
Eigopt : Software for Eigenvalue Optimization

Emre Mengi∗ E. Alper Yıldırım† Mustafa Kılıç‡

July 23, 2013

1 Problem Definition

These Matlab routines are implemented for the global optimization of a particular eigenvalue
of a Hermitian matrix-valued function depending on its parameters analytically subject to
box constraints. Formally, the routines are intended for the global solution of a problem of
the form

minimizeω∈B λ (A(ω)) or maximizeω∈B λ (A(ω)) . (1)

Above

(i) A(ω) : Rd → Cn×n is an analytic function of ω satisfying A(ω) = A(ω)∗ for all ω.

(ii) B := B
(
ω
(l)
1 , ω

(u)
1 , . . . , ω

(l)
d , ω

(u)
d

)
:=

{
ω ∈ Rd : ωj ∈

[
ω
(l)
j , ω

(u)
j

]
for j = 1, . . . , d

}
is

the box defining the constraints.

(iii) In theory the algorithm works for

(a) the optimization of an eigenvalue λ(A(ω)) of A(ω) that is continuous and simple
at all ω ∈ B (this simplicity assumption on B holds generically for many eigenvalue
functions of interest), or

(b) the minimization of extremal eigenvalue functions of the form

λ(A (ω)) =

j∑
k=1

dk · λk (A (ω)) ,

where λk(·) denotes the kth kargest eigenvalue, and d1 � d2 � · · · � dj > 0 are
real numbers, for instance minimization of λ1 (A (ω)).

(iv) In practice, we observe that the algorithm often seems to work for a continuous and
piece-wise analytic eigenvalue function with respect to each parameter disjointly. But
be aware that in theory there is no guarantee that it would work in general.

∗Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450 Sarıyer-İstanbul, Turkey
(emengi@ku.edu.tr). The work of this author was supported in part by the European Commision grant
PIRG-GA-268355 and the TÜBİTAK (The Scientific and Technological Research Council of Turkey) carrier
grant 109T660
†Department of Industrial Engineering, Koç University, Rumelifeneri Yolu, 34450 Sarıyer-İstanbul, Turkey

(alperyildirim@ku.edu.tr). This author was supported in part by TÜBİTAK (Turkish Scientific and Tech-
nological Research Council) Grant 109M149 and by TÜBA-GEBİP (Turkish Academy of Sciences Young
Scientists Award Program)
‡Department of Mathematics, Koç University, Rumelifeneri Yolu, 34450 Sarıyer-İstanbul, Turkey

(mukilic@ku.edu.tr). The work of this author was supported partly by the European Commision grant
PIRG-GA-268355.

1



Eigopt 2

We assume the knowledge of a constant γ such that

λmin

(
∇2λ(ω)

)
≥ γ (2)

at all ω ∈ B where λ(ω) is differentiable. Such γ can be deduced analytically sometimes,
especially for the extremal eigenvalue functions [2, Section 6]. In some other cases, it can be
deduced or guessed numerically.

2 Algorithm

The software is an implementation of the algorithm discussed in [2]; this is a realization of the
algorithm due to Breiman and Cutler [1] for eigenvalue optimization. For the minimization
problem in (1) it constructs piece-wise quadratic support functions lying globally underneath
λ(A(ω)). Then, it calculates a global minimizer of this support functionl, and refines the piece-
wise quadratic support function, i.e., adds one more quadratic piece using the calculated global
minimizer, the piece-wise quadratic support function is the maximum of all such quadratic
pieces constructed so far. The algorithm is guaranteed to converge to a global minimizer
globally [2, Section 7].

Finding the global minimizer of the piece-wise quadratic support functions is equivalent to
solving a bunch of quadratic programs. The quadratic programs require the minimization
of quadratic functions with negative, but constant curvature, subject to linear constraints.
This is efficiently solvable when the number of parameters d is small, since the solution is
attained at one of the vertices of the feasible region, and also there is a special structure of
the underlying polyhedra.

3 Usage

The Matlab routine must be called as follows:

>> [f,z parsout] = eigopt(funname,bounds,parsin)

Here is an explanation of the parameters.

• funname (input, string) is the name of the function evaluating λ(A(ω)) and its gradient.

• bounds (input, struct) contains the bounds for the box B with the following fields:

– bounds.lb (d× 1 real array) contains the lower bounds for the box constraints,

– bounds.ub (d× 1 real array) contains the upper bounds for the box constraints.

• parsin (input, struct) contains the parameters with the fields below, and the parameters
to be passed to funname.

– gamma (input, real) is the bound for the second derivatives as defined in (2).

– tol (input, real) is the absolute tolerance for the accuracy of the computed globally
minimal or maximal value of λ(A(ω)) in (1).

– itertol (input, integer) is the maximal number of iterations.

– isprint (input, integer) is to indicate whether to print out the details of the
algorithm; does not print if isprint = 0 (default), print otherwise if isprint 6= 0.

– isplot (input, integer) is to indicate whether to plot the underlying graph; plots
if isplot 6= 0 and the problem is 2-dimensional, otherwise it does not plot (default).

– iskeyboard (input, integer) is to indicate whether to interact with the user; does
not interact if iskeyboard = 0 (default) interact otherwise if iskeyboard 6= 0.



Eigopt 3

– minmax (input, integer) is to indicate whether a minimization or a maximization
problem will be solved; minimization if minmax = 0 (default), maximization oth-
erwise if minmax 6= 0.

• f (output, real) is the computed globally minimal or maximal value of λ(A(ω)) in (1),

• z (output, d× 1 real array) contains the computed global minimizer or maximizer, and

• parsout (output, struct) contains the output parameters with the following fields:

– tnfevals (output, integer) is the total number of function and gradient evaluations
performed.

– lbound (output, real) is a lower bound for the globally minimal or an upper bound
for the globally maximal value; if it is a minimization problemf−parsout.lbound <
parsin.tol. or if it is a maximization problem parsout.lbound − problem.f <
parsin.tol,

– nvertices (output, integer array) keeps the number of vertices at every iteration,

– newvertexlist (output, integer array) keeps the number of newly added vertices
at every iteration

– deadvertexlist (output, integer array) keeps the number of dead vertices at every
iteration,

– cpulist (output, real array) keeps the cpu times required at every iteration.

The termination will occur either (i) when the computed globally optimal value does not differ
from the exact value by no more than parsin.tol, or (ii) when the number of iterations is equal
to or exceeds parsin.itertol. Note that if λ (A(ω)) is to be maximized, the implementation
minimizes −λ (A(ω)). Thus, in this case, γ must satisfy

λmin

(
−∇2λ(ω)

)
≥ γ

The user is expected to write the routine evaluating λ(A(ω)) and its gradient. In the tar files
the following routines are provided for function and gradient evaluations for some common
eigenvalue optimization problems.

• fdist instab.m : continuous distance to instability

• fnum rad.m : numerical radius

• H infinity.m : H∞ norm of a linear system

• fdist instab disc.m : discrete distance to instability

• fdist uncont.m : distance to uncontrollability

• fdist defective.m : distance to defectiveness

• fdist triple.m : distance to the nearest matrix with a triple eigenvalue

• minimize max affine.m: minimization of the largest eigenvalue of an affine matrix
function

• minimize max quad.m: minimization of the largest eigenvalue of a quadratic matrix
function

The expressions for the derivatives of the eigenvalue functions are derived in [2]; see, in
particular, equations (3.3), (3.6) and (3.8) for the first derivatives.



Eigopt 4

4 Sample Calls

For instance, assuming parsin.A contains a square matrix, the call

>> bounds.lb = -7; bounds.ub = 7;

>> parsin.gamma = 2; parsin.tol = 10^-10;

>> [f,z,parsout] = eigopt(’fdist_instab’,bounds,parsin);

computes the distance to instability from the matrix to ten digit precision. Here, it is assumed
that the global minimizer of the optimization problem lies in [−7, 7].

Similarly, assuming pars.A contains an n× n matrix, and pars.B contains an n×m matrix,
the call

>> bounds.lb = [-4; -5]; bounds.ub = [4; 5];

>> parsin.gamma = 4; parsin.tol = 10^-5;

>> [f,z,parsout] = eigopt(’fdist_uncont’,bounds,parsin);

computes the distance to uncontrollability from the linear system to five digit precision.
Here, it is assumed that the global minimizer of the optimization problem lies inside the box
[−4, 4]× [−5, 5].

5 An Example : H∞ Norm

The H∞ norm of the transfer function for the linear system

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

has the singular value optimization characterization

sup
s∈R

σ1(s) where σ1(s) := σ1(C(siI −A)−1B +D)

and σ1 denotes the largest singular value. Note that assuming A is stable, the matrix function

H(s) :=

[
0 C(siI −A)−1B +D(

C(siI −A)−1B +D
)∗

0

]
is analytic everywhere. Using the expressions from [2], in particular equation (3.8), we have

dσ1(s)

ds
= =

(
u1(s)∗ C(siI −A)−2B v1(s)

)
where u1(s), v1(s) consist of a consistent pair of unit left and right singular vectors associated
with σ1(s). The Matlab routine evaluating σ1(s) and its derivative is given below.

function [f,g] = H_infinity(s,pars)

% Emre Mengi (Modified on August 19, 2011)

%

% call: function [f, g] = H_infinity(s,pars)

% task:

% calculates f = sigma_max(C*(s*i*I - A)^-1*B + D) and its

% derivative g

% note:

% the input matrices A,B,C,D must be passed through

% pars.A, pars.B, pars.C,pars.D.



Eigopt 5

A = pars.A;

B = pars.B;

C = pars.C;

D = pars.D;

[m,n]=size(A);

if (n ~= m)

error(’A must be square’);

end

[nr,nc] = size(B);

if (nr ~= n)

error(’A and B must have same number of rows’);

end

[nr,nc] = size(C);

if (nc ~= n)

error(’A and C must have same number of columns’);

end

H = C*((s*i*eye(m)-A)^-1)*B + D;

[U,S,V] = svd(H);

f = S(1,1);

g = imag(U(:,1)’*C*((s*i*eye(m)-A)^-2)*B*V(:,1));

return

For instance, assuming pars.A, pars.B, pars.C and pars.D contain matrices of size n × n,
n×m, q × n and q ×m, and pars.A is stable, the call

>> bounds.lb = -20; bounds.ub = 20;

>> parsin.gamma = norm(pars.A); parsin.tol = 10^-8;

>> [f,z,tnfevals] = eigopt1D(’H_infinity’,-20,20,norm(pars.A),10^-8,pars);

computes the H∞ norm of the associated system to eight digits precision. Once again here it
is assumed that the optimal s lies in [−20, 20].

References

[1] L. Breiman and A. Cutler. A deterministic algorithm for global optimization. Math.
Program., 58(2):179–199, February 1993.

[2] E. Mengi, E.A. Yildirim, and M. Kilic. Numerical optimization of eigenvalues of Hermitian
matrix functions. SIAM J. Matrix Anal. Appl., 2013. submitted.


