Basic Linear Algebra Background

September 17, 2018

Definition 0.1 (Vector Space). A vector space V is a set (over a field \mathbb{F}) that comes with an addition (+) and a multiplication with scalars (\cdot) such that

- (1) $v + w \in V$ for all $v, w \in V$,
- (2) $\alpha \cdot v \in V$ for all $v \in V$ and for all $\alpha \in \mathbb{F}$.

The addition must satisfy the following properties:

- (A1) v + w = w + v for all $v, w \in V$.
- (A2) u + (v + w) = (u + v) + w for all $u, v, w \in V$.
- (A3) There exists a $0 \in V$ such that v + 0 = v for all $v \in V$.
- (A4) For every $v \in V$ there exists $-v \in V$ such that v + (-v) = 0.

The multiplication with scalars must satisfy the following:

- **(M1)** $(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$ for all $\alpha, \beta \in \mathbb{F}$ and for all $v \in V$.
- **(M2)** $\alpha \cdot (v+w) = \alpha \cdot v + \alpha \cdot w$ for all $\alpha \in \mathbb{F}$ and for all $v, w \in V$.
- **(M3)** $\alpha \cdot (\beta \cdot v) = (\alpha \beta) \cdot v$ for all $\alpha, \beta \in \mathbb{F}$ and for all $v \in V$.
- (M4) There exists $1 \in \mathbb{F}$ such that $1 \cdot v = v$ for all $v \in V$.

Example.

The subset

$$\mathcal{P} := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$

is a vector space over \mathbb{R} .

In particular, for every $(x_1, y_1, z_1), (x_2, y_2, z_2) \in \mathcal{P}$, we have

$$(x_1 + x_2) + (y_1 + y_2) + (z_1 + z_2) = \underbrace{(x_1 + y_1 + z_1)}_{0} + \underbrace{(x_2 + y_2 + z_2)}_{0} = 0,$$

so $(x_1, y_1, z_1) + (x_2, y_2, z_2) = ((x_1 + x_2), (y_1 + y_2), (z_1 + z_2)) \in \mathcal{P}.$

Additionally, for every $\alpha \in \mathbb{R}$ and for every $(x, y, z) \in \mathcal{P}$, we have

$$\alpha x + \alpha y + \alpha z = \alpha \underbrace{(x + y + z)}_{0} = 0,$$

so $\alpha \cdot (x, y, z) = (\alpha x, \alpha y, \alpha z) \in \mathcal{P}$.

Definition 0.2 (Subspace). A subspace S of a vector space V is a subset of V that is also a vector space.

Example. $\mathcal{P} := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$ is a subspace of \mathbb{R}^3 .

Definition 0.3 (Span). The span of a set of vectors $\{v_1, \ldots, v_n\}$ in a vector space V (over \mathbb{F}) is defined by

$$\operatorname{span}\{v_1,\ldots,v_n\} := \{\alpha_1 \cdot v_1 + \cdots + \alpha_n \cdot v_n \mid \alpha_1,\ldots,\alpha_n \in \mathbb{F}\}.$$

$$\mathcal{P} := \{ (x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0 \}$$

= $\{ (x, y, -y - x) \in \mathbb{R}^3 \mid x, y \in \mathbb{R} \}$
= $\{ x \cdot (1, 0, -1) + y \cdot (0, 1, -1) \mid x, y \in \mathbb{R} \}$
= $\operatorname{span}\{ (1, 0, -1), (0, 1, -1) \}$

Definition 0.4 (Linear Independence). A set of vectors $\{v_1, \ldots, v_n\}$ in a vector space V (over \mathbb{F}) is linearly independent if

$$\alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n = 0$$

holds only for $\alpha_1 = \cdots = \alpha_n = 0$.

The set $\{v_1, \ldots, v_n\}$ *is linearly dependent if*

$$\alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n = 0$$

holds for some $\alpha_1, \ldots, \alpha_n \in \mathbb{F}$ *not all zero.*

Example. The set $\{(1, 0, -1), (0, 1, -1)\}$ is linearly independent, because

$$0 = \alpha_1 \cdot (1, 0, -1) + \alpha_2 \cdot (0, 1, -1) = (\alpha_1, \alpha_2, -\alpha_1 - \alpha_2)$$

$$\implies \alpha_1 = \alpha_2 = 0.$$

On the other hand, $\{\underbrace{(1,0,-1)}_{v_1}, \underbrace{(0,1,-1)}_{v_2}, \underbrace{(-5,3,2)}_{v_3}\}$ is linearly dependent, $-5 \cdot v_1 + 3 \cdot v_2 = v_3.$ **Definition 0.5** (Basis). A basis B for a vector space V is a set such that

- (1) span B = V, and
- (2) *B* is linearly independent.
 - span{(1, 0, -1), (0, 1, -1)} = { $(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0$ }.
 - $\{(1,0,-1),(0,1,-1)\}$ is linearly independent.

 $\{(1,0,-1),(0,1,-1)\} \text{ is a basis for } \mathcal{P}:=\{(x,y,z)\in \mathbb{R}^3 \mid x+y+z=0\}.$

Theorem 0.6. Let B_1 and B_2 be two bases for a vector space V. Then

$$\#B_1 = \#B_2.$$

Example. $\{(1, 0, -1), (0, 1, -1)\}$ and $\{(-1, 0, 1), (-1, 1, 0)\}$ are both bases for $\mathcal{P} := \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}.$

Definition 0.7 (Dimension). *The dimension of a vector space V is defined by*

$$dim V := \#B,$$

where B is any basis for V.