MATH 450 - 558: Smooth and Nonsmooth Optimization

Instructor: Emre Mengi

Fall Semester 2015 Midterm Exam Friday November 6th, 2015 Duration: 150 minutes

	#1	20	
	#2	25	
NAME	#3	30	
Student ID	#4	25	
	Σ	100	
SIGNATURE			

- Please put your name, student ID and signature in the space provided above.
- You may use the lecture notes or your own notes, but textbooks are not allowed.

Question 1 This question concerns a quasi-Newton method based on rank two symmetric inverse Hessian updates of the form

$$H_{k+1} = H_k + us_k^T + s_k u^T.$$
(1)

Above, H_{k+1} is an approximation for the inverse Hessian $\left[\nabla^2 f(x^{(k+1)})\right]^{-1}$ and $s_k := x^{(k+1)} - x^{(k)}$.

(a) (10 points) Derive an update rule of the form (1) such that H_{k+1} satisfies the secant equation.

Choose an estimate $x^{(0)}$ for a local minimizer. Calculate $\nabla f(x^{(0)})$, and choose a positive definite H_0 . for k = 0, 1, 2, 3, ... do (1) $p_k \leftarrow -H_k \cdot \nabla f(x^{(k)})$ (2) Perform a line search in the direction p_k to determine a step-length α_k such that $x^{(k)} + \alpha_k p_k$ satisfies the Wolfe conditions. (3) $x^{(k+1)} \leftarrow x^{(k)} + \alpha_k p_k$, and calculate $\nabla f(x^{(k+1)})$. (4) Form H_{k+1} from H_k , $s_k = x^{(k+1)} - x^{(k)}$ and $y_k = \nabla f(x^{(k+1)}) - \nabla f(x^{(k)})$ using the update rule (1). end for

algorithm guarantee the generation of descent search directions p_k , i.e., does p_k necessarily satisfy $f(x^{(k)} + \alpha p_k) < f(x^{(k)})$ for all $\alpha > 0$ small enough? Explain.

Question 2 (25 points) Suppose that $f : \mathbb{R}^n \to \mathbb{R}$ is a twice continuously differentiable function, and x_* is a local minimizer of f such that $\nabla^2 f(x_*)$ is *not invertible*. Furthermore, suppose that there exist a ball $B(x_*, \delta)$ with positive radius $\delta > 0$ such that $\nabla^2 f(x)$ is invertible at all $x \in B(x_*, \delta) \setminus \{x_*\}$, and that the limit

$$\lim_{x \to x_*} \left\| \left[\nabla^2 f(x) \right]^{-1} \right\|_2 \|x - x_*\|$$

exists and is finite.

Prove that there exists a ball $B(x_*, \eta)$ (with positive radius $\eta > 0$) such that, for all $x^{(0)} \in B(x_*, \eta)$, pure Newton's method for unconstrained optimization generates a sequence $\{x^{(k)}\}$ satisfying

$$\lim_{k \to \infty} x^{(k)} = x_*.$$

Question 3 Consider the inequality constrained optimization problem

minimize_{$$x \in \mathbb{R}^2$$} $\frac{1}{2}(x_1 - 1)^2 - x_1 - x_2$
subject $x_1 - x_2^2 \ge 0$
 $2 - x_1^2 - x_2^2 \ge 0,$ (2)

and the points $\bar{x} = (0, 0)$ and $\hat{x} = (1, 1)$.

(a) (5 points) Write down a feasible sequence $\{z^{(k)}\}$ leading to \hat{x} . Write down also a limiting direction associated with this feasible sequence.

(b) (5 points) Find the tangent cone at \hat{x} .

(c) (20 points) Show, for each one of \bar{x} and \hat{x} , either the point is a local minimizer of (2) or not a local minimizer of (2).

Question 4 Let us focus on the following linearly constrained nonlinear program.

$$\begin{array}{ll} \text{minimize}_{x \in \mathbb{R}^n} & f(x) \\ \text{subject} & Ax = b \\ & x \ge 0 \end{array}$$
(3)

Above, $A \in \mathbb{R}^{m \times n}$ is a given matrix, $b \in \mathbb{R}^m$ is a given vector, and the objective function f(x) is twice continuously differentiable.

(a) (15 points) Suppose that $\nabla^2 f(x)$ is *positive definite* at all x, and let x_* be a point such that the following hold for some λ_* and $s_* \ge 0$:

$$Ax_* = b, \ x_* \ge 0, \ x_*^T s_* = 0 \ \text{and} \ \nabla f(x_*) = A^T \lambda_* + s_*.$$

Prove that x_* is a global minimizer of (3).

(b) (10 points) Suppose that $\text{Null}(A) \neq \{0\}$, and that Z is a matrix whose columns form an orthonormal basis for Null(A). Furthermore, suppose $Z^T \nabla^2 f(x) Z$ is not positive semi-definite at all x. Let x_* be a point such that the following hold for some λ_* :

$$Ax_* = b, \ x_* > 0 \ \text{and} \ \nabla f(x_*) = A^T \lambda_*.$$

Prove that x_* is not a local minimizer of (3).