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Question 1 (20 points) Express the dual problem of

minimizex∈Rn cTx subject to f(x) ≥ 0

with c 6= 0, in terms of the Fenchel conjugate f ∗.
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Question 2 Let f : Rn → R be a Lipschitz continuous function with Lipschitz
constant γ, that is

|f(x)− f(y)| ≤ γ‖x− y‖2
for all x, y ∈ Rn.

(a) (10 points) Prove the following regarding the generalized directional deriva-
tive f (0) of f :

|f ◦(x; p)− f ◦(y; q)| ≤ γ (‖x− y‖2 + ‖p− q‖2) ∀x, y ∈ Rn, ∀p, q ∈ Rn.
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(b) (10 points) Prove the following regarding the generalized gradient ∂f(x)
of f (at every x):

‖Ψ‖2 ≤ γ ∀Ψ ∈ ∂f(x).
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Question 3 Let f : Rn → R be a convex Lipschitz continuous (but not neces-
sarily differentiable) function. The penalized bundle method to find the global
minimizer of f keeps track of two sequences {x(k)} and {y(k)} in Rn. It requires
the solution of the nonsmooth optimization problem

minimizex∈Rn Pk(x) := φk(x) +
µ

2
‖x− x(k)‖22 (1)

where µ > 0 is a penalty parameter, and

φk(x) := max
{
f(y(j)) + sTj (x− y(j)) | j = 0, . . . , k

}
for some sj ∈ ∂f(y(j)) for j = 0, . . . , k, repeatedly. The point y(k+1) is defined
as the global minimizer of Pk(x). Furthermore, x(k+1) := y(k+1) if f(y(k+1))
satisfies a sufficient decrease condition compared to f(x(k)), otherwise x(k+1) :=
x(k).

(a) (10 points) Express (1) as a convex optimization problem with a quadratic
objective function subject to linear constraints.
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(b) (10 points) Write down the centrality conditions (that is the KKT con-
ditions but with the complementarity condition replaced by a centering
equation in the primal-dual space) for the convex optimization problem
in part (a).

(Bonus) (5 points) Write down one iteration of Newton’s method for the solution
of the centrality conditions in part (b).
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Question 4 Let A be a matrix-valued function defined by

A(x) := A0 + x1A1 + · · ·+ xdAd

where A0, A1, . . . , Ad are given n×n symmetric positive semidefinite matrices,
and let λmax : Rd → R, λmax(x) := λmax(A(x)). Furthermore, assume A0 6= 0.

(a) (10 points) Express the unconstrained eigenvalue optimization problem

minimizex∈Rd λmax(x) (2)

as a constrained optimization problem with a linear objective subject to
a positive semidefiniteness constraint.
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(b) (10 points) Derive a semidefinite program that yields an upper bound for
(2). State also conditions that guarantee that this semidefinite program
is equivalent to (2).
(Hint: Try to view the constrained optimization problem in part (a) as
the dual of a semidefinite program.)
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Question 5 (20 points) Let A ∈ Rm×n and b ∈ Rm with m > n be given.
Write down a necessary and sufficient condition for a point to be a global
minimizer for the following problem using generalized gradients:

minimizex∈Rn ‖b− Ax‖∞.

For simplicity, assume the following:

(i) rank(A) = n;

(ii) every set consisting of n rows of A is linearly independent;

(iii) letting r(x) := b − Ax, at every x ∈ Rn no more than n components of
r(x) are identical in absolute value.

Note that the function f(x) := ‖b − Ax‖∞ is differentiable everywhere ex-
cluding a set Ω of (Lebesgue) measure zero; you can use this fact in your
answer.
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