Basic Linear Algebra Background

September 17, 2018

Definition 0.1 (Vector Space). A vector spaceV is a set (over a field \mathbb{F}) that comes with an addition $(+)$ and a multiplication with scalars (\cdot) such that
(1) $v+w \in V$ for all $v, w \in V$,
(2) $\alpha \cdot v \in V$ for all $v \in V$ and for all $\alpha \in \mathbb{F}$.

The addition must satisfy the following properties:
(A1) $v+w=w+v$ for all $v, w \in V$.
(A2) $u+(v+w)=(u+v)+w$ for all $u, v, w \in V$.
(A3) There exists a $0 \in V$ such that $v+0=v$ for all $v \in V$.
(A4) For every $v \in V$ there exists $-v \in V$ such that $v+(-v)=0$.

The multiplication with scalars must satisfy the following:
(M1) $(\alpha+\beta) \cdot v=\alpha \cdot v+\beta \cdot v$ for all $\alpha, \beta \in \mathbb{F}$ and for all $v \in V$.
(M2) $\alpha \cdot(v+w)=\alpha \cdot v+\alpha \cdot w$ for all $\alpha \in \mathbb{F}$ and for all $v, w \in V$.
(M3) $\alpha \cdot(\beta \cdot v)=(\alpha \beta) \cdot v$ for all $\alpha, \beta \in \mathbb{F}$ and for all $v \in V$.
(M4) There exists $1 \in \mathbb{F}$ such that $1 \cdot v=v$ for all $v \in V$.

Example.

The subset

$$
\mathcal{P}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}
$$

is a vector space over \mathbb{R}.

In particular, for every $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right) \in \mathcal{P}$, we have

$$
\left(x_{1}+x_{2}\right)+\left(y_{1}+y_{2}\right)+\left(z_{1}+z_{2}\right)=\underbrace{\left(x_{1}+y_{1}+z_{1}\right)}_{0}+\underbrace{\left(x_{2}+y_{2}+z_{2}\right)}_{0}=0,
$$

so $\left(x_{1}, y_{1}, z_{1}\right)+\left(x_{2}, y_{2}, z_{2}\right)=\left(\left(x_{1}+x_{2}\right),\left(y_{1}+y_{2}\right),\left(z_{1}+z_{2}\right)\right) \in \mathcal{P}$.

Additionally, for every $\alpha \in \mathbb{R}$ and for every $(x, y, z) \in \mathcal{P}$, we have

$$
\alpha x+\alpha y+\alpha z=\alpha \underbrace{(x+y+z)}_{0}=0,
$$

so $\alpha \cdot(x, y, z)=(\alpha x, \alpha y, \alpha z) \in \mathcal{P}$.

Definition 0.2 (Subspace). A subspace \mathcal{S} of a vector space \mathcal{V} is a subset of \mathcal{V} that is also a vector space.

Example. $\mathcal{P}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$ is a subspace of \mathbb{R}^{3}.

Definition 0.3 (Span). The span of a set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ in a vector space V (over \mathbb{F}) is defined by

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}:=\left\{\alpha_{1} \cdot v_{1}+\cdots+\alpha_{n} \cdot v_{n} \mid \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}\right\}
$$

$$
\begin{aligned}
\mathcal{P} & :=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\} \\
& =\left\{(x, y,-y-x) \in \mathbb{R}^{3} \mid x, y \in \mathbb{R}\right\} \\
& =\{x \cdot(1,0,-1)+y \cdot(0,1,-1) \mid x, y \in \mathbb{R}\} \\
& =\operatorname{span}\{(1,0,-1),(0,1,-1)\}
\end{aligned}
$$

Definition 0.4 (Linear Independence). A set of vectors $\left\{v_{1}, \ldots, v_{n}\right\}$ in a vector space V (over \mathbb{F}) is linearly independent if

$$
\alpha_{1} \cdot v_{1}+\cdots+\alpha_{n} \cdot v_{n}=0
$$

holds only for $\alpha_{1}=\cdots=\alpha_{n}=0$.

The set $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly dependent if

$$
\alpha_{1} \cdot v_{1}+\cdots+\alpha_{n} \cdot v_{n}=0
$$

holds for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$ not all zero.

Example. The set $\{(1,0,-1),(0,1,-1)\}$ is linearly independent, because

$$
\begin{aligned}
0=\alpha_{1} \cdot & (1,0,-1)+\alpha_{2} \cdot(0,1,-1)=\left(\alpha_{1}, \alpha_{2},-\alpha_{1}-\alpha_{2}\right) \\
& \Longrightarrow \alpha_{1}=\alpha_{2}=0 .
\end{aligned}
$$

On the other hand, $\{\underbrace{(1,0,-1)}_{v_{1}}, \underbrace{(0,1,-1)}_{v_{2}}, \underbrace{(-5,3,2)}_{v_{3}}\}$ is linearly dependent,

$$
-5 \cdot v_{1}+3 \cdot v_{2}=v_{3}
$$

Definition 0.5 (Basis). A basis B for a vector space V is a set such that
(1) $\operatorname{span} B=V$, and
(2) B is linearly independent.

- $\operatorname{span}\{(1,0,-1),(0,1,-1)\}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.
- $\{(1,0,-1),(0,1,-1)\}$ is linearly independent.
$\{(1,0,-1),(0,1,-1)\}$ is a basis for $\mathcal{P}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.

Theorem 0.6. Let B_{1} and B_{2} be two bases for a vector space V. Then

$$
\# B_{1}=\# B_{2}
$$

Example. $\{(1,0,-1),(0,1,-1)\}$ and $\{(-1,0,1),(-1,1,0)\}$ are both bases for $\mathcal{P}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x+y+z=0\right\}$.

Definition 0.7 (Dimension). The dimension of a vector space V is defined by

$$
\operatorname{dim} V:=\# B
$$

where B is any basis for V.

