
Math 504 (Fall 2010) - Lecture 1
IEEE Double Precision Arithmetic

and Operation Count

Emre Mengi
Department of Mathematics

Koç University, Istanbul

emengi@ku.edu.tr

Lecture 1 - Double Precision and Operation Count – p.1/17

Outline

IEEE double precision arithmetic

Performing floating point operations in IEEE standards

Floating point operation count (flop count)

Lecture 1 - Double Precision and Operation Count – p.2/17

IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2

Lecture 1 - Double Precision and Operation Count – p.3/17

IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2

52 bits for the significand (mantissa)
11 bits for the exponent
1 bit for the sign

Lecture 1 - Double Precision and Operation Count – p.3/17

IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2

52 bits for the significand (mantissa)
11 bits for the exponent
1 bit for the sign

e.g.

(1. 1
︸︷︷︸

b1

0 . . . 0 1
︸︷︷︸

b52

)2 × 2(00...010)
2 =

(
1× 20 + 1× 2−1 + 1× 2−52

)
× 22

Lecture 1 - Double Precision and Operation Count – p.3/17

IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

Lecture 1 - Double Precision and Operation Count – p.4/17

IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).

Lecture 1 - Double Precision and Operation Count – p.4/17

IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).

The remaining 2046 exponent values represent any integer in
[−1022, 1023].

Lecture 1 - Double Precision and Operation Count – p.4/17

IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).

The remaining 2046 exponent values represent any integer in
[−1022, 1023].

Let x be any floating point number in double precision.

−(1.11 . . . 1)2 × 21023
≤ x ≤ (1.11 . . . 1)221023

− ((10.0 . . . 0)2 − (0.0 . . . 1)2) × 21023 ≤ x ≤ ((10.0 . . . 0)2 − (0.0 . . . 1)2) × 21023

−(2 − 2−52) × 21023

| {z }

Rmin

≤ x ≤ (2 − 2−52) × 21023

| {z }

Rmax

≈ 1.8 × 10308

Lecture 1 - Double Precision and Operation Count – p.4/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E

x∗ = fl(x)+fl(x)
2 = ŝ×2E+(ŝ+2−52)×2E

2 =
(
ŝ + 2−53

)
× 2E

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E

x∗ = fl(x)+fl(x)
2 = ŝ×2E+(ŝ+2−52)×2E

2 =
(
ŝ + 2−53

)
× 2E

Relative error

|x− fl(x)|

|x|
≤
|x∗ − fl(x)|

|x∗|
=

2−53 × 2E

s× 2E
≤ 2−53

︸︷︷︸

ǫmach

≈ 10−16 (|s| ≥ 1)

Lecture 1 - Double Precision and Operation Count – p.5/17

IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value

Lecture 1 - Double Precision and Operation Count – p.6/17

IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value

When (a1a2 . . . a11)2 = 0 the floating point number is in
the (subnormalized) form

(0.b1 . . . b52)2 × 2−1022

Lecture 1 - Double Precision and Operation Count – p.6/17

IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value

When (a1a2 . . . a11)2 = 0 the floating point number is in
the (subnormalized) form

(0.b1 . . . b52)2 × 2−1022

The smallest number

(0.0 . . . 01)2×2−1022 = 2−52×2−1022 = 2−1074 ≈ 4.94×10−324

Lecture 1 - Double Precision and Operation Count – p.6/17

Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.

Lecture 1 - Double Precision and Operation Count – p.7/17

Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

Lecture 1 - Double Precision and Operation Count – p.7/17

Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision 1 ⊕ 2−52 = 1 + 2−52, but 1 ⊕ 2−53 = 1

Lecture 1 - Double Precision and Operation Count – p.7/17

Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision 1 ⊕ 2−52 = 1 + 2−52, but 1 ⊕ 2−53 = 1

In double precision

(1 + 2−52) ⊗ (2 + 2−51) = fl(2 + 2−51 + 2−51 + 2−103)

= fl((1 + 2−52 + 2−52 + 2−104) × 2) = 2(1 + 2−51)

Lecture 1 - Double Precision and Operation Count – p.7/17

Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Lecture 1 - Double Precision and Operation Count – p.8/17

Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count

Lecture 1 - Double Precision and Operation Count – p.8/17

Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count

Time required for data transfers is ignored.

Lecture 1 - Double Precision and Operation Count – p.8/17

Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count

Time required for data transfers is ignored.

All of the operations ⊕,⊗,⊖,⊘ are considered of same
computational difficulty. In reality ⊗,⊘ are more expensive.

Lecture 1 - Double Precision and Operation Count – p.8/17

Floating Point Operation Count

Inner (or dot) product : Let f : Rn → R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f

Total flop count : 2 flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1 2 = 2n

Lecture 1 - Double Precision and Operation Count – p.9/17

Floating Point Operation Count

Matrix-vector product : Let g : Rn → Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.

Lecture 1 - Double Precision and Operation Count – p.10/17

Floating Point Operation Count

Matrix-vector product : Let g : Rn → Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.

e.g.

2 1 −2

1 0 −1

3 −1 2

2

−2

1

= 2

2

1

3

−2

1

0

−1

+1

−2

−1

2

=

0

1

10

Lecture 1 - Double Precision and Operation Count – p.10/17

Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.

Total flop count : 2m flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1 2m = 2mn

Lecture 1 - Double Precision and Operation Count – p.11/17

Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.

Lecture 1 - Double Precision and Operation Count – p.12/17

Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.

e.g.
2

6

6

4

2 1 −2

1 0 −1

3 −1 2

3

7

7

5

2

6

6

4

2

−2

1

3

7

7

5

=

2

6

6

4

(2)(2) + (1)(−2) + (−2)(1)

(1)(2) + (0)(−2) + (−1)(1)

(3)(2) + (−1)(−2) + (2)(1)

3

7

7

5

=

2

6

6

4

0

1

10

3

7

7

5

Lecture 1 - Double Precision and Operation Count – p.12/17

Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g

Total flop count : 2 flops per iteration for each j = 1, . . . , n and
i = 1, . . . , m

Total # of flops =
∑m

i=1

∑n

j=1 2 =
∑m

i=1 2n = 2mn

Lecture 1 - Double Precision and Operation Count – p.13/17

Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined such that

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.

Lecture 1 - Double Precision and Operation Count – p.14/17

Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined such that

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.

e.g.
2

4

2 1

1 0

3

5

2

4

−1 1

1 −2

3

5 =

2

4

2(−1) + 1(1) 2(1) + 1(−2)

1(−1) + 0(1) 1(1) + 0(−2)

3

5 =

2

4

−1 0

−1 1

3

5

Lecture 1 - Double Precision and Operation Count – p.14/17

Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g

Total flop count : 2 flops per iteration for each k = 1, . . . , p,
j = 1, . . . , m and i = 1, . . . , n

Total # of flops =
Pn

i=1

Pm
j=1

Pp
k=1

2 = 2nmp

Lecture 1 - Double Precision and Operation Count – p.15/17

Floating Point Operation Count

Big-O notation

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

Lecture 1 - Double Precision and Operation Count – p.16/17

Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

2n2 = O(n2) as well as 2n2 = O(n3), but 2n2 is not O(n).

Lecture 1 - Double Precision and Operation Count – p.16/17

Next Lecture

Orthogonality (Trefethen&Bau, Lecture 2)

Norms (Trefethen&Bau, Lecture 3)

Lecture 1 - Double Precision and Operation Count – p.17/17

	Outline
	IEEE Double Precision Arithmetic
	IEEE Double Precision Arithmetic
	IEEE Double Precision Arithmetic
	IEEE Double Precision Arithmetic
	Performing Floating Point Operations in IEEE Standards
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Floating Point Operation Count
	Next Lecture

