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Abstract. We consider the problem of locating a nearest descriptor system of prescribed reduced
order to a descriptor system with large order with respect to the L∞ norm. Widely employed
approaches such as the balanced truncation and best Hankel norm approximation for this L∞ model
reduction problem are usually expensive and yield solutions that are not optimal, not even locally. We
propose approaches based on the minimization of the L∞ objective by means of smooth optimization
techniques. As we illustrate, direct applications of smooth optimization techniques are not feasible,
since the optimization techniques converge at best at a linear rate requiring too many evaluations
of the costly L∞-norm objective to be practical. We replace the original large-scale system with a
system of smaller order that interpolates the original system at points on the imaginary axis, and
minimize the L∞ objective after this replacement. The smaller system is refined by interpolating at
additional imaginary points determined based on the local minimizer of the L∞ objective, and the
optimization is repeated. We argue the framework converges at a quadratic rate under smoothness
and nondegeneracy assumptions, and describe how asymptotic stability constraints on the reduced
system sought can be incorporated into our approach. The numerical experiments on benchmark
examples illustrate that the approach leads to locally optimal solutions to the L∞ model reduction
problem, and the convergence occurs quickly for descriptors systems of order a few ten thousands.

Key words. H∞ model reduction, descriptor system, quasi-Newton methods, Petrov-Galerkin
projection, Hermite interpolation
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1. Introduction. Various applications give rise to descriptor systems with large
order. A model order reduction technique typically aims at approximating the large
order system with a system of much smaller and prescribed order. There are several
powerful numerical approaches for the model order reduction of descriptor systems at
the moment. However, to our knowledge, there does not exist a work that addresses
the determination of optimal reduced order systems with respect to the L∞ norm.
Even finding a locally optimal solution for the L∞-norm model reduction problem is
not addressed thoroughly. The H∞-norm model reduction problem is closely related
with the system at hand asymptotically stable, and the reduced order system sought
required to be asymptotically stable.

A descriptor system is often available in the state-space representation of the form

(1.1) Ex′(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t),

for given matrices E,A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. The L∞ norm of
the transfer function

(1.2) H(s) = C(sE −A)−1B +D

of the system in (1.1) is defined as

∥H∥L∞ := sup
ω∈R

σmax(H(iω)) = sup
ω∈R,ω≥0

σmax(H(iω)),

where σmax(·) denotes the largest singular value of its matrix argument, and the
last equality holds as A,B,C,D,E are real matrices. Note that we customarily set
∥H∥L∞ = supω∈R σmax(H(iω)) = ∞ if H has a pole on the imaginary axis, or
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2 FINDING LOCALLY OPTIMAL SOLUTIONS IN L∞ MODEL REDUCTION

the norm of its restriction to the imaginary axis is not bounded. If the descrip-
tor system is asymptotically stable, then its L∞ norm reduces to the H∞-norm.
Formally, let us denote with Lk

2 the space of functions f : R → Rk satisfying
∥f∥Lk

2
:=

√∫∞
−∞ ∥f(t)∥

2
2 dt < ∞ with k = m or k = p. For simplicity, we omit

the dependence of the space on the dimension k, and write L2 as well as ∥f∥L2
, as

which space (Lm
2 or Lp

2) is referred to will be clear from the context. Moreover, sup-
pose the system in (1.1) is asymptotically stable with poles in the open left half of the
complex plane. Then the L∞ norm of H is the same as the H∞ norm of H defined as

∥H∥H∞ := sup
s∈C+

σmax(H(s)),

which in turn is equal to induced norm of the operator ϕ : L2 → L2 associated with
(1.1) in the time domain that maps u to y defined as

∥ϕ∥L2 := max {∥ϕu∥L2 | u ∈ L2 s.t. ∥u∥L2 = 1} .

Hence, under the asymptotic stability assumption on the descriptor system in (1.1),
we have ∥H∥L∞ = ∥H∥H∞ = ∥ϕ∥L2

.
The L∞-norm model order reduction problem – or the L∞ model reduction prob-

lem in short – for a given descriptor system of order n and for a prescribed positive
integer r < n concerns finding a reduced descriptor system of order r that is clos-
est to the given system of order n with respect to the L∞ norm. Formally, let
Sred = (Ared, Ered, Bred, Cred, Dred) denote a system of order r with the state-space
representation

(1.3) Ered x′(t) = Ared x(t) +Bred u(t), y(t) = Cred x(t) +Dred u(t)

described by the matrices Ered, Ared ∈ Rr×r, Bred ∈ Rr×m, Cred ∈ Rp×r, Dred ∈ Rp×m,
and with the transfer function

(1.4) H(s;Sred) = Cred(sEred −Ared)−1Bred +Dred.

Furthermore, let S = (A,E,B,C,D) be the given system of order n and with the
transfer function as in (1.2). The L∞ model reduction problem involves finding a
descriptor system Sred

⋆ of order r that minimizes the objective

∥H −H( · ;Sred)∥L∞ = sup
ω∈R

[
σ(ω;Sred) := σmax(H(iω)−H(iω;Sred))

]
= sup

ω∈R,ω≥0
σ(ω;Sred)

(1.5)

over all descriptor systems Sred of order r. The problem at hand, in particular the
objective in (1.5), is non-convex, and here we aim to determine a local minimizer of
the objective in (1.5) numerically. The quality of the determined local minimizer also
matters, however this issue is largely dependent upon with which reduced system of
order r our approach is initialized.

Two important remarks are in order regarding the minimization of the objective
in (1.5). First, in addition to non-convexity, an additional difficulty is the nonsmooth
nature of the problem. The objective in (1.5) as a function of Sred is typically not
differentiable when σ(ω;Sred) has multiple global maximizers over ω ≥ 0. Secondly,
under asymptotic stability assumptions on the original system and the reduced sys-
tem, the error ∥H − H( · ;Sred)∥L∞ gives a uniform upper bound on how much the
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outputs of the original and reduced systems can differ. To be precise, suppose that
the system S of order n, and the reduced system Sred of order r are asymptotically
stable. Furthermore, let us denote with ϕ and ϕr the operators in the time domain
corresponding to the systems in (1.1) and (1.3), respectively. For every u ∈ L2, we
have

∥y − yr∥L2
≤ ∥H −H( · ;Sred)∥L∞∥u∥L2

where y, yr are such that y = ϕu and yr = ϕr u. This means that if a small error
∥H − H( · ;Sred)∥L∞ can be ensured by the minimization of (1.5), then the output
yr = ϕr u of the minimizing reduced system approximates the original output y = ϕu
well uniformly over every input u of prescribed norm.

1.1. Literature and Contributions. For an asymptotically stable descriptor
system with the transfer function H, the H∞ model reduction problem - that is, for a
given small order r, finding an asymptotically stable system Sred of order r such that
∥H−H( · ;Sred)∥H∞ is small - has been under consideration for long time. One of the
classical approaches for the H∞ model reduction problem is the balanced truncation,
which determines a state transformation so that the observability and controllability
grammians are the same diagonal matrix, and truncates the system matrices after
applying this state transformation [12, 3, 24, 25]. The reduced system by the balanced
truncation is typically not even a local minimizer of ∥H −H( · ;Sred)∥H∞ over Sred,
though it usually is a good quality approximation of H with respect to the H∞ norm
[15]. The major difficulty with the balanced truncation that limits its applicability
to larger systems is that it requires the solution of two Lyapunov equations involving
matrices of size equal to the order of the system. With the iterative approaches for
the solution of the Lyapunov equations, such as the ADI method [17, 28, 26], the
balanced truncation is applicable to systems with higher order, but still Lyapunov
equations stand as a hurdle.

A classical alternative is finding a best approximation with respect to the Hankel
norm (HNA) [14] rather than the H∞ norm. Approaches to compute a globally opti-
mal solution to HNA in polynomial time are proposed [14]. However, the globally opti-
mal solution to HNA is again usually not even a local minimizer of ∥H−H(·;Sred)∥H∞ .
Furthermore, finding a globally optimal solution to HNA is even more costlier than
the balanced truncation. Even with the efficient use of computational linear algebra
tools [6], solving HNA for systems with high order is out of reach.

Here, we propose an approach to compute a local minimizer of ∥H−H(·;Sred)∥L∞

over all systems Sred of order r. To our knowledge, the approach is the first attempt
to find such a locally optimal solution. The approach uses smooth optimization tech-
niques, which have been employed for solving nonsmooth optimization problems [19, 4]
in the last fifteen years. Most often, they seem to be capable of locating locally op-
timal solutions, but slowly at best at a linear rate. Consequently, as we shall see
below, a direct application of them to minimize ∥H −H( · ;Sred)∥L∞ is prohibitively
expensive even for systems of medium order, as it requires the computation of the
objective, that is the L∞ norm, too many times. Instead, we replace H with an ap-
proximation H̃ of small order greater than r. Rather than ∥H −H( · ;Sred)∥L∞ , we
minimize ∥H̃ −H( · ;Sred)∥L∞ , then update H̃ based on the minimizer, and repeat.
The approximation H̃ is built using the Petrov-Galerkin framework, and an update
involves the expansion of the projection subspaces for the Petrov-Galerkin framework.
We show that the proposed framework converges quadratically under simplicity as-
sumptions. We also describe how the asymptotic stability constraints can be imposed
on the variable Sred when minimizing ∥H −H( · ;Sred)∥L∞ in case the original system
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in (1.1) is asymptotically stable. As the system corresponding to H −H( · ;Sred) is
asymptotically stable when S and Sred is asymptotically stable, the incorporation of
this constraint into our approach leads to a local minimization of ∥H−H( · ;Sred)∥H∞

over all asymptotically stable systems Sred of order r, i.e., locally optimal solution of
the H∞ model reduction problem.

Iterative rational Krylov algorithm (IRKA) [16] is proposed to find a reduced
order system of prescribed order that is locally optimal with respect to the H2 norm
defined as ∥H∥H2 =

√
1
2π

∫∞
−∞ trace(H(iω)∗H(iω)) dω for a system with the transfer

function H. Formally, IRKA is an iterative interpolatory approach that finds a local
minimizer of ∥H − H( · ;Sred)∥H2

over all systems Sred of order r. In [13], starting
from the reduced order system of order r generated by IRKA, an optimization based
approach is proposed to find a locally optimal solution of ∥H − H( · ;Sred)∥H∞ for
single-input-single-output (SISO) systems but with respect to particular rank-one
modifications ∆A = εeeT , ∆B = −εe, ∆C = −εeT , ∆D = ε of the system matrices
Ared, Bred, Cred, Dred generated by IRKA over the optimization parameter ε. In the
reported results in [13], this optimization improves the accuracy of the reduced system
returned by IRKA by a factor of 2-4 with respect to the H∞ norm. But again the
eventual system is usually not a local minimizer of the objective ∥H −H( · ;Sred)∥H∞

over systems Sred of order r.
On a related note, our recent work [2] concerns the minimization of the H∞ norm

of a descriptor system with large order dependent on parameters. At the center of
that work is a subspace framework to cope with the large order of the system. It may
seem plausible to look at the current work from that perspective. However, we have
too many optimization parameters here. As a result applying the framework over
there to attain quick convergence in the setting here is not feasible, as doing so yields
projection subspaces growing rapidly (i.e., see Algorithm 2 in [2] to attain superlinear
convergence). In the framework here, only 4m new directions, independent of r, are
added into the subspaces at every iteration. Moreover, we observe quick convergence,
so the subspaces remain small throughout.

1.2. Outline. We first consider the direct minimization of ∥H −H( · ;Sred)∥L∞

over systems Sred of order r by means of smooth optimization techniques in Section
2. In this section, we indicate the optimization variables, and spell out expressions
for the first derivatives of the objective with respect to these variables. As we shall
see, the direct optimization is too costly even for systems with moderate order, since
smooth optimization techniques converge very slowly and require the evaluation of
the L∞ objective too many times. Consequently, in Section 3, we replace the transfer
function H with an approximating transfer function H̃ of small order greater than
r that Hermite interpolates H at several points on the imaginary axis. Then we
minimize ∥H̃ −H( · ;Sred)∥L∞ (by smooth optimization techniques), and refine H̃ so
that Hermite interpolation with H at another point on the imaginary axis is attained
based on the computed minimizer of ∥H̃ −H( · ;Sred)∥L∞ . We introduce a refinement
step on H̃ so that interpolation properties can be attained between the full objective
∥H −H( · ;Sred)∥L∞ and the reduced objective ∥H̃ −H( · ;Sred)∥L∞ . Then the pro-
cedure is repeated with the refined H̃. In Section 4, we investigate the interpolation
properties between full objective and the reduced objective. Based on these interpo-
lation properties, we argue in Section 5 that the algorithm converges at a quadratic
rate under smoothness and nondegeneracy assumptions. If the original descriptor
system is asymptotically stable, it may be natural to minimize ∥H̃ −H( · ;Sred)∥L∞
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subject to the asymptotic stability constraints on the reduced system Sred. We dis-
cuss in Section 6 the incorporation of such asymptotic stability constraints on the
reduced system into our approach. Section 7 is devoted to the details that need to
be taken into account in a practical implementation of the proposed algorithm such
as the initialization of the smooth optimization routines, and termination. A Matlab
implementation of the algorithm is publicly available. In Section 8, we report numer-
ical results obtained with this implementation. The numerical results indicate quick
convergence to a locally optimal solution, and the capability to deal with systems
with large order on the order of ten thousands.

2. Use of First and Second Order Derivative-Based Methods. First order
methods such as the gradient descent algorithm, and second order methods such as
quasi-Newton algorithms equipped with proper line-searches have been successfully
applied to nonsmooth optimization problems in recent years. Here, if a curvature
condition is employed in the line-search, this should take into consideration the fact
that the directional derivatives do not have to converge to zero unlike the situation for
smooth optimization problems, e.g., if Wolfe conditions are imposed in the line-search,
weak Wolfe conditions should be used rather than strong Wolfe conditions. Also, for
termination small gradient norms should not be required. Instead, for instance, a
failure in sufficient decrease in the objective along the descent search direction may
indicate convergence to a locally optimal solution.

The objective to be minimized in (1.5) for the L∞-norm model reduction problem
can be expressed as

F(Sred) = sup
ω≥0

σmax

(
H(iω)−H(iω;Sred)

)
= sup

ω≥0
σmax

(
H(iω;Sred)

)
= ∥H( · ;Sred)∥L∞ ,

H(s;Sred) := [C − Cred]

[
sE −A 0

0 sEred −Ared

]−1 [
B
Bred

]
+ (D −Dred),

(2.1)

where H( · ;Sred) is as in (1.4). Assuming that the reduced system is at most index
one and has semi-simple poles, by the Kronecker canonical form, there exist invertible
r×r real matrices W , V such that WEredV is diagonal, and WAredV is block diagonal
with 2 × 2 and 1 × 1 blocks along the diagonal. Consequently, the reduced system
is equivalent to a system (with the same transfer function) for which Ared, Ered are
converted into tridiagonal and diagonal forms, respectively. Hence, under index one
and semi-simple pole assumptions, we can perform the minimization over tridiagonal
Ared and diagonal Ered. Recalling the dimensions of Ared, Bred, Cred, Dred, Ered, there
are precisely 4r − 2 + rm+ pr + pm optimization variables.

The gradient descent algorithm, as well as quasi-Newton algorithms to minimize
F require the gradients of F . To this end, suppose there is a unique ω∗ ≥ 0 satisfying

σmax

(
H(iω∗)−H(iω∗;S

red)
)

= F(Sred) = sup
ω≥0

σmax

(
H(iω)−H(iω;Sred)

)
,

ensuring that F is differentiable at Sred. Additionally, let u, v denote a consistent pair
of unit left, right singular vectors corresponding to σmax (H(iω∗) − H(iω∗;S

red)
)
, and

let us introduce ũ := u∗Cred(iω∗E
red −Ared)−1, ṽ := (iω∗E

red −Ared)−1Bredv. Then,
by employing the analytical formulas for the derivatives of singular value functions
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[18], [23, Section 3.3], the gradients of F are given by

∇AredF(Sred) = −diag(ℜ(ũT ⊙ ṽ))− diag−1(ℜ(ũ(2 : r)T ⊙ ṽ(1 : r − 1)))

− diag+1(ℜ(ũ(1 : r − 1)T ⊙ ṽ(2 : r))) ,

∇EredF(Sred) = −ω∗ · diag(ℑ(ũT ⊙ ṽ)) , ∇BredF(Sred) = −ℜ(ũT vT ) ,

∇CredF(Sred) = −ℜ(u ṽT ) , ∇DredF(Sred) = −ℜ(u vT ) ,

(2.2)

where ⊙ denotes the Hadamard product, u denotes the complex conjugate of u, and
the notation diag(w) represents the square diagonal matrix whose diagonal entries
are formed of the entries of the vector w. The notations diag−1(w) and diag+1(w)
are similar to diag(w) but with the difference that the subdiagonal and superdiagonal
entries of the matrix are filled with the entries of w rather than the diagonal entries.

It is essential that a quasi-Newton method such as BFGS generates approximate
Hessians that are positive definite. This is traditionally imposed by the line-searches.
For instance, if BFGS is to be used to minimize F , then a line-search ensuring the
satisfaction of the weak Wolfe conditions may be adopted so that the approximate
Hessians remain positive definite. On the other hand, for the gradient descent algo-
rithm to minimize F it is sufficient to adopt a simpler line-search that guarantees only
sufficient reduction in the objective, e.g., an Armijo backtracking line-search.

One difficulty with using methods such as gradient descent and BFGS to minimize
F is that these algorithms converge rather slowly only at a linear rate at best. This
may sound surprising especially for BFGS, which typically converges superlinearly for
smooth problems. Slower convergence for BFGS is an artifact of nonsmoothness. As
a result of linear convergence at best, the objective F typically needs to be evaluated
many times until reaching a prescribed accuracy. This may be prohibitively expensive,
as it is apparent from (2.1) that evaluation of F involves the computation of the L∞
norm of H( · ;Sred), the transfer function for a large-scale system assuming the original
system in (1.1) is large-scale.

To illustrate the slow convergence issues in the previous paragraph, and the com-
putational difficulties that come with it, we apply the gradient descent algorithm to
the iss example from the SLICOT collection. The system associated with this exam-
ple has order n = 270, and m = p = 3. We attempt to solve the L∞ model reduction
problem for r = 12 starting with the initial reduced order model generated by the
balanced truncation approach. The errors (F) and the 2-norms of the gradients of
the errors (∥∇F∥2) of the iterates of the gradient descent algorithm are reported in
Table 2.1. It takes 37 iterations until the errors in two consecutive iterations differ by
no more than 10−6 in a relative sense. The initial L∞-norm error 0.004470060020 (of
the system obtained from the balanced truncation) is reduced to 0.002415438945 after
37 iterations. The eventual reduced model obtained appears to be a local minimizer of
F up to prescribed tolerances, as can be observed from the plots in Figure 2.1. Note
however that according to the last columns in Table 2.1 the gradients of F do not
seem to be converging to zero, which indicates that the objective is not differentiable
at the local minimizer to be converged. Meanwhile, the objective F is evaluated 624
times, since the line-search at each iteration requires several objective function eval-
uations (i.e., to be precise 8-28 evaluations per iteration) until the satisfaction of the
sufficient decrease condition. This results in a total runtime of about 500 seconds,
costly for a system of relatively small order. To conclude, direct applications of the
gradient descent and quasi-Newton algorithms do not seem viable for systems of even
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Table 2.1
This concerns the L∞ model reduction of the iss example with r = 12. The objective F(k) :=

F(A(k), B(k), C(k), D(k), E(k)), and the 2-norm of ∇F(k) := ∇F(A(k), B(k), C(k), D(k), E(k)) for
the iterate (A(k), B(k), C(k), D(k), E(k)) by the gradient descent method at the kth iteration are listed.

k F (k) ∥∇F (k)∥2
0 0.004470060020 1.000093488
1 0.004346739384 0.833556647
2 0.003609940202 1.000097230
3 0.003175718111 0.769359926
4 0.002975716755 1.000095596
5 0.002946113130 0.999918608
6 0.002697635041 0.844275929
7 0.002656707905 0.999952423

k F (k) ∥∇F (k)∥2
30 0.002415516341 0.803721909
31 0.002415479783 1.000008471
32 0.002415475189 0.803718441
33 0.002415456030 1.000008467
34 0.002415454613 0.803716708
35 0.002415444154 1.000008465
36 0.002415439844 0.803714645
37 0.002415438945 1.000008462

modest order (e.g., a few thousands).

3. A Subspace Framework. The computational difficulty in minimizing the
objective F in (2.1) is due to the large order of the original system S = (A,E,B,C,D).
In this section, we propose to replace this system with a system of smaller order
Sr = (Ar, Er, Br, Cr, Dr) with the state-space representation

(3.1) Erx
′
r(t) = Arxr(t) +Bru(t), y(t) = Crxr(t) +Du(t),

and solve the resulting L∞ model reduction problem, that is minimize

(3.2) Fr(S
red) = sup

ω≥0
σmax

(
Hr(iω)−H(iω;Sred)

)
= sup

ω≥0
σmax

(
Hr(iω;S

red)
)
,

where

Hr(s) := Cr(sEr −Ar)
−1Br +D , and

Hr(s;S
red) := [Cr − Cred]

[
sEr −Ar 0

0 sEred −Ared

]−1 [
Br

Bred

]
+ (D −Dred) .

The question that we need to address is how do we form a small system Sr =
(Ar, Er, Br, Cr, D) that is a good representative of the original system near a local
minimizer of the original L∞ model reduction problem.

Recall how pure Newton’s method operates to minimize a function f : Rq → R. It
approximates f with a quadratic model, and finds a local minimizer x̃ of the quadratic
model. Then, assuming f is twice differentiable at x̃, it refines the quadratic model
so that the refined quadratic model q satisfies f(x̃) = q(x̃), ∇f(x̃) = ∇q(x̃) and
∇2f(x̃) = ∇2q(x̃). In the context of L∞ model reduction, we view Fr as the model
function for F , even though Fr is not quadratic. We minimize Fr locally rather than
F , and refine the small system in (3.1) with the hope that the objective error function
Fr+1 of the refined system interpolates F and its first two derivatives at the computed
minimizer of Fr.

The small system in (3.1) is obtained from the original system by applying the
Petrov-Galerkin framework; for given two subspaces Vr,Wr of Rn of equal dimension,
the state space of the original system is restricted to Vr and the differential part of
the resulting system is imposed to be orthogonal to Wr. Formally, denoting with
Vr,Wr matrices whose columns form orthonormal bases for Vr, Wr and with xr(t)
the restricted state, the original system is approximated by

WT
r (EVrx

′
r(t) − AVrxr(t)−Bu(t)) = 0, y(t) = CVrxr(t) +Du(t),
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Fig. 2.1. The locally minimal reduced system generated by the gradient descent method for
the iss example and r = 12 is varied, and the error F is plotted as a function of the varia-
tion. In each one of the plots (a)−(h), only the indicated entry of one of the optimal coefficients
Ared, Bred, Cred, Dred, Ered is varied by amounts in [−0.5, 0.5]. Zero variation corresponds to the op-
timal reduced system.
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giving rise to a system of the form (3.1) with

(3.3) Er = WT
r EVr, Ar = WT

r AVr, Br = WT
r B, and Cr = CVr.

For the realization of the ideas in the previous paragraph, we need to be equipped
with a tool that gives us the capability to interpolate H(s) and its derivatives at a
prescribed point in the complex plane with those of the transfer function for the small
system. This tool is introduced in the next result, which follows from [5, Theorem 1].

Theorem 3.1. Let µ ∈ C be such that A− µE is invertible. Suppose
κ⊕

j=0

ℜ
[
{(A− µE)−1E}j(A− µE)−1B

]
⊆ Vr,

κ⊕
j=0

ℑ
[
{(A− µE)−1E}j(A− µE)−1B

]
⊆ Vr,

κ⊕
j=0

ℜ
[
C(A− µE)−1{E(A− µE)−1}j

]∗ ⊆ Wr, and

κ⊕
j=0

ℑ
[
C(A− µE)−1{E(A− µE)−1}j

]∗ ⊆ Wr.

Then, with Ar, Er, Br, Cr defined as in (3.3), if Ar − µEr is invertible, we have

(i) H(µ) = Hr(µ) and H(µ) = Hr(µ),

(ii) H(j)(µ) = H
(j)
r (µ) and H(j)(µ) = H

(j)
r (µ) for j = 1, . . . , 2κ+ 1.

Our proposed subspace framework at iteration r first finds a minimizer of Fr(S
red),

say Sred
r = (Ared

r , Bred
r , Cred

r , Dred
r , Ered

r ). This is followed by the computation of an
ωr ∈ R, ωr ≥ 0 such that

F(Sred
r ) = sup

ω≥0
σmax

(
H(iω)−H(iω;Sred

r )
)

= σmax

(
H(iωr)−H(iωr;S

red
r )

)
.

Computing such an ωr requires the large-scale L∞-norm computation in (2.1) but by
replacing Sred = (Ared, Bred, Cred, Dred, Ered) with Sred

r = (Ared
r , Bred

r , Cred
r , Dred

r , Ered
r ).

Then subspaces are expanded so that H and its first three derivatives are interpolated
at iωr by those of the transfer function for the small system. A formal description
of the framework is given in Algorithm 3.1 below. As the subspaces Vr and Wr are
required to be of equal dimension, the description assumes that the number of inputs
and the outputs are equal, i.e., m = p. Even if it is omitted here for simplicity, it
is straightforward to modify the directions Ṽr+1, W̃r+1 in lines 11-12 to be added
to the subspaces Vr, Wr in order to deal with the systems for which m ̸= p. The
final refinement step in line 15 aims at the satisfaction of the interpolation condition
F(Sred

r ) = Fr+1(S
red
r ), as well as the interpolation conditions on the derivatives of

F(Sred) and Fr+1(S
red) at Sred

r . This step is elaborated on in the next subsection.

3.1. Refinement Step. First we make a few observations regarding the relation
between F(Sred

r ) and Fr+1(S
red
r ) at the rth subspace iteration in Algorithm 3.1 right

before the refinement step.
At the rth iteration of Algorithm 3.1 right after line 14, by Theorem 3.1, we have

(3.4) H(iωr) = Hr+1(iωr) and H(j)(iωr) = H
(j)
r+1(iωr)
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Algorithm 3.1 Subspace framework for L∞ model reduction
Input: System S = (A,E,B,C,D) as in (1.1), the order r ∈ Z+ of the reduced

system sought, and an initial estimate Sred
0 = (Ared

0 , Ered
0 , Bred

0 , Cred
0 , Dred

0 ) of order
r for a minimizer of F as in (2.1).

Output: Estimate Sred
⋆ = (Ared

⋆ , Ered
⋆ , Bred

⋆ , Cred
⋆ , Dred

⋆ ) for a minimizer of F as in (2.1).

1: Choose the initial subspaces V0,W0 and orthonormal bases V0,W0 for them.

2: Form A0, B0, C0, E0 using (3.3), and let S0 = (A0, E0, B0, C0, D) .

% main loop
3: for r = 0, 1, . . . do

4: if r ≥ 1 then
5: Sred

r ← a minimizer of Fr(S
red).

6: end if

7: ωr ← a maximizer of σ(ω;Sred
r ) = σmax

(
H(iω)−H(iω;Sred

r )
)

over ω ≥ 0.

8: if r ≥ 1 then
9: Return if convergence has occurred with Sred

⋆ ← Sred
r .

10: end if

% expand the subspaces to interpolate at iωr

11: Ṽr+1 ←
[
ℜ[(iωrE −A)−1B] ℜ[(iωrE −A)−1E(iωrE −A)−1B]

ℑ[(iωrE −A)−1B] ℑ[(iωrE −A)−1E(iωrE −A)−1B]
]
.

12: W̃r+1 ← [ ℜ[(iωrE −A)−∗C∗] ℜ[(iωrE −A)−∗E(iωrE −A)−∗C∗]

ℑ[(iωrE −A)−∗C∗] ℑ[(iωrE −A)−∗E(iωrE −A)−∗C∗] ].

13: Vr+1 ← orth
([

Vr Ṽr+1

])
and Wr+1 ← orth

([
Wr W̃r+1

])
.

% update the small system
14: Form Ar+1, Br+1, Cr+1, Er+1 using (3.3),

and let Sr+1 = (Ar+1, Er+1, Br+1, Cr+1, D) .

% refine the small system
15: Refine Vr+1, Wr+1 and Sr+1 if necessary (using Algorithm 3.2).

16: end for

for j = 1, 2, 3 under the assumptions that A− iωrE and Ar+1− iωrEr+1 are invertible.
Consequently, H(iωr)−H(iωr;S

red
r ) and Hr+1(iωr)−H(iωr;S

red
r ) are equal, and share

the same set of left and right singular vectors. It immediately follows that setting

(3.5) σr+1(ω;S
red) := σmax(Hr+1(iω)−H(iω;Sred)) ,

and recalling the definition of σ(ω;Sred) in (1.5), we have

(3.6) σ(ωr;S
red
r ) = σr+1(ωr;S

red
r ).

Indeed, as the singular values and vectors of H(iωr)−H(iωr;S
red
r ) and Hr+1(iωr)−

H(iωr;S
red
r ) are the same, and the first two derivatives of H(iω) − H(iω;Sred

r ) and
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Hr+1(iω)−H(iω;Sred
r ) at ω = ωr are equal due to (3.4), we also have

(3.7)
djσ

dωj
(ωr;S

red
r ) =

djσr+1

dωj
(ωr;S

red
r )

for j = 1, 2. Now ωr is a global maximizer of σ(ω;Sred
r ) over ω implying

dσ

dω
(ωr;S

red
r ) = 0 and

d2σ

dω2
(ωr;S

red
r ) ≤ 0 .

Assuming that the last inequality on the second derivative above holds strictly, (3.7)
implies ωr is also a local maximizer of σr+1(ω;S

red
r ).

Regarding F(Sred
r ) and Fr+1(S

red
r ), the following relation always hold:

F(Sred
r ) = sup

ω≥0
σ(ω;Sred

r )

= σ(ωr;S
red
r )

= σr+1(ωr;S
red
r )

≤ sup
ω≥0

σr+1(ω;S
red
r ) = Fr+1(S

red
r ),

(3.8)

where the third equality is due to the interpolatory property in (3.6). As argued in
the previous paragraph, the point ωr is not only a global maximizer of σ(ω;Sred

r ),
but also generically a local maximizer of σr+1(ω;S

red
r ). If it happens that ωr is also a

global maximizer of σr+1(ω;S
red
r ) beyond being a local maximizer, then the inequality

in the equation above becomes an equality, and we have the interpolation property

(3.9) F(Sred
r ) = Fr+1(S

red
r ).

In the refinement step, if it happens that ωr is merely a local maximizer of
σr+1(ω;S

red
r ), but not a global maximizer, then we find a global maximizer ω

(0)
r of

σr+1(ω;S
red
r ) over ω ≥ 0 (equivalently compute the L∞ norm of Hr+1(·)−H( · ; Sred

r )).
Observe that finding such a global maximizer has a small computational cost, as the
orders of Sr+1 and Sred

r are small. Then, by employing Theorem 3.1, we expand the
subspaces Vr+1, Wr+1 further so that the interpolatory properties are attained be-
tween Hr+1(iω) after this refinement and H(iω) at ω = ω

(0)
r , which in turn implies

interpolatory properties between σr+1(ω;S
red
r ) and σ(ω;Sred

r ) at ω = ω
(0)
r . If ωr after

this refinement of Sr+1 is still only a local maximizer of σr+1(ω;S
red
r ), but not a global

maximizer, then we repeat this refinement procedure of Sr+1 up until ωr becomes a
global maximizer of σr+1(ω;S

red
r ) (in practice up to prescribed tolerances). A formal

description of the refinement step is given below in Algorithm 3.2. For simplicity,
in line 3 of Algorithm 3.2 it is assumed that ωr is the unique global maximizer of
σ(ω;Sred

r ). More generally, all of the global maximizers of σ(ω;Sred
r ) can be returned

in line 7 of Algorithm 3.1 (e.g., by employing the level-set methods to compute the
L∞ norm), and whether ω(j)

r is equal to any of these global maximizers can be checked
in line 3 of Algorithm 3.2.

Assuming σ(ω;Sred
r ) is Lipschitz continuous, σr+1(ω;S

red
r ) is Lipschitz continu-

ous with a uniform Lipschitz constant over the iterations of Algorithm 3.2, and the
maximizer ω(j)

r of σr+1(ω;S
red
r ) over ω ≥ 0 at every j is required to be in a prescribed

bounded interval, the gap |ω(j)
r −ωr| can be made less than any prescribed amount af-

ter finitely many iterations of Algorithm 3.2. At this point, the interpolation condition
(3.9) is also met up to a multiple of the prescribed amount.
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Algorithm 3.2 Refinement Step

1: for j = 0, 1, . . . do

2: ω
(j)
r ← a maximizer of σr+1(ω;S

red
r ) = σmax

(
Hr+1(iω)−H(iω;Sred

r )
)

over ω ≥ 0.

3: if ω
(j)
r = ωr (up to prescribed tolerances) then

4: Terminate with Vr+1, Wr+1 and Sr+1.

5: end if

% expand the subspaces to interpolate at iω
(j)
r

6: Ṽr+1 ←
[
ℜ[(iω(j)

r E −A)−1B] ℜ[(iω(j)
r E −A)−1E(iωrE −A)−1B]

ℑ[(iω(j)
r E −A)−1B] ℑ[(iω(j)

r E −A)−1E(iω
(j+1)
r E −A)−1B]

]
.

7: W̃r+1 ←
[
ℜ[(iω(j)

r E −A)−∗C∗] ℜ[(iω(j)
r E −A)−∗E(iω

(j)
r E −A)−∗C∗]

ℑ[(iω(j)
r E −A)−∗C∗] ℑ[(iω(j)

r E −A)−∗E(iω
(j)
r E −A)−∗C∗]

]
.

8: Vr+1 ← orth
([

Vr+1 Ṽr+1

])
and Wr+1 ← orth

([
Wr+1 W̃r+1

])
.

% update the small system
9: Form Ar+1, Br+1, Cr+1, Er+1 using (3.3),

and let Sr+1 = (Ar+1, Er+1, Br+1, Cr+1, D) .

10: end for

4. Interpolation Properties of the Subspace Framework. Suppose that
ωr is a global maximizer of σr+1(ω;S

red
r ) by the termination of the refinement step,

in which case the interpolation condition (3.9) holds due to (3.8). It can be shown
that, assuming F and Fr+1 are twice differentiable at Sred

r , indeed all of the first two
derivatives of F and Fr+1 are equal at Sred

r as well. To this end, let x1, x2 be any two
entries of the matrix variables Ared, Bred, Cred, Dred, Ered of F and Fr+1. Recalling

H(iω;Sred) = H(iω)−H(iω;Sred) ,

Hr+1(iω;S
red) = Hr+1(iω)−H(iω;Sred) ,

and by employing (3.4), it is apparent that

H(iωr;S
red
r ) = Hr+1(iωr;S

red
r ) ,(4.1)

∂H
∂y

(iωr;S
red
r ) =

∂Hr+1

∂y
(iωr;S

red
r ) ,(4.2)

∂2H
∂y ∂z

(iωr;S
red
r ) =

∂2Hr+1

∂y ∂z
(iωr;S

red
r ) ,(4.3)

for all y, z ∈ {ω, x1, x2}. By exploiting

F(Sred) = sup
ω≥0

σmax(H(iω;Sred)) , Fr+1(S
red) = sup

ω≥0
σmax(Hr+1(iω;S

red)) ,
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and using implicit differentiation

∂F
∂y

(Sred
r ) =

∂ (σmax ◦ H)
∂y

(iωr;S
red
r )

=
∂ (σmax ◦ Hr+1)

∂y
(iωr;S

red
r ) =

∂Fr+1

∂y
(Sred

r )

(4.4)

for y ∈ {x1, x2}, where the second equality is due to (4.2), as well as (4.1) implying
the fact that H(iωr;S

red
r ) and Hr+1(iωr;S

red
r ) have the same left and right singu-

lar vectors. We remark that, for the first and third equalities above, we use the
fact ωr is a global maximizer of σ(ω;Sred

r ) = σmax(H(iω;Sred
r )) and σr+1(ω;S

red
r ) =

σmax(Hr+1(iω;S
red
r )), respectively.

Moreover, for any y, z ∈ {ω, x1, x2}, we have

∂2(σmax ◦ H)
∂y ∂z

(iωr;S
red
r ) =

∂2(σmax ◦ Hr+1)

∂y ∂z
(iωr;S

red
r )

due to (4.2) and (4.3) combined with the fact that H(iωr;S
red
r ), Hr+1(iωr;S

red
r ) have

the same singular values and vectors due to (4.1). Consequently,

∂2F
∂y ∂z

(Sred
r ) =

∂2(σmax ◦ H)
∂y ∂z

(iωr;S
red
r ) +

∂2(σmax ◦ H)
∂y ∂ω

(iωr;S
red
r ) ×{

−∂2(σmax ◦ H)
∂ω ∂z

(iωr;S
red
r )

/
∂2(σmax ◦ H)

∂2ω
(iωr;S

red
r )

}

=
∂2(σmax ◦ Hr+1)

∂y ∂z
(iωr;S

red
r ) +

∂2(σmax ◦ Hr+1)

∂y ∂ω
(iωr;S

red
r ) ×{

−∂2(σmax ◦ Hr+1)

∂ω ∂z
(iωr;S

red
r )

/
∂2(σmax ◦ Hr+1)

∂2ω
(iωr;S

red
r )

}

=
∂2Fr+1

∂y ∂z
(Sred

r )

(4.5)

for any y, z ∈ {x1, x2}.

5. A Quadratic Convergence Result Regarding Algorithm 3.1. In this
section, we establish a result that indicates a quadratic convergence regarding the
iterates of Algorithm 3.1 under a few assumptions, especially smoothness assumptions.

In this section and the next section, we denote with Dr,m,p the set of consisting
of every descriptor system Sred of order r and index at most one with semi-simple
poles, m inputs, p outputs. Throughout this section, we make use of the vectorization
V(Sred) of the system Sred = (Ared, Ered, Bred, Cred, Dred) defined as

(5.1) V(Sred) :=
[

vec(Ared)T vec(Ered)T vec(Bred)T vec(Cred)T vec(Dred)T
]T

,

where vec(M) denotes the vector obtained by stacking up the columns of matrix M .
The gradients∇F(Sred) and∇Fr+1(S

red) are vectors formed of the first partial deriva-
tives of F(Sred) and Fr+1(S

red) based on the ordering of the variables, i.e., the entries
of Ared, Ered, Bred, Cred, Dred, in the vectorization in (5.1). Similarly, ∇2F(Sred) and
∇2Fr+1(S

red) denote the Hessians of F(Sred) and Fr+1(S
red) based on the ordering

of the variables according to (5.1).
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We assume that there are two consecutive iterates Sred
r and Sred

r+1 of Algorithm
3.1 that are sufficiently close to a local maximizer Sred

∗ of F(Sred). Moreover, we
silently assume throughout that the interpolation properties in (4.4) and (4.5) hold
at Sred

r . We also keep the assumption stated below that guarantees that F(Sred) is
real analytic at Sred

∗ .

Assumption 5.1. The maximum of σ(ω;Sred
∗ ) over all ω ≥ 0 is attained at a

unique ω∗. Furthermore, σ(ω∗;S
red
∗ ) = σmax(H(iω∗;S

red
∗ )) is a simple singular value

of H(iω∗;S
red
∗ ).

An assumption regarding the smoothness of Fr+1(S
red) that we rely on is given next.

Recalling ∥v∥2 for a vector v denotes the 2-norm of v, we make use of the distance
∥S̃red − Ŝred∥ := ∥V(S̃red) − V(Ŝred)∥ for systems S̃red, Ŝred ∈ Dr,m,p, and the ball
B(Ŝred, δ) := {S̃red ∈ Dr,m,p | ∥S̃red − Ŝred∥ < δ} for a system Ŝred ∈ Dr,m,p and
positive real number δ.

Assumption 5.2.
(i) For every Sred ∈ B(Sred

r , δr) with δr := ∥Sred
r+1−Sred

r ∥ the following conditions
hold:
• The maximum of σr+1(ω;S

red) over all ω ≥ 0 is attained at a unique ω.
• The singular value σ(ω;Sred) = σmax(Hr+1(iω;S

red)) of Hr+1(iω;S
red)

is simple.
(ii) Moreover, all of the third derivatives of Fr+1(S

red) can be bounded by quan-
tities independent of r at all Sred ∈ B(Sred

r , δr).

We remark that part (i) of Assumption 5.2 guarantees that Fr+1(S
red) is real-analytic

in the ball B(Sred
r , δr), and so three times differentiable in this ball, which we depend

on in part (ii) of Assumption 5.2.
We state and prove the main result that relates ∥Sred

r − Sred
∗ ∥ and ∥Sred

r+1 − Sred
∗ ∥

below.

Theorem 5.3. Suppose that two consecutive iterates Sred
r and Sred

r+1 of Algorithm
3.1 are sufficiently close to a local maximizer Sred

∗ of F(Sred). Moreover, suppose
Assumptions 5.1, 5.2 hold, and ∇2F(Sred

∗ ) is invertible. Then there is a constant C
independent of r such that

∥Sred
r+1 − Sred

∗ ∥ ≤ C · ∥Sred
r − Sred

∗ ∥2 .

Proof. By continuity σ(ω;Sred) = σmax(H(iω;Sred)) remains simple at all ω and
Sred ∈ Dr,m,p such that ω is sufficiently close to ω∗ and Sred is sufficiently close
to Sred

∗ , where ω∗ is as in Assumption 5.1. Thus, by the analytic implicit function
theorem, there is δ̃ > 0 such that F(Sred) is real analytic at all Sred ∈ B(Sred

∗ , δ̃)
(see, e.g., [21, Lemma 16] for the details in the analogous context of the distance
instability). By the assumption that ∇2F(Sred

∗ ) is invertible, and continuity of the
second partial derivatives of F(Sred) in B(Sred

∗ , δ̃), the Hessian ∇2F(Sred) remains
invertible in a ball B(Sred

∗ , δ) for some δ < δ̃. Furthermore, without loss of gener-
ality, we assume Sred

r , Sred
r+1 are close enough to Sred

∗ so that Sred
r , Sred

r+1 ∈ B(Sred
∗ , δ),

and the ball B(Sred
r , δr) in Assumption 5.2 is contained in B(Sred

∗ , δ). We let β :=
minSred∈B(Sred

∗ ,δ) σmin(∇2F(Sred)) > 0, and note that ∇2F(Sred) is Lipshitz continu-
ous in B(Sred

∗ , δ), say with the Lipschitz constant γ.
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By an application of Taylor’s theorem with integral remainder, we have

0 = ∇F(Sred
∗ )

= ∇F(Sred
r ) +

∫ 1

0

∇2F(Sred
r + t(Sred

∗ − Sred
r )) (V(Sred

∗ )− V(Sred
r )) dt

= ∇F(Sred
r ) +∇2F(Sred

r )(V(Sred
∗ )− V(Sred

r )) +O(∥Sred
∗ − Sred

r ∥2) ,

(5.2)

where, for the third equality, we have used the Lipschitz continuity of ∇2F(Sred) in
B(Sred

∗ , δ). Additionally, by Taylor’s theorem with second order Lagrange remainder,

0 = ∇Fr+1(S
red
r+1)

= ∇Fr+1(S
red
r ) + ∇2Fr+1(S

red
r )(V(Sred

r+1)− V(Sred
r )) + O(∥Sred

r+1 − Sred
r ∥2)

= ∇F(Sred
r ) + ∇2F(Sred

r )(V(Sred
r+1)− V(Sred

r )) + O(∥Sred
r+1 − Sred

r ∥2) ,

(5.3)

where the third equality is due to ∇Fr+1(S
red
r ) = ∇F(Sred

r ) and ∇2Fr+1(S
red
r ) =

∇2F(Sred
r ), that are consequences of (4.4) and (4.5).

By employing (5.3) in (5.2), we deduce

∇2F(Sred
r )(V(Sred

∗ )− V(Sred
r+1)) = O(∥Sred

r+1 − Sred
r ∥2) +O(∥Sred

∗ − Sred
r ∥2).

Finally, noting ∥∇2F(Sred
r )(V(Sred

∗ ) − V(Sred
r+1))∥ ≥ β∥Sred

∗ − Sred
r+1∥, from the last

equality we obtain
∥Sred

r+1 − Sred
∗ ∥ ≤ O(∥Sred

r − Sred
∗ ∥2)

as desired.

6. Dealing with Asymptotic Stability Constraints. In many applications,
the reduced order system sought Sred = (Ared, Ered, Bred, Cred, Dred) of order r not
only is close with respect to the L∞ norm, but may also be required to be asymp-
totically stable. As we search through reduced order systems of index at most one,
the asymptotic stability requirement is equivalent to the condition α(Ared, Ered) < 0,
where α(Ared, Ered) is the spectral abscissa of the pencil L(s) = Ared − sEred defined
by

α(Ared, Ered) := max {Re(z) | z ∈ C s.t. det(A− zE) = 0} .

In this setting, with F(Sred) defined as in (2.1), rather than the unconstrained mini-
mization of F(Sred) over all descriptor systems Sred ∈ Dr,m,p, it may be desirable to
solve the constrained minimization problem

(6.1) min
{
F(Sred) : Sred ∈ Dr,m,p s.t. α(Ared, Ered) ≤ β

}
for a prescribed negative real number β, where Dr,m,p denotes the set of all descriptor
systems of order r and index at most one with semi-simple poles, m inputs, p outputs.

Extension of the proposed subspace framework, that is Algorithm 3.1, to deal
with the constrained minimization problem in (6.1) rather than the unconstrained
minimization of F(Sred) is straightforward. The only difference in Algorithm 3.1 is in
line 5, where Sred

r is no longer a minimizer of Fr(S
red), but instead a minimizer of the

constrained problem

(6.2) min
{
Fr(S

red) : Sred ∈ Dr,m,p s.t. α(Ared, Ered) ≤ β
}
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for the reduced function Fr(S
red) as in (3.2). The problem in (6.2) involves only

the small systems Sr as well as Sred, and is solvable by means of Newton-method
based approaches. Such a Newton-method based approach makes use of the gradient
of the constraint function C(Sred) := α(Ared, Ered) − β, in addition to the gradient
of the objective Fr(S

red). Let λ be the rightmost eigenvalue of the pencil L(s) =
Ared− sEred with u and v denoting a pair of corresponding left and right eigenvectors
normalized so that u∗Eredv = 1, and assume λ is a simple eigenvalue and the unique
rightmost eigenvalue of L(s), which ensures the differentiability of C(Sred). Then, by
differentiating the equation Aredv = λEredv with respect to the entries of Ared and
Ered and multiplying with u∗ from left, the partial derivatives of C(Sred) are given by

∂C
Ared

ij

(Sred) = ℜ(uivj) ,
∂C
Ered

jj

(Sred) = −ℜ(λujvj) ,

where Ared
ij is the subdiagonal, superdiagonal or diagonal entry of the matrix variable

Ared at position (i, j), and Ered
jj is the diagonal entry of Ered at position (j, j).

We remark that, assuming ωr is again a global minimizer of σr+1(ω;S
red
r ) after

the refinement step, the interpolation properties

F(Sred
r ) = Fr+1(S

red
r ) , ∇F(Sred

r ) = ∇Fr+1(S
red
r ) , and ∇2F(Sred

r ) = ∇2Fr+1(S
red
r )

still hold. Moreover, if a logarithmic barrier approach is adopted for the solution
of the constrained problems, then, in essence, constrained problems are turned into
unconstrained problems by lifting the constraints to the objective via the logarithmic
barrier functions

Lµ(Sred) = F(Sred) − µ · log(β − α(Ared, Ered)) ,

Lµ
r (S

red) = Fr(S
red) − µ · log(β − α(Ared, Ered))

associated with problems (6.1), (6.2), respectively, where log(·) denotes the natural
logarithm of its parameter, µ is a positive real number and represent the barrier
parameter. In this case, the interpolation properties extend to the logarithmic barrier
functions as well. In particular, we have

Lµ(Sred
r ) = Lµ

r+1(S
red
r ) , ∇Lµ(Sred

r ) = ∇Lµ
r+1(S

red
r ) , and ∇2Lµ(Sred

r ) = ∇2Lµ
r+1(S

red
r )

for every positive real number µ.

7. Practical Issues. Here we spell out a few practical issues regarding Algo-
rithm 3.1 such as how we form the initial systems S0, Sred

0 , when we terminate, the
details of bases for projection subspaces, solutions of reduced L∞-norm minimization
problems, and L∞-norm computations.

7.1. Initialization. The initial subspaces V0,W0 (in line 1 of Algorithm 3.1)
are chosen so that H0, the transfer function of S0, interpolates H at the imaginary
parts of a prescribed number of dominant poles of H. Formally, for a prescribed ℓ,
let s1, . . . , sℓ ∈ C be the most dominant ℓ poles of H with nonnegative imaginary
parts (i.e., only the dominant poles with nonnegative imaginary parts are taken into
consideration, as the poles of H appear in complex conjugate pairs such that any two
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complex conjugate poles have the same dominance metric), we set

V0 =

ℓ⊕
k=1

1⊕
j=0

{
ℜ
[
{(A− iℑskE)−1E}j(A− iℑskE)−1B

]
⊕
ℑ
[
{(A− iℑskE)−1E}j(A− iℑskE)−1B

]}
,

W0 =

ℓ⊕
k=1

1⊕
j=0

{
ℜ
[
C(A− iℑskE)−1{E(A− iℑskE)−1}j

]∗
⊕
ℑ
[
C(A− iℑskE)−1{E(A− iℑskE)−1}j

]∗ }
.

Theorem 3.1 ensures that

H(iℑsk) = H0(iℑsk), H(j)(iℑsk) = H
(j)
0 (iℑsk)

H(−iℑsk) = H0(−iℑsk), and H(j)(−iℑsk) = H
(j)
0 (−iℑsk)

for j = 1, 2, 3 and k = 1, . . . , ℓ.
Additionally, at every subspace iteration with r > 0, an initial point is needed for

the solution of the minimization problem in line 5 of Algorithm 3.1 regardless of how it
is solved, e.g., via gradient descent or BFGS. This initialization carries significance, as
it affects which local minimizer of Fr is to be converged. At a subspace iteration with
r > 0, the minimizer is initialized with the optimal reduced system from the previous
iteration, that is with Sred

r−1. Initial Sred
0 of order r must be supplied to Algorithm 3.1.

We set Sred
0 as either

• the model of order r obtained from an application of the balanced truncation
approach, or

• the model of order r whose transfer function interpolates H at the imaginary
parts of a prescribed number of dominant poles of H.

For the latter choice, we remark that the number of dominant poles used to form S0

is strictly greater than the number of dominant poles used to form this initial model
Sred
0 for the minimizer. For either choice, we make sure dim V0 = dimW0 > r by

using sufficiently many dominant poles of H when forming S0 = (A0, E0, B0, C0, D).
An issue that requires attention is that Sred

0 = (Ared
0 , Ered

0 , Bred
0 , Cred

0 , Dred
0 ) must

be such that Ared
0 is tridiagonal and Ered

0 is diagonal, whereas the balanced truncation
or the interpolatory approach yields the system (Â, Ê, B̂, Ĉ, D̂) of order r such that Â
and Ê do not necessarily have these structures. Let us suppose Ê is invertible. Then
we can first compute the eigenvalues of the r × r pencil L̂(s) = Â − sÊ, and form a
block diagonal real matrix T2 with 2× 2 and 1× 1 blocks along its diagonal that have
the same eigenvalues as L̂. The 2×2 and 1×1 blocks of T2 on its diagonal correspond
to a conjugate pair of complex eigenvalues and real eigenvalues of L̂, respectively.
Here we remark that T2 is an r × r matrix. Hence, we can compute its eigenvalue
decomposition

T2 = V2ΛV
−1
2

for a diagonal matrix Λ and invertible V2 at ease. We also have the eigenvalue de-
composition

Ê−1Â = V ΛV −1

at hand. Note that the middle factors in eigenvalue decompositions above are the
same, as T2 has the same eigenvalues as the pencil L̂, which in turn has the same
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eigenvalues as Ê−1Â. But then

Ĥ(s) := Ĉ(sÊ − Â)−1B̂ + D̂ = Ĉ(sI − Ê−1Â)−1Ê−1B̂ + D̂

= Ĉ(sI − V ΛV −1)−1Ê−1B̂ + D̂

= (ĈV )(sI − Λ)−1(V −1Ê−1B̂) + D̂

= (ĈV )(sI − V −1
2 T2V2)

−1(V −1Ê−1B̂) + D̂

= (ĈV V −1
2 )(sI − T2)

−1(V2V
−1Ê−1B̂) + D̂.

Hence, we can use

Ared
0 := T2, Ered

0 := I, Bred
0 := V2V

−1Ê−1B̂, Cred
0 := ĈV V −1

2 , Dred
0 := D̂r

as the matrices of the initial system Sred
0 .

7.2. Termination. The termination in line 9 of Algorithm 3.1 is determined
based on the values of ∥H(·)−H( · ; Sred

r )∥L∞ at two consecutive subspace iterations.
The error ∥H(·) − H( · ; Sred

r )∥L∞ is readily available at the rth subspace iteration
after line 7, as

∥H(·)−H( · ; Sred
r )∥L∞ = σmax

(
H(iωr)−H(iωr;S

red
r )

)
.

To be precise, we terminate at the rth subspace iteration in line 9 if r ≥ 1 and

(7.1)
∣∣∥H(·)−H(·;Sred

r )∥L∞ − ∥H(·)−H(·;Sred
r−1)∥L∞

∣∣ ≤ tol∥H(·)−H(·;Sred
r )∥L∞

for a prescribed tolerance tol.
The termination condition for the minimizer to solve the minimization problem

in line 5 of Algorithm 3.1 also requires some care. Recall that the objective Fr

here is nonsmooth, and, as a result, the norms of the gradients of Fr at the iterates
generated by the minimizer do not have to converge to zero. Instead, the minimizer
is terminated if the line-search fails (to return a point that causes sufficient decrease),
or the decrease in Fr at two consecutive iterates is less than ε ·tol in a relative sense,
where tol is as in (7.1) and ε is a real number in (0, 0.5).

As for the termination condition of the refinement step (i.e., the condition in line
3 of Algorithm 3.2) employed in practice, we rely on∣∣ω(j)

r − ωr

∣∣ ≤ tol |ωr|

where tol is again the tolerance in (7.1).

7.3. Orthonormalization of the Bases for the Subspaces. Keeping the
bases for the subspaces Vr, Wr (i.e., the columns of Vr, Wr) orthonormal improves
the robustness of the algorithm against the rounding errors. For instance, then the
system matrices Ar, Br, Cr, Er can be formed more accurately in the presence of
rounding errors.

This orthonormality property of the bases is attained in line 13 of Algorithm
3.1, as well as line 8 of Algorithm 3.2. In line 13 of Algorithm 3.1, Vr and Wr are
already orthonormal bases for Vr and Wr. The expansion directions Ṽr+1, W̃r+1 to
be included in the subspaces to obtain the expanded subspaces Vr+1, Wr+1 has to
be orthonormalized with respect to the existing orthonormal bases Vr, Wr. This is
achieved in practice by executing

(7.2) Ṽr+1 ← Ṽr+1 − Vr(V
T
r Ṽr+1) and W̃r+1 ← W̃r+1 −Wr(W

T
r W̃r+1).
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Near convergence the interpolation points iωr start not changing by much in consec-
utive iterations. This results in the new expansion directions Ṽr+1, W̃r+1 that are
nearly contained in the existing subspaces Vr, Wr. In this case, the orthonormal-
ization in (7.2) of Ṽr+1, W̃r+1 with respect to existing Vr, Wr suffers from cancel-
lation type rounding errors. Applying the orthonormalization in (7.2) several times
improves the accuracy, and result in directions Ṽr+1, W̃r+1 that are better orthonor-
malized against Vr, Wr. In practice, we apply (7.2) a few times, e.g., 3-4 times, then
orthonormalize the resulting Ṽr+1, W̃r+1 via the Gram-Schmidt procedure, and take
Vr+1 =

[
Vr Ṽr+1

]
, Wr+1 =

[
Wr W̃r+1

]
as the matrices whose columns form or-

thonormal bases for Vr+1, Wr+1. In line 8 of Algorithm 3.2, the columns of Vr+1 and
Wr+1 are similarly orthonormalized. We ultimately use Vr+1,Wr+1 when forming the
system Sr+1 in line 14 of Algorithm 3.1.

7.4. Solution of the Reduced L∞-Norm Minimization Problem. We use
BFGS to minimize the reduced L∞ objective Fr(S

red) in line 5 of Algorithm 3.1. To
be precise, we have explored two alternatives here; a small variation of a Matlab imple-
mentation of a line-search BFGS due to Michael L. Overton making use of weak Wolfe
conditions, and GRANSO [11]. The former is only meant for unconstrained problems
when we do not impose the asymptotic stability constraints described in Section 7,
whereas the asymptotic stability constraints in Section 7 are also incorporated into
this optimization when we use GRANSO.

7.5. Computation of the L∞ Norm. Algorithm 3.1 in line 7 requires the
computation of the L∞ norm of a system whose order is the sum of the order of the
original system S and r. If the original system does not have large order, we use the
built-in norm command in Matlab for these L∞-norm computations. Otherwise, if the
original system has large order, we use the subspace framework introduced in [1] for
the large-scale L∞-norm computations. Additionally, the minimization of the reduced
L∞ objective in line 5 via BFGS requires small-scale L∞-norm computations, which
we carry out using the norm command in Matlab.

8. Numerical Results. In this section, we report the results of numerical ex-
periments performed with a Matlab implementation of Algorithm 3.1 taking also the
practical issues indicated in the previous section into account. The first two subsec-
tions §8.1 and §8.2 below concern experiments on rather smaller order systems, §8.3
concerns experiments on a system of medium order, while the results of experiments
on several large-order systems are reported in §8.4. All of the experiments are con-
ducted in Matlab 2020b on an an iMac with Mac OS 12.1 operating system, Intel®
Core™ i5-9600K CPU and 32GB RAM.

The numerical experiments are performed using the variation of the Matlab im-
plementation of BFGS due to Michael L. Overton for the solution of the reduced
L∞-norm minimization problems. Hence, the asymptotic stability constraints are
not imposed. The original systems in all of the experiments in §8.1-8.3 concerning
small- to medium-order systems are asymptotically stable, and the computed optimal
reduced systems in these examples also turn out to be asymptotically stable. The
tolerance tol for termination (discussed in §7.2) is set equal to 10−8 in §8.1-8.3, and
10−6 in §8.4.

For comparison or initialization purposes, some of the numerical experiments
involve the application of the balanced truncation for which we use the Matlab toolbox
MORLAB [7], in particular the routine ml_ct_dss_bt or ml_ct_ss_bt depending
on whether the system at hand is a descriptor system or more specifically a linear
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time-invariant system. Moreover, the Hankel singular values computed for smaller
systems for comparison purposes are retrieved by calling the built-in routine hankelsv
in Matlab. As the first three subsections concern the model reduction of relatively
smaller systems, the built-in routine norm is employed in line 7 of Algorithm 3.1 for
L∞-norm computations, while the subspace framework in [1] is employed for this
purpose in §8.4 that concerns the model reduction of descriptor systems with large
order.

8.1. ISS Example. We start with the iss example of order n = 270 that is
also considered when optimizing the objective F directly in Section 2. As before,
we seek the nearest reduced descriptor system of order r = 12 with respect to the
L∞ norm. An application of Algorithm 3.1 with the initial estimate Sred

0 produced
by the balanced truncation terminates when r = 6. The error F(Sred

⋆ ) = 0.0022516
of the estimate Sred

⋆ returned is nearly half of the error F(Sred
0 ) = 0.0044701 of the

initial estimate Sred
0 . The optimal reduced system Sred

⋆ is indeed slightly better than
the estimate returned by the direct optimization at which the objective F takes the
value 0.0024154. Yet the total runtime is about 66 seconds, much shorter than 500
seconds, roughly the time required by the direct optimization. The local optimality
of Sred

⋆ = (Ared
⋆ , Bred

⋆ , Cred
⋆ , Dred

⋆ , Ered
⋆ ) is apparent from Figure 8.1, which indicates an

increase in the objective F if one of the entries of one of Ared
⋆ , Bred

⋆ , Cred
⋆ , Dred

⋆ , Ered
⋆ is

modified. Moreover, the Hankel singular value σr+1 for this example, a lower bound
for the minimal error possible for any system of order r, is 0.0022353 smaller than
F(Sred

⋆ ) = 0.0022516 only by a slim margin, so Sred
⋆ must be nearly optimal globally

as well.
The largest singular values of the errors σmax(H(iω)−H(iω;Sred

0 )) and σmax(H(iω)−
H(iω;Sred

⋆ )) of the initial estimate Sred
0 and the optimal estimate Sred

⋆ are plotted
as functions of ω in Figure 8.2. The singular value error function σmax(H(iω) −
H(iω;Sred

⋆ )) for the optimal Sred
⋆ is extremely flat, as indeed σmax(H(iω)−H(iω;Sred

⋆ )) ∈
[2.02 · 10−3 , 2.26 · 10−3] at all ω. Furthermore, the error σmax(H(iω)−H(iω;Sred

⋆ )) is
maximized at four distinct points marked by the circles on the right-hand plot. This
indicates that the objective F is not differentiable at the computed optimizer Sred

⋆ .
Information about the progress of Algorithm 3.1 is given in Table 8.1. We start

with the reduced system S0 of order 36 that interpolates the original system S of order
270 at three points on the imaginary axis, namely the imaginary parts of the most
dominant three poles of S. At every iteration, if no refinement step is performed, the
order of the reduced system Sr increases by 4m = 12. Additionally, each refinement
step results in an increase of 4m = 12 in the order of Sr. We observe in the first
column that the error F(Sred

r ) at the minimizer Sred
r of the reduced objective Fr

decays rapidly with respect to r. Total number of objective function evaluations is
492 (i.e., the sum of the function evaluations in the fifth columns), however the L∞
objective to be minimized involves the reduced system Sr rather than the full system
S. For instance, the number of L∞-norm computations performed are 105, 155, 123 at
iterations r = 1, 2, 3. Yet, these L∞-norm computations involve the reduced system
Sr of order 72, 84, 120 for r = 1, 2, 3. Observe that the number of bfgs iterations
eventually decrease at the later iterations, as the computed optimal Sred

r used as
the initial estimate when minimizing Fr+1 becomes stationary, i.e., as the computed
minimizer Sred

r of Fr is also close to a minimizer of Fr+1. Refinement steps are needed
only at the initial iteration when r = 0 and when r = 2. No refinement step turns out
to be necessary at the later iterations. This is a generic pattern which we observe in
vast majority of examples we have experimented on.
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Fig. 8.1. The figure is similar to Figure 2.1 and concerns the iss example with r = 12. Only
now the minimization of F is performed using the subspace framework outlined in Algorithm 3.1.
Specifically, each plot depicts F as a function of the variation of one of the entries of one of Ared,
Bred, Cred, Dred, Ered. Zero variation corresponds to the optimal reduced system by Algorithm 3.1.
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Fig. 8.2. The plots of σmax(H(iω)−H(iω;Sred
0 )) (left) and σmax(H(iω)−H(iω;Sred

⋆ )) (right)
as functions of ω for the iss example with r = 12, where Sred

0 is the initial estimate, and Sred
⋆ is

the optimal estimate computed by Algorithm 3.1. In each plot, the circles mark the points where the
largest singular value function attains the largest value.

r F(Sred
r ) red order # bfgs iter # fun evals # refine

0 0.004470060020 36 — — 2
1 0.003517059977 72 38 105 0
2 0.002259657400 84 45 155 2
3 0.002252138011 120 35 123 0
4 0.002251613679 132 11 48 0
5 0.002251609387 144 2 29 0
6 0.002251607779 156 2 32 —

Table 8.1
The iterates and information about the progress of Algorithm 3.1 on the iss example with

r = 12. The columns of red order, # bfgs iter, # fun evals, and # refine list the order of the
system Sr, number of bfgs iterations, number of objective function evaluations performed by bfgs,
and number of refinement steps performed at the rth iteration.

8.2. CD Player Model. Our next example is the CD player model which is
available in the SLICOT library. The model is a linear-time invariant system of order
n = 120 and with m = 2 inputs and p = 2 outputs. The details of the model can be
found in [10], and the references therein. Our primary purpose here is to compare on
this example Algorithm 3.1 with the approach in [13] for H∞ model reduction based
on rank-one modifications of the system matrices. As the approach in [13] is for SISO
systems, the results are reported over there for this example but with only the second
input and the first output. We follow the same practice here when applying our
approach. The initial estimate Sred

0 for a minimizer for Algorithm 3.1 is constructed
using the balanced truncation. Moreover, the initial reduced system S0 is of order 12,
and is constructed so that it interpolates the full system S at the imaginary parts of
its most dominant three poles.

The reduced systems Sred
⋆ of order r = 2, 4, 6, 8, 10 are computed using Algorithm

3.1. Table 8.2 lists the relative errors ∥H − H(· ; Sred
⋆ )∥L∞/∥H∥L∞ for the reduced

system Sred
⋆ computed by various approaches. In particular, the columns of IHA,

MBT, HNA are the reported results in [13, Table 4] by using the approach over there
initialized with the model returned by IRKA, initialized with the model returned by
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r Alg. 3.1 IHA MBT HNA BT Lower Bnd
2 3.12× 10−1 3.66× 10−1 3.68× 10−1 3.35× 10−1 3.69× 10−1 1.95× 10−1

4 1.82× 10−2 2.14× 10−2 2.25× 10−2 2.00× 10−2 2.25× 10−2 1.13× 10−2

6 9.44× 10−3 1.04× 10−2 1.19× 10−2 1.23× 10−2 1.23× 10−2 6.79× 10−3

8 4.18× 10−3 4.85× 10−3 6.40× 10−3 5.99× 10−3 6.41× 10−3 3.20× 10−3

10 7.45× 10−4 8.99× 10−4 1.24× 10−3 1.08× 10−3 1.32× 10−3 5.86× 10−4

Table 8.2
This table concerns the “cd player model”. Relative errors ∥H − H(· ; Sred

⋆ )∥L∞/∥H∥L∞ are
listed for the optimal estimate Sred

⋆ computed by various methods for finding reduced systems of order
r = 2, 4, 6, 8, 10, as well as the lower bound σr+1/∥H∥L∞ .

r F(Sred
r ) red order # bfgs iter # fun evals # refine

0 0.439972058849 12 — — 1
1 0.291281639337 20 565 1479 0
2 0.287107598817 24 134 387 0
3 0.287107598817 28 1 32 —

Table 8.3
The iterates and information about the progress of Algorithm 3.1 on the “cd player model” for

finding a reduced system or order r = 8. The columns represent quantities as in Table 8.1.

the balanced truncation, and the best Hankel norm approximation. Moreover, the
columns of BT and Lower Bnd correspond to the relative error of the reduced model
by the balanced truncation, and the theoretical lower bound σr+1/∥H∥L∞ for any
reduced system of order r for the relative error, where σr+1 is the r + 1th largest
Hankel singular value of the system. As can be seen in Table 8.2, our approach
produces reduced systems with smaller errors compared to those produced by other
approaches in all cases. The reduced systems produced by Algorithm 3.1 does not
seem far away from global optimality either, as their errors are slightly greater than
the theoretical lower bounds in terms of the Hankel singular values in the last column.

We give some details of Algorithm 3.1 applied to find a reduced system of order
r = 8 in Figures 8.3 and 8.4, as well as in Table 8.3. In particular, Figure 8.3 confirms
that the reduced system Sred

⋆ by Algorithm 3.1 is locally optimal, i.e., small variations
in the entries of the system matrices cause increase in the L∞ error objective. Figure
8.4 displays the error σmax(H(iω) − H(iω;Sred

0 )) of the initial model, and the error
σmax(H(iω) − H(iω;Sred

⋆ )) of the model by Algorithm 3.1 as functions of ω. Once
again the error function for the optimal model Sred

⋆ is flatter, even if it is not as
pronounced as for the iss example, compared to that for the initial model Sred

0 . The
error function σmax(H(iω)−H(iω;Sred

⋆ )) for the optimal model attains its maximum
at five different ω values, which implies that the objective F is not smooth at Sred

⋆ .
As displayed in Table 8.3, the convergence occurs again quite rapidly; indeed four
iterations are sufficient to reach prescribed accuracy and terminate. At each iteration,
the order of the reduced system increases by 4m = 4. Additionally, the refinement
step performed in the initial iteration causes also an increase of 4m = 4 in the order
of the reduced system. Larger number of bfgs iterations are needed at iterations with
r = 1, 2, when the objective involves reduced systems of order 20, 24, respectively.
The total runtime is around 15 seconds, and the relative error at termination is
(F(Sred

⋆ ) := ∥H−H(· ; Sred
⋆ )∥L∞)/∥H∥L∞ = (2.87×10−1)/(6.87×101) = 4.18×10−3.
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Fig. 8.3. The figure is analogous to Figure 2.1, but concerns the “cd player model” with r = 8.
Each plot depicts F as a function of the variation of one of the entries of one of Ared, Bred, Cred,
Dred, Ered. Zero variation corresponds to the optimal reduced system by Algorithm 3.1.
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Fig. 8.4. The plots illustrate the errors of the initial, optimal models by Algorithm 3.1 for the
“cd player model” with r = 8, and are analogous to those in Figure 8.2.

8.3. FOM Model. We next report numerical results on the FOM example avail-
able in the SLICOT library. The FOM example is a linear time-invariant system of
order n = 1006, and with m = p = 1. The details are given in [27, Example 3]. Here,
we are mainly interested in investigating the quality of the estimates for optimal re-
duced systems produced by Algorithm 3.1. To this end, we compare the errors of the
reduced systems by Algorithm 3.1 with those of the balanced truncation, as well as the
theoretical lower bounds for the errors in terms of Hankel singular values for varying
choices of prescribed order r of the reduced system sought. As in §8.1 and §8.2, we
set the initial estimate Sred

0 for a minimizer as the system produced by the balanced
truncation, and the initial reduced system S0 is always of order 12 and interpolates
the full system S at the imaginary parts of its most dominant three poles.

In Figure 8.5, the L∞ error ∥H − H(·;Sred
⋆ )∥L∞ of the optimal reduced system

Sred
⋆ by Algorithm 3.1 and the balanced truncation are plotted as functions of the

prescribed order r of the reduced system sought. Included in the figure is also the
plot of the Hankel singular value σr+1, a theoretical lower bound for the L∞ error
∥H − H(·;Sred)∥L∞ of any system Sred of order r. Especially when r ∈ [2, 6], the
errors of the reduced systems by Algorithm 3.1 are quite close to the theoretical lower
bound. Indeed, the errors of the reduced systems by Algorithm 3.1 usually differ by
the theoretical lower bound by a factor of two at most. Moreover, in most of cases
the errors of reduced systems by Algorithm 3.1 is significantly less than the error of
the reduced system by the balanced truncation.

8.4. Systems with Large Order. Finally, we report results on systems with
large order arising from modeling of power plants due to Rommes and his colleagues.
All of these large-scale examples are available on the website of Rommes1.

Due to the large order of the systems, the publicly available implementations
of the balanced truncation are usually not applicable, and even when they are ap-
plicable, they require substantial amount of computation time. Hence, unlike the
previous three subsections, we form the initial estimate for the minimizer Sred

0 using
the dominant poles of the system quite efficiently. For each system, we first compute
the ten most dominant poles of the system using the approach in [22], in particular
its implementation publicly available at https://zenodo.org/record/5103430. Then

1http://sites.google.com/site/rommes/software

https://zenodo.org/record/5103430
http://sites.google.com/site/rommes/software
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Fig. 8.5. Errors of the reduced systems of order r ∈ [2, 11] produced by Algorithm 3.1 and the
balanced truncation (BT), as well as the (r + 1)th largest Hankel singular value σr+1 for the FOM
example.

Sred
0 of order r is constructed so as to interpolate the full system S at the imaginary

parts of its r/(4m) most dominant poles. Similarly, the initial reduced system S0 is
constructed such that it interpolates S at the imaginary parts of its ℓ most dominant
poles, where ℓ = 7 if the system is single-input-single-output (with m = 1), and ℓ = 3
if the system is multiple-input-multiple-output (with m > 1). The order of the result-
ing reduced system S0 is 4mℓ. In all of the examples, the prescribed order r is such
that r < 4mℓ, that is the order of S0 is greater than the prescribed order r.

Even Algorithm 3.1 requires the computation of the L∞ norm of systems of order
n+r a few times (usually not more than 5-6 times in our experiments) in line 7, where
n is the large order of the system. The classical level-set approaches [8, 9] for L∞-norm
computation and their implementations in Matlab are usually no more applicable, or
when they are applicable, they take excessive amount of time. Instead, we employ the
interpolatory subspace framework in [1] for these large-scale L∞-norm computations,
that is for maximizing σmax(H(iω) − H(iω;Sred

r ) over ω at the rth iteration. As
the approach in [1] is locally convergent, whether the initial interpolation points are
sufficiently close to global maximizers of σmax(H(iω) −H(iω;Sred

r ) plays a large role
in converging to a global maximizer. We choose the initial interpolation points as the
union of the imaginary parts of the ten most dominant poles, and 15 equally-spaced
points on the interval [−0.1 , 2M] withM denoting the largest of the absolute values
of the imaginary part of the ten most dominant poles.

The absolute and relative errors of the computed reduced systems of order r along
with the total runtimes are reported in Table 8.4. For systems S20PI_n, S40PI_n,
M40PI_n of order n = 1182 or n = 2182, we have also computed reduced systems
of order r by means of the balanced truncation. In these examples, the errors of the
reduced systems by Algorithm 3.1 are significantly smaller than those of the reduced
systems by the balanced truncation. Moreover, Algorithm 3.1 on these examples
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Example n, m = p r approach error rel error time
S20PI_n 1182, 1 12 Alg. 3.1 7.67× 10−1 2.23× 10−1 19.8
S20PI_n 1182, 1 16 Alg. 3.1 7.66× 10−1 2.22× 10−1 36.2
S20PI_n 1182, 1 12 BT 1.76× 100 5.11× 10−1 45.1
S20PI_n 1182, 1 16 BT 1.32× 100 3.84× 10−1 44.2
S40PI_n 2182, 1 12 Alg. 3.1 9.30× 10−1 2.78× 10−1 48.1
S40PI_n 2182, 1 16 Alg. 3.1 6.71× 10−1 2.00× 10−1 38.1
S40PI_n 2182, 1 32 BT 1.75× 100 5.23× 10−1 410.5
M40PI_n 2182, 3 12 Alg. 3.1 1.99× 100 5.22× 10−1 52.2
M40PI_n 2182, 3 24 Alg. 3.1 1.70× 100 4.45× 10−1 117.1
M40PI_n 2182, 3 36 BT 3.07× 100 8.03× 10−1 401.9

ww_vref_6405 13251, 1 12 Alg. 3.1 5.80× 10−4 2.04× 10−1 9.2
ww_vref_6405 13251, 1 16 Alg. 3.1 4.19× 10−4 1.48× 10−1 15.1
xingo_afonso 13250, 1 12 Alg. 3.1 3.55× 10−2 8.74× 10−3 14.4
xingo_afonso 13250, 1 16 Alg. 3.1 3.56× 10−2 8.77× 10−3 14.0
xingo_afonso 13250, 1 20 Alg. 3.1 1.13× 10−2 2.79× 10−3 26.2
bips07_1998 15066, 4 16 Alg. 3.1 1.24× 101 6.30× 10−2 127.6
bips07_1998 15066, 4 32 Alg. 3.1 9.67× 100 4.91× 10−2 219.8
bips07_3078 21228, 4 16 Alg. 3.1 1.27× 101 6.06× 10−2 200.8
bips07_3078 21228, 4 32 Alg. 3.1 1.00× 101 4.78× 10−2 274.1

Table 8.4
The absolute errors ∥H −H(· ; Sred

⋆ )∥L∞ and relative errors ∥H −H(· ; Sred
⋆ )∥L∞/∥H∥L∞ for

systems of large order, where Sred
⋆ is the optimal reduced system by either Algorithm 3.1 or the

balanced truncation (BT). Total runtimes in seconds are also listed in the last column.

require less computation time compared to the balanced truncation. For systems
with larger order, the implementation of the balanced truncation that we rely on does
not seem suitable; as this implementation is based on dense linear algebra routines,
it cannot cope with such systems. On the other hand, as evident from Table 8.4,
Algorithm 3.1 is also able to deal with such systems of order ten thousands in a couple
of minutes in the worst case. Most of the runtime of Algorithm 3.1 is usually taken
by BFGS for solving reduced L∞-norm minimization problems in line 5 involving
small systems. In the end, rather than performing quite a few large-scale L∞-norm
computations, we end up performing quite a few small-scale L∞-norm computations,
and only a few large-scale L∞-norm computations. This results is an approach that
is not only computationally feasible but also more reliable, as small-scale L∞ norm
computations can be fulfilled accurately, efficiently and reliably without worrying
about local convergence thanks to the level-set methods [8, 9].

9. Software. A Matlab implementation of Algorithm 3.1 is publicly available at
https://zenodo.org/record/8344591. The numerical results reported in the previous
section are obtained with this implementation. Scripts are included to reproduce
the results for the CD player model in §8.2, and the xingo_afonso, bips07_1998
examples in §8.4. The results for other benchmark examples can be obtained similarly.

10. Conclusion. We have proposed an approach to find a locally optimal so-
lution of the L∞-norm model reduction problem. To our knowledge, this is the first
work on the subject. Our approach is based on the usage of smooth optimization tech-
niques such as the gradient descent method and BFGS. A direct application of such
smooth optimization techniques for the L∞-norm model reduction problem does not

https://zenodo.org/record/8344591
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seem suitable even for systems with modest order, as smooth optimization techniques
converge very slowly and require the evaluation of the costly L∞-norm objective too
many times. Hence, our approach replaces the original system of modest or large order
with a system of small order, and solves the resulting reduced L∞-norm minimization
problem by means of the smooth optimization. Then it refines and increases slightly
the order of the reduced system based on the minimizer of this reduced optimization
problem. This refinement is performed with an eye on interpolation between the full
and reduced L∞ objectives. Under smoothness assumptions, admittedly strong in this
context, we have given formal arguments for the quick convergence of the approach.
We have also described how asymptotic stability constraints on the small system of
prescribed order sought can be incorporated into the approach. The numerical exper-
iments on a variety of real benchmark examples indicate that our approach retrieves
indeed a locally optimal solution of the L∞-norm model reduction problem in practice.
Moreover, on some small benchmark examples, we have obtained reduced systems not
far away for from being optimal globally according to the theoretical lower bounds in
terms of Hankel singular values. Experiments on large benchmark examples illustrate
that the approach is usually suitable for systems of order a few ten thousands.

The quality of the converged locally optimal solution depends on the initial guess
for the optimal reduced system. To generate the initial guess, we have employed two
different strategies based on the balanced truncation and dominant poles. The first of
these strategies may not be computationally feasible if the original system has large
order, whereas the second strategy seems suitable even for large systems. However,
a strategy generating a good initial guess is certainly worth further research. The
proposed approach typically requires a few large-scale L∞-norm computations. Per-
forming these L∞-norm computations accurately, especially without getting stagnated
at a local maximizer that is not optimal globally, is crucial for the reliability of the pro-
posed approach. We have employed the interpolatory subspace framework in [1] with
the initial interpolation points chosen based on the dominant poles for these large-
scale L∞-norm computations. This approach usually seems to work well in practice
for large-scale L∞-norm computations. Still, we hope to explore further a good initial
interpolation selection strategy for [1] so that it converges globally, leading to the
correct L∞ norm with very high probability. Other efficient and accurate candidates
for large-scale L∞-norm computation are worth studying. In [13], the original system
is replaced by a smaller order system obtained from the Loewner framework [20] to
reduce the burden of large-scale L∞-norm computations. We have not attempted
here to incorporate the Loewner framework into our approach. As a future work, our
approach can possibly benefit from the Loewner framework; for instance, the initial
reduced system replacing the full system can perhaps be obtained using the Loewner
framework. Our quick convergence result for the proposed approach is under strong
smoothness assumptions. Investigating the order of convergence of the approach in
the likely nonsmooth setting (i.e., when the L∞ objective at the converged minimizer
is nonsmooth) is a possible direction for future research. Last but not the least, the
convergence of smooth optimization techniques such as BFGS is more of an empirical
phenomenon in the current-state-of-art with some intuition as to why. Analyzing the
convergence of smooth optimization techniques in the presence of nonsmoothness at
the optimizers is an important open problem.
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