Math 450-558: Smooth and Nonsmooth Optimization

Instructor: Emre Mengi

Fall Semester 2015
Midterm Exam
Friday November 6th, 2015
Duration: 150 minutes

NAME \quad STUDENT ID \quad| $\# 1$ | 20 | |
| ---: | ---: | ---: |
| $\# 2$ | 25 | |
| $\# 3$ | 30 | |
| $\# 4$ | 25 | |
| Σ | 100 | |

Signature

- Please put your name, student ID and signature in the space provided above.
- You may use the lecture notes or your own notes, but textbooks are not allowed.

Question 1 This question concerns a quasi-Newton method based on rank two symmetric inverse Hessian updates of the form

$$
\begin{equation*}
H_{k+1}=H_{k}+u s_{k}^{T}+s_{k} u^{T} . \tag{1}
\end{equation*}
$$

Above, H_{k+1} is an approximation for the inverse Hessian $\left[\nabla^{2} f\left(x^{(k+1)}\right)\right]^{-1}$ and $s_{k}:=x^{(k+1)}-x^{(k)}$.
(a) (10 points) Derive an update rule of the form (1) such that H_{k+1} satisfies the secant equation.
(b) (10 points) Consider a line search method outlined below. Does this

Choose an estimate $x^{(0)}$ for a local minimizer.
Calculate $\nabla f\left(x^{(0)}\right)$, and choose a positive definite H_{0}.
for $k=0,1,2,3, \ldots$ do
(1) $p_{k} \leftarrow-H_{k} \cdot \nabla f\left(x^{(k)}\right)$
(2) Perform a line search in the direction p_{k} to determine a step-length α_{k} such that $x^{(k)}+\alpha_{k} p_{k}$ satisfies the Wolfe conditions.
(3) $x^{(k+1)} \leftarrow x^{(k)}+\alpha_{k} p_{k}$, and calculate $\nabla f\left(x^{(k+1)}\right)$.
(4) Form H_{k+1} from $H_{k}, s_{k}=x^{(k+1)}-x^{(k)}$ and $y_{k}=\nabla f\left(x^{(k+1)}\right)-\nabla f\left(x^{(k)}\right)$ using the update rule (1).
end for
algorithm guarantee the generation of descent search directions p_{k}, i.e., does p_{k} necessarily satisfy $f\left(x^{(k)}+\alpha p_{k}\right)<f\left(x^{(k)}\right)$ for all $\alpha>0$ small enough? Explain.

Question 2 (25 points) Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a twice continuously differentiable function, and x_{*} is a local minimizer of f such that $\nabla^{2} f\left(x_{*}\right)$ is not invertible. Furthermore, suppose that there exist a ball $B\left(x_{*}, \delta\right)$ with positive radius $\delta>0$ such that $\nabla^{2} f(x)$ is invertible at all $x \in B\left(x_{*}, \delta\right) \backslash\left\{x_{*}\right\}$, and that the limit

$$
\lim _{x \rightarrow x_{*}}\left\|\left[\nabla^{2} f(x)\right]^{-1}\right\|_{2}\left\|x-x_{*}\right\|
$$

exists and is finite.
Prove that there exists a ball $B\left(x_{*}, \eta\right)$ (with positive radius $\eta>0$) such that, for all $x^{(0)} \in B\left(x_{*}, \eta\right)$, pure Newton's method for unconstrained optimization generates a sequence $\left\{x^{(k)}\right\}$ satisfying

$$
\lim _{k \rightarrow \infty} x^{(k)}=x_{*} .
$$

Question 3 Consider the inequality constrained optimization problem

$$
\begin{array}{ll}
\operatorname{minimize}_{x \in \mathbb{R}^{2}} & \frac{1}{2}\left(x_{1}-1\right)^{2}-x_{1}-x_{2} \\
\text { subject } & x_{1}-x_{2}^{2} \geq 0 \tag{2}\\
& 2-x_{1}^{2}-x_{2}^{2} \geq 0
\end{array}
$$

and the points $\bar{x}=(0,0)$ and $\hat{x}=(1,1)$.
(a) (5 points) Write down a feasible sequence $\left\{z^{(k)}\right\}$ leading to \hat{x}. Write down also a limiting direction associated with this feasible sequence.
(b) (5 points) Find the tangent cone at \hat{x}.
(c) (20 points) Show, for each one of \bar{x} and \hat{x}, either the point is a local minimizer of (2) or not a local minimizer of (2).

Question 4 Let us focus on the following linearly constrained nonlinear program.

$$
\begin{array}{ll}
\operatorname{minimize}_{x \in \mathbb{R}^{n}} & f(x) \\
\text { subject } & A x=b \tag{3}\\
& x \geq 0
\end{array}
$$

Above, $A \in \mathbb{R}^{m \times n}$ is a given matrix, $b \in \mathbb{R}^{m}$ is a given vector, and the objective function $f(x)$ is twice continuously differentiable.
(a) (15 points) Suppose that $\nabla^{2} f(x)$ is positive definite at all x, and let x_{*} be a point such that the following hold for some λ_{*} and $s_{*} \geq 0$:

$$
A x_{*}=b, \quad x_{*} \geq 0, \quad x_{*}^{T} s_{*}=0 \text { and } \nabla f\left(x_{*}\right)=A^{T} \lambda_{*}+s_{*} .
$$

Prove that x_{*} is a global minimizer of (3).
(b) (10 points) Suppose that $\operatorname{Null}(A) \neq\{0\}$, and that Z is a matrix whose columns form an orthonormal basis for $\operatorname{Null}(A)$. Furthermore, suppose $Z^{T} \nabla^{2} f(x) Z$ is not positive semi-definite at all x. Let x_{*} be a point such that the following hold for some λ_{*} :

$$
A x_{*}=b, \quad x_{*}>0 \text { and } \nabla f\left(x_{*}\right)=A^{T} \lambda_{*} .
$$

Prove that x_{*} is not a local minimizer of (3).

