,n}(x) &:= \begin{cases} -k^2 n f_{\alpha}(x) & x \in [0, L_n] \\ 0 & x \notin [0, L_n] \end{cases} \\ f_{\alpha}(x) &:= \frac{8\pi i \alpha (3 - 2e^{2ik_0 x})}{e^{4ik_0 x} + \alpha (1 - e^{2ik_0 x})^2} \qquad L_n := \pi n/k_0 \end{aligned}$$

For given $R = \rho e^{i\varphi} \in \mathbb{C}$, choose $\alpha \in [0, 1)$, $n \in \mathbb{Z}^+$, $m \in \mathbb{Z}$ & $d_m \in \mathbb{R}$, such that

$$\frac{8\pi n\alpha}{(\alpha+1)^2} = \rho, \qquad d_m = \frac{(4m-1)\pi - 2\varphi}{4k_0}.$$

Let $v_R^r(x) := v_{\alpha,n}(x+d_m) \& v_R^l(x) := v_{-R^*}^r(x)^*.$

$$\begin{aligned} v_{\alpha,n}(x) &:= \begin{cases} -k^2 n f_{\alpha}(x) & x \in [0, L_n] \\ 0 & x \notin [0, L_n] \end{cases} \\ f_{\alpha}(x) &:= \frac{8\pi i \alpha (3 - 2e^{2ik_0 x})}{e^{4ik_0 x} + \alpha (1 - e^{2ik_0 x})^2} \qquad L_n := \pi n/k_0 \end{aligned}$$

For given $R = \rho e^{i\varphi} \in \mathbb{C}$, choose $\alpha \in [0, 1)$, $n \in \mathbb{Z}^+$, $m \in \mathbb{Z}$ & $d_m \in \mathbb{R}$, such that

$$\frac{8\pi n\alpha}{(\alpha+1)^2} = \rho, \qquad d_m = \frac{(4m-1)\pi - 2\varphi}{4k_0}.$$

Let $v_R^r(x) := v_{\alpha,n}(x + d_m) \& v_R^l(x) := v_{-R^*}^r(x)^*$. Then,

- $v_R^r(x)$ is right-invisible with $R^l = R$.
- $v_R^l(x)$ is left-invisible with $R^r = R$.
- Both vanish outside $[-d_m, L_n d_m]$.

 \Rightarrow a model for general unidirectional invisibility.

$\label{eq:perturbative Expansion for M}$

$$\mathcal{H}(\tau) = w(\tau) \begin{bmatrix} 1 & e^{-2i\tau} \\ -e^{2i\tau} & -1 \end{bmatrix} \tau = kx, \qquad w(\tau) = \frac{v(x)}{2k^2}$$
$$\mathbf{M} = \mathcal{U}(+\infty, -\infty) = \mathcal{T} e^{-i\int_{-\infty}^{\infty} d\tau \mathcal{H}(\tau)}$$
$$= 1 - i \int_{-\infty}^{\infty} d\tau_1 \mathcal{H}(\tau_1) - \int_{-\infty}^{\infty} d\tau_2 \int_{-\infty}^{\tau_2} d\tau_1 \mathcal{H}(\tau_2) \mathcal{H}(\tau_1) + \cdots$$
$$=: 1 + \sum_{\ell=1}^{\infty} \mathbf{M}^{(\ell)}$$

Perturbative Expansion for \boldsymbol{M}

$$\begin{aligned} \mathscr{H}(\tau) &= w(\tau) \begin{bmatrix} 1 & e^{-2i\tau} \\ -e^{2i\tau} & -1 \end{bmatrix} \quad \tau = kx, \qquad w(\tau) = \frac{v(x)}{2k^2} \\ \mathbf{M} &= \mathscr{U}(+\infty, -\infty) = \mathscr{T} e^{-i\int_{-\infty}^{\infty} d\tau \mathscr{H}(\tau)} \\ &= 1 - i\int_{-\infty}^{\infty} d\tau_1 \mathscr{H}(\tau_1) - \int_{-\infty}^{\infty} d\tau_2 \int_{-\infty}^{\tau_2} d\tau_1 \mathscr{H}(\tau_2) \mathscr{H}(\tau_1) + \cdots \\ &=: 1 + \sum_{\ell=1}^{\infty} \mathbf{M}^{(\ell)} \\ \mathbf{M}^{(1)} &= \frac{-i}{2k} \begin{bmatrix} \tilde{v}(0) & \tilde{v}(2k) \\ -\tilde{v}(-2k) & -\tilde{v}(0) \end{bmatrix}, \\ \mathbf{M}^{(2)} &= \frac{-1}{4k^2} \begin{bmatrix} \tilde{v}(0,0) - \tilde{v}(-2k,2k) & \tilde{v}(2k,0) - \tilde{v}(0,2k) \\ \tilde{v}(-2k,0) - \tilde{v}(0,-2k) & \tilde{v}(0,0) - \tilde{v}(2k,-2k) \end{bmatrix} \\ \tilde{f}(k_1,\cdots,k_\ell) &:= \int_{-\infty}^{\infty} dx_1 \cdots \int_{-\infty}^{\infty} dx_\ell \ e^{-i(k_1x_1+\cdots+k_\ell x_\ell)} f(x_1,\cdots,x_\ell) \\ &\quad v(x_1,x_2) := v(x_2)\theta(x_2-x_1)v(x_1) \end{aligned}$$

Perturbative Unidirectional Invisibility

$$v(x) = \begin{cases} \mathfrak{z} f(x) & \text{for } x \in [0, L], \\ 0 & \text{for } x \notin [0, L]. \end{cases}$$
$$R^{l} = \mathcal{O}(\mathfrak{z}^{2}), \qquad R^{r} = \mathcal{O}(\mathfrak{z}), \qquad T = 1 + \mathcal{O}(\mathfrak{z}^{2}).$$

Perturbative Unidirectional Invisibility

$$v(x) = \begin{cases} \mathfrak{z} f(x) & \text{for } x \in [0, L], \\ 0 & \text{for } x \notin [0, L]. \end{cases}$$
$$R^{l} = \mathcal{O}(\mathfrak{z}^{2}), \qquad R^{r} = \mathcal{O}(\mathfrak{z}), \qquad T = 1 + \mathcal{O}(\mathfrak{z}^{2}).$$
Example: $f(x) = e^{iKx}, \ k = \frac{K}{2} = \frac{2\pi m}{L}, \ \& \ m \in \mathbb{Z}^{+}. \end{cases}$

Perturbative Unidirectional Invisibility

$$v(x) = \begin{cases} \mathfrak{z} f(x) & \text{for } x \in [0, L], \\ 0 & \text{for } x \notin [0, L]. \end{cases}$$

$$R^{l} = \mathcal{O}(\mathfrak{z}^{2}), \qquad R^{r} = \mathcal{O}(\mathfrak{z}), \qquad T = 1 + \mathcal{O}(\mathfrak{z}^{2}).$$
Example: $f(x) = e^{iKx}, \ k = \frac{K}{2} = \frac{2\pi m}{L}, \ \& \ m \in \mathbb{Z}^{+}.$

$$R^{l} = \frac{\tilde{v}(-2k)}{2ik - \tilde{v}(0)} + \mathcal{O}(\mathfrak{z}^{2}),$$

$$R^{r} = \frac{\tilde{v}(2k)}{2ik - \tilde{v}(0)} + \mathcal{O}(\mathfrak{z}^{2}),$$

$$T = \frac{2ik}{2ik - \tilde{v}(0)} + \mathcal{O}(\mathfrak{z}^{2}).$$

⇒ Complete characterization of pert. unidir. invisibility

⇒ Multimode Perturbative Unidirectional Invisibility

$$v(x) = \begin{cases} \Im f(x) & \text{for } x \in [0, L], \\ 0 & \text{for } x \notin [0, L]. \end{cases}$$

Example:
$$f(x) = \frac{\mathfrak{a} e^{2iKx}}{1 - \mathfrak{a} e^{2iKx}} + \frac{\mathfrak{b} e^{-iKx}}{1 - \mathfrak{b} e^{-2iKx}}$$
$$|\mathfrak{a}| < 1, \qquad |\mathfrak{b}| < 1, \qquad K = \frac{2\pi}{L}$$

Perturbatively invisible from left: k = nK, $n = 1, 2, 3, \cdots$ Perturbatively invisible from right: $k = \left(n + \frac{1}{2}\right)K$.

Perturbative Inverse Scattering:

$$\mathbf{M}^{(1)} = \frac{-i}{2k} \begin{bmatrix} \tilde{v}(0) & \tilde{v}(2k) \\ -\tilde{v}(-2k) & -\tilde{v}(0) \end{bmatrix}$$

Perturbative Inverse Scattering:

$$\mathbf{M}^{(1)} = \frac{-i}{2k} \begin{bmatrix} \tilde{v}(0) & \tilde{v}(2k) \\ -\tilde{v}(-2k) & -\tilde{v}(0) \end{bmatrix}$$

 $v(x) = 2\frac{d}{dx}\tilde{M}_{12}^{(1)}(2x) = 2\frac{d}{dx}\tilde{M}_{21}^{(1)}(-2x)$

$$\check{f}(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ikx} f(k)$$

Perturbative Inverse Scattering:

$$\mathbf{M}^{(1)} = \frac{-i}{2k} \begin{bmatrix} \tilde{v}(0) & \tilde{v}(2k) \\ -\tilde{v}(-2k) & -\tilde{v}(0) \end{bmatrix}$$

 $v(x) = 2\frac{d}{dx}\tilde{M}_{12}^{(1)}(2x) = 2\frac{d}{dx}\tilde{M}_{21}^{(1)}(-2x)$

$$\check{f}(x) := \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{ikx} f(k)$$

Theorem: It is the first Born Approximation of the scattering data that determines the form of the potential.

A. M. PRA. 89, 012709 (2014)

Adiabatic & WKB Approximations

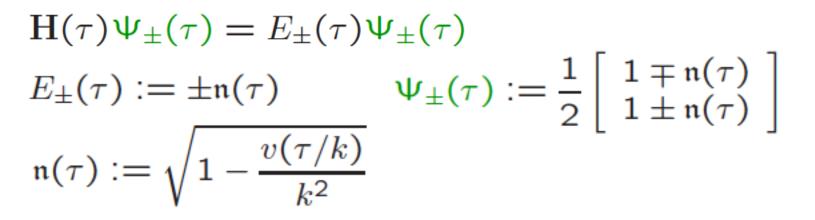
Use adiabatic approx. to solve $i\dot{\Psi}(\tau) = \mathbf{H}(\tau)\Psi(t)$:

$$\begin{aligned} \tau &:= kx \\ w(\tau) &:= \frac{v(\tau/k)}{2k^2} \end{aligned} \qquad \mathbf{H}(\tau) &:= \begin{bmatrix} w(\tau) - 1 & w(\tau) \\ -w(\tau) & -w(\tau) + 1 \end{bmatrix} \end{aligned}$$

Adiabatic & WKB Approximations

Use adiabatic approx. to solve $i\dot{\Psi}(\tau) = \mathbf{H}(\tau)\Psi(t)$:

 $\tau := kx$ $w(\tau) := \frac{v(\tau/k)}{2k^2} \qquad \qquad \mathbf{H}(\tau) := \begin{bmatrix} w(\tau) - 1 & w(\tau) \\ -w(\tau) & -w(\tau) + 1 \end{bmatrix}$



Adiabatic & WKB Approximations

Use adiabatic approx. to solve $i\dot{\Psi}(\tau) = \mathbf{H}(\tau)\Psi(t)$:

$$\begin{aligned} \tau &:= kx \\ w(\tau) &:= \frac{v(\tau/k)}{2k^2} \end{aligned} \qquad \mathbf{H}(\tau) &:= \begin{bmatrix} w(\tau) - 1 & w(\tau) \\ -w(\tau) & -w(\tau) + 1 \end{bmatrix} \end{aligned}$$

$$\begin{aligned} \mathbf{H}(\tau)\Psi_{\pm}(\tau) &= E_{\pm}(\tau)\Psi_{\pm}(\tau) \\ E_{\pm}(\tau) &:= \pm \mathfrak{n}(\tau) \\ \mathfrak{n}(\tau) &:= \sqrt{1 - \frac{v(\tau/k)}{k^2}} \end{aligned} \qquad \Psi_{\pm}(\tau) &:= \frac{1}{2} \begin{bmatrix} 1 \mp \mathfrak{n}(\tau) \\ 1 \pm \mathfrak{n}(\tau) \end{bmatrix} \end{aligned}$$

Biorthonormal dual of $\Psi_{\pm}(\tau)$: $\Phi_{\pm}(\tau) := \frac{1}{2\mathfrak{n}(\tau)^*} \begin{bmatrix} \mathfrak{n}(\tau)^* \mp 1 \\ \mathfrak{n}(\tau)^* \pm 1 \end{bmatrix}$

 $\sum_{i=1} |\Psi_j(\tau)\rangle \langle \Phi_j(\tau)| = 1$

$$\langle \Phi_i(\tau) | \Psi_j(\tau) \rangle = \delta_{ij},$$

$\mathbf{H}(\tau)\Psi_{\pm}(\tau) = E_{\pm}(\tau)\Psi_{\pm}(\tau)$

Adiabatic approximation:

 $\Psi_{\pm}(\tau_0) \longrightarrow \Psi(\tau) \approx e^{i\delta_{\pm}(\tau)}e^{i\gamma_{\pm}(\tau)}\Psi_{\pm}(\tau)$

$$\mathbf{H}(\tau)\Psi_{\pm}(\tau) = E_{\pm}(\tau)\Psi_{\pm}(\tau)$$

Adiabatic approximation:

$$\Psi_{\pm}(\tau_0) \longrightarrow \Psi(\tau) \approx e^{i\delta_{\pm}(\tau)} e^{i\gamma_{\pm}(\tau)} \Psi_{\pm}(\tau)$$

$$\begin{split} \delta_{\pm}(\tau) &= -\int_{\tau_0}^{\tau} E_{\pm}(\tau') d\tau' = \mp \int_{\tau_0}^{\tau} \mathfrak{n}(\tau') d\tau' \\ \gamma_{\pm}(\tau) &= i \int_{\tau_0}^{\tau} \langle \Phi_{\pm}(\tau') | \dot{\Psi}_{\pm}(\tau') \rangle d\tau' = i \int_{\mathfrak{n}(\tau_0)}^{\mathfrak{n}(\tau)} \langle \Phi_{\pm} | d\Psi_{\pm} \rangle \end{split}$$

Adiabaticity Condition:

$$\left|\frac{\langle \Phi_{\pm}(\tau)|\dot{\Psi}_{\mp}(\tau)\rangle}{E_{+}(\tau)-E_{-}(\tau)}\right|\ll 1$$

Garrison & Wright, PLA 128, 177 (1988)

$$\begin{aligned} \left| \frac{\langle \Phi_{\pm}(\tau) | \dot{\Psi}_{\mp}(\tau) \rangle}{E_{\pm}(\tau) - E_{-}(\tau)} \right| \ll 1 \quad \Leftrightarrow \quad \left| \frac{\mathfrak{i}(\tau)}{4\mathfrak{n}(\tau)^{2}} \right| \ll 1 \quad \Leftrightarrow \quad \frac{|v'(x)|}{8|k^{2} - v(x)|^{3/2}} \ll 1 \\ \Psi(\tau) \approx e^{i\delta_{\pm}(\tau)} e^{i\gamma_{\pm}(\tau)} \Psi_{\pm}(\tau) \end{aligned}$$

$$\frac{\langle \Phi_{\pm}(\tau) | \dot{\Psi}_{\mp}(\tau) \rangle}{E_{\pm}(\tau) - E_{-}(\tau)} \ll 1 \iff \left| \frac{\dot{\mathfrak{n}}(\tau)}{4\mathfrak{n}(\tau)^{2}} \right| \ll 1 \iff \frac{|v'(x)|}{8|k^{2} - v(x)|^{3/2}} \ll 1$$
$$\Psi(\tau) \approx e^{i\delta_{\pm}(\tau)} e^{i\gamma_{\pm}(\tau)} \Psi_{\pm}(\tau)$$
$$\delta_{\pm}(\tau) = \mp \int_{\tau_{0}}^{\tau} \mathfrak{n}(\tau') d\tau' = \mp \int_{x_{0}}^{x} \sqrt{k^{2} - v(x')} dx'$$
$$e^{i\gamma_{\pm}(\tau)} = \sqrt{\frac{\mathfrak{n}(\tau_{0})}{\mathfrak{n}(\tau)}} \qquad \Psi_{\pm}(\tau) := \frac{1}{2} \begin{bmatrix} 1 \mp \mathfrak{n}(\tau) \\ 1 \pm \mathfrak{n}(\tau) \end{bmatrix}$$

$$\begin{aligned} \left| \frac{\langle \Phi_{\pm}(\tau) | \dot{\Psi}_{\mp}(\tau) \rangle}{E_{+}(\tau) - E_{-}(\tau)} \right| \ll 1 & \Leftrightarrow \quad \left| \frac{\dot{\mathfrak{n}}(\tau)}{4\mathfrak{n}(\tau)^{2}} \right| \ll 1 & \Leftrightarrow \quad \frac{|v'(x)|}{8|k^{2} - v(x)|^{3/2}} \ll 1 \\ \Psi(\tau) \approx e^{i\delta_{\pm}(\tau)} e^{i\gamma_{\pm}(\tau)} \Psi_{\pm}(\tau) \\ \delta_{\pm}(\tau) &= \mp \int_{\tau_{0}}^{\tau} \mathfrak{n}(\tau') d\tau' = \mp \int_{x_{0}}^{x} \sqrt{k^{2} - v(x')} dx' \\ e^{i\gamma_{\pm}(\tau)} &= \sqrt{\frac{\mathfrak{n}(\tau_{0})}{\mathfrak{n}(\tau)}} \quad \Psi_{\pm}(\tau) := \frac{1}{2} \begin{bmatrix} 1 \mp \mathfrak{n}(\tau) \\ 1 \pm \mathfrak{n}(\tau) \end{bmatrix} \\ \end{aligned}$$
Recall:
$$\Psi(\tau) := \frac{1}{2} \begin{bmatrix} \phi(\tau) - i\dot{\phi}(\tau) \\ \phi(\tau) + i\dot{\phi}(\tau) \end{bmatrix} \& \phi(\tau) := \psi(\tau/k) \end{aligned}$$

$$\begin{aligned} \left| \frac{\langle \Phi_{\pm}(\tau) | \dot{\Psi}_{\mp}(\tau) \rangle}{E_{\pm}(\tau) - E_{-}(\tau)} \right| \ll 1 \iff \left| \frac{\dot{\mathfrak{n}}(\tau)}{4\mathfrak{n}(\tau)^{2}} \right| \ll 1 \iff \frac{|v'(x)|}{8|k^{2} - v(x)|^{3/2}} \ll 1 \\ \Psi(\tau) \approx e^{i\delta_{\pm}(\tau)} e^{i\gamma_{\pm}(\tau)} \Psi_{\pm}(\tau) \\ \delta_{\pm}(\tau) &= \mp \int_{\tau_{0}}^{\tau} \mathfrak{n}(\tau') d\tau' = \mp \int_{x_{0}}^{x} \sqrt{k^{2} - v(x')} dx' \\ e^{i\gamma_{\pm}(\tau)} &= \sqrt{\frac{\mathfrak{n}(\tau_{0})}{\mathfrak{n}(\tau)}} \qquad \Psi_{\pm}(\tau) := \frac{1}{2} \begin{bmatrix} 1 \mp \mathfrak{n}(\tau) \\ 1 \pm \mathfrak{n}(\tau) \end{bmatrix} \\ \text{Recall: } \Psi(\tau) := \frac{1}{2} \begin{bmatrix} \phi(\tau) - i\dot{\phi}(\tau) \\ \phi(\tau) + i\dot{\phi}(\tau) \end{bmatrix} & \& \phi(\tau) := \psi(\tau/k) \\ \psi(x) \approx \sqrt{\frac{\mathfrak{n}(\tau_{0})}{\mathfrak{n}(\tau)}} e^{\mp i \int_{\tau_{0}}^{\tau} E_{\pm}(\tau') d\tau'} = \frac{N_{0}}{[k^{2} - v(x)]^{1/4}} e^{\mp i \int_{x_{0}}^{x} \sqrt{k^{2} - v(x')} dx'} \end{aligned}$$

- ⇒ WKB Approximation = Adiabatic Approximation
 - Semiclassical expression for transfer matrix
 - Higher-order semiclassical scattering
 - A. M. JPA 47, 125301 (2014) & 345302 (2014)

Local Inverse Scattering

Problem: Given a positive real number k_0 and complex numbers $R_0^{l/r}$ and $T_0 \ (\neq 0)$, find a scattering potential v(x) whose reflection and transmission amplitudes at $k = k_0$ are given by $R^{l/r} = R_0^{l/r}$ and $T = T_0$.

Local Inverse Scattering

Problem: Given a positive real number k_0 and complex numbers $R_0^{l/r}$ and $T_0 \ (\neq 0)$, find a scattering potential v(x) whose reflection and transmission amplitudes at $k = k_0$ are given by $R^{l/r} = R_0^{l/r}$ and $T = T_0$.

Solution/Theorem: v(x) can be written as the sum of at most four unidirectionally invisible finite-range potentials,

$$v(x) = v_1(x) + v_2(x) + v_3(x) + v_4(x).$$

- $v_i(x)$ have mutually disjoint supports.
- $v_i(x)$ can be selected from the class $\{v_R^r(x), v_R^l(x)\}$.

[A.M., PRA 90, 023833 (2014)]

Application: Design of bidirectionally reflectionless phaseshifting amplifier

Example: Choose $T_0 = \sqrt{2}i$. Then $v_0(x)$ doubles the intensity $(|T_0|^2 = 2)$ and produces a $\pi/2$ phase shift in the transmitted wave.

Application: Design of bidirectionally reflectionless phaseshifting amplifier

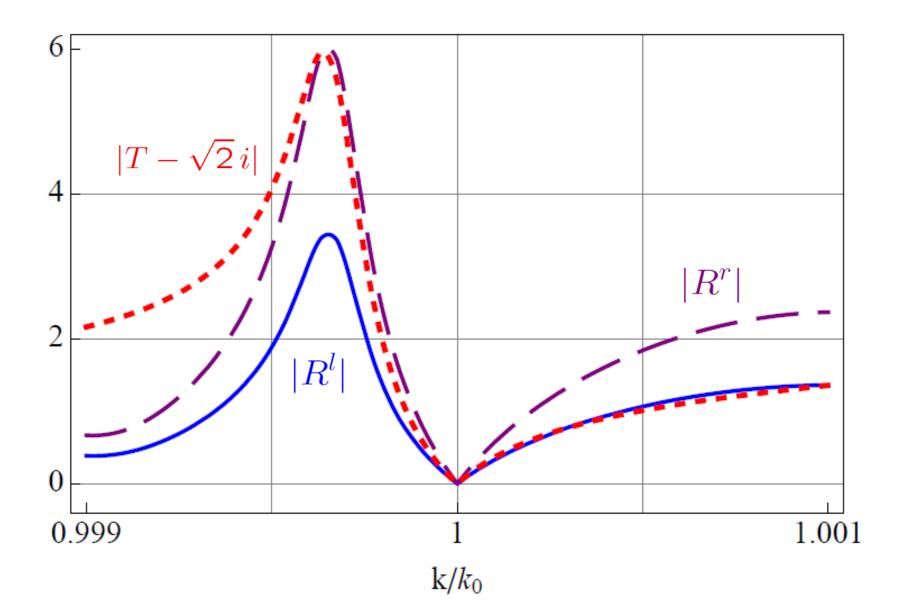
Example: Choose $T_0 = \sqrt{2}i$. Then $v_0(x)$ doubles the intensity $(|T_0|^2 = 2)$ and produces a $\pi/2$ phase shift in the transmitted wave.

Explicit model: $v_0(x) = v_1(x) + v_2(x) + v_3(x) + v_4(x)$ with

$$v_j(x) := \begin{cases} v_{\alpha_j,n}(x+d_j) & \text{for } j = 1, 3, \\ v_{\alpha_j,n}(x+d_j)^* & \text{for } j = 2, 4, \end{cases}$$

 $k_0 = 2\pi/\mu m$, n = 300, so that $L_n = 150 \ \mu m$, and

 $\begin{aligned} \alpha_1 &= 1.57798 \times 10^{-4}, & d_1 &= 300.625 \ \mu\text{m}, \\ \alpha_2 &= 1.93283 \times 10^{-4}, & d_2 &= 150.299 \ \mu\text{m}, \\ \alpha_3 &= 1.11565 \times 10^{-4}, & d_3 &= 0.00000 \ \mu\text{m}, \\ \alpha_4 &= 2.73409 \times 10^{-4}, & d_4 &= -150.326 \ \mu\text{m}. \end{aligned}$



Summary:

• Pseudo-Hermitian QM: Spectral singularities appear as singularities of the metric operator for complex scattering potentials.

• Physically spectral singularities correspond to the scattering states with real and positive energy that behave exactly like a zero-width resonance. In optics they appear as lasing at threshold gain. Their time-reversal gives rise to anti-lasing.

• M = S-matrix for a two-level non-Hermitian Hamiltonian which is pseudo-Hermitian for a real potential.

- M = Asymptotic value of the evolution operator for a twolevel pseudo-normal Hamiltonian.
- \bullet Dynamical equations for M \Rightarrow optical potential design
- Perturbative Unidirectional Invisibility & inverse scattering
- Adiabatic approximation ⇔ WKB approximation
- Pre-exponential part of the WKB wave functions is actually a complex geometric phase

• Explicit model for unidirectional invisibility

 Unidirectionally invisible potentials are local building blocks of all scattering potentials

• **Applications:** Design of reflectionless amplifiers, absorbers, phase-shifters, threshold lasers & anti-lasers.

References:

- arXiv:1310.0592 [Ann. Phys. (NY), 341, 77 (2014)]
- arXiv:1311.1619 [Phys. Rev. A 89, 012709 (2014)]
- arXiv:1401.4315 [J. Phys. A 47, 125301 (2014)]
- arXiv:1402.6458 [J. Phys. A, 47, 345302 (2014)]
- arXiv:1407.1760 [Phys. Rev. A, 90, 023833 (2014)]

• Explicit model for unidirectional invisibility

 Unidirectionally invisible potentials are local building blocks of all scattering potentials

• **Applications:** Design of reflectionless amplifiers, absorbers, phase-shifters, threshold lasers & anti-lasers.

References:

- arXiv:1310.0592 [Ann. Phys. (NY), 341, 77 (2014)]
- arXiv:1311.1619 [Phys. Rev. A 89, 012709 (2014)]
- arXiv:1401.4315 [J. Phys. A 47, 125301 (2014)]
- arXiv:1402.6458 [J. Phys. A, 47, 345302 (2014)]
- arXiv:1407.1760 [Phys. Rev. A, 90, 023833 (2014)]

Thank you for your attention.