Math 504 (Fall 2010) - Lecture 1

IEEE Double Precision Arithmetic

and Operation Count

Emre Mengi Department of Mathematics Koç University, Istanbul

emengi@ku.edu.tr

Outline

IEEE double precision arithmetic

- Performing floating point operations in IEEE standards
- Floating point operation count (*flop* count)

64 binary digits (bits) for each floating point number

$$f = \pm (1.b_1 b_2 \dots b_{52})_2 \times 2^{(a_1 a_2 \dots a_{11})_2}$$

64 binary digits (bits) for each floating point number

$$f = \pm (1.b_1 b_2 \dots b_{52})_2 \times 2^{(a_1 a_2 \dots a_{11})_2}$$

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign

64 binary digits (bits) for each floating point number

$$f = \pm (1.b_1 b_2 \dots b_{52})_2 \times 2^{(a_1 a_2 \dots a_{11})_2}$$

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign

e.g.

$$(1, \underbrace{1}_{b_1} 0 \dots 0 \underbrace{1}_{b_{52}})_2 \times 2^{(00\dots010)_2} = (1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-52}) \times 2^2$$

● 11 bits can be used to represent $2^{11} = 2048$ exponent values.

■ 11 bits can be used to represent $2^{11} = 2048$ exponent values.

(00...0)₂ and (11...1)₂ are reserved for special purposes.
 (11...1)₂ for ∞ and NaN (not a number e.g. ∞ -∞).

● 11 bits can be used to represent $2^{11} = 2048$ exponent values.

(00...0)₂ and (11...1)₂ are reserved for special purposes.
 (11...1)₂ for ∞ and NaN (not a number e.g. ∞ -∞).

• The remaining 2046 exponent values represent any integer in [-1022, 1023].

■ 11 bits can be used to represent $2^{11} = 2048$ exponent values.

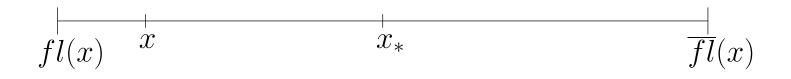
(00...0)₂ and (11...1)₂ are reserved for special purposes.
 (11...1)₂ for ∞ and NaN (not a number e.g. ∞ -∞).

• The remaining 2046 exponent values represent any integer in [-1022, 1023].

Let x be any floating point number in double precision.

$$-((1.11...1)_{2} \times 2^{1023} \leq x \leq (1.11...1)_{2} 2^{1023} \\ -((10.0...0)_{2} - (0.0...1)_{2}) \times 2^{1023} \leq x \leq ((10.0...0)_{2} - (0.0...1)_{2}) \times 2^{1023} \\ \underbrace{-(2 - 2^{-52}) \times 2^{1023}}_{R_{\min}} \leq x \leq \underbrace{(2 - 2^{-52}) \times 2^{1023}}_{R_{\max}} \approx 1.8 \times 10^{308}$$

• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation



• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation

$$\int \frac{1}{fl(x)} \frac{1}{x} \frac{1}{x} \frac{1}{x} \frac{1}{fl(x)}$$

 $x = s \times 2^E \in (R_{\min}, R_{\max})$

• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation

$$\int_{I(x)} \frac{1}{x} \frac{1}{x_*} \frac{1}{fl(x)}$$

 $x = s \times 2^E \in (R_{\min}, R_{\max})$

 $fl(x) = \hat{s} \times 2^E$ (floating point number closest to x)

• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation

$$\int_{I(x)} \frac{1}{x} \frac{1}{x_*} \frac{1}{fl(x)}$$

$$x = s \times 2^{E} \in (R_{\min}, R_{\max})$$

$$fl(x) = \hat{s} \times 2^{E} \text{ (floating point number closest to x)}$$

$$\overline{fl}(x) = (\hat{s} + 2^{-52}) \times 2^{E}$$

• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation

$$\int_{I(x)} \frac{1}{x} \frac{1}{x_*} \frac{1}{fl(x)}$$

$$x = s \times 2^{E} \in (R_{\min}, R_{\max})$$

$$fl(x) = \hat{s} \times 2^{E} \text{ (floating point number closest to x)}$$

$$\overline{fl}(x) = (\hat{s} + 2^{-52}) \times 2^{E}$$

$$x_{*} = \frac{fl(x) + \overline{fl}(x)}{2} = \frac{\hat{s} \times 2^{E} + (\hat{s} + 2^{-52}) \times 2^{E}}{2} = (\hat{s} + 2^{-53}) \times 2^{E}$$

• ϵ_{mach} : machine precision (Unit round-off error) maximal relative error due to floating point representation

$$x = s \times 2^{E} \in (R_{\min}, R_{\max})$$

$$fl(x) = \hat{s} \times 2^{E} \text{ (floating point number closest to x)}$$

$$\overline{fl}(x) = (\hat{s} + 2^{-52}) \times 2^{E}$$

$$x_{*} = \frac{fl(x) + \overline{fl}(x)}{2} = \frac{\hat{s} \times 2^{E} + (\hat{s} + 2^{-52}) \times 2^{E}}{2} = (\hat{s} + 2^{-53}) \times 2^{E}$$

Relative error

$$\frac{|x - fl(x)|}{|x|} \le \frac{|x_* - fl(x)|}{|x_*|} = \frac{2^{-53} \times 2^E}{s \times 2^E} \le \underbrace{2^{-53}}_{\epsilon_{mach}} \approx 10^{-16} \ (|s| \ge 1)$$

Smallest non-zero number in absolute value

Smallest non-zero number in absolute value

• When $(a_1a_2...a_{11})_2 = 0$ the floating point number is in the (subnormalized) form

 $(0.b_1 \dots b_{52})_2 \times 2^{-1022}$

Smallest non-zero number in absolute value

• When $(a_1a_2...a_{11})_2 = 0$ the floating point number is in the (subnormalized) form

$$(0.b_1 \dots b_{52})_2 \times 2^{-1022}$$

The smallest number

 $(0.0...01)_2 \times 2^{-1022} = 2^{-52} \times 2^{-1022} = 2^{-1074} \approx 4.94 \times 10^{-324}$

Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision

IEEE standards require the flops to satisfy

 $x \oplus y = fl(x + y)$ $x \ominus y = fl(x - y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x/y)$

where x and y are floating point numbers.

Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision

IEEE standards require the flops to satisfy

 $x \oplus y = fl(x + y)$ $x \ominus y = fl(x - y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x \times y)$

where x and y are floating point numbers.

e.g.

In single precision $1 \oplus 2^{-23} = 1 + 2^{-23}$, but $1 \oplus 2^{-24} = 1$

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision

IEEE standards require the flops to satisfy

 $x \oplus y = fl(x + y)$ $x \ominus y = fl(x - y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x/y)$

where x and y are floating point numbers.

e.g.

In single precision $1 \oplus 2^{-23} = 1 + 2^{-23}$, but $1 \oplus 2^{-24} = 1$ (Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision $1 \oplus 2^{-52} = 1 + 2^{-52}$, but $1 \oplus 2^{-53} = 1$

Floating point operations or flops ($\oplus, \otimes, \ominus, \oslash$) in single or double precision

IEEE standards require the flops to satisfy

 $x \oplus y = fl(x + y)$ $x \ominus y = fl(x - y)$ $x \otimes y = fl(x \times y)$ $x \otimes y = fl(x \times y)$

where x and y are floating point numbers.

e.g.

In single precision $1 \oplus 2^{-23} = 1 + 2^{-23}$, but $1 \oplus 2^{-24} = 1$ (Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision $1 \oplus 2^{-52} = 1 + 2^{-52}$, but $1 \oplus 2^{-53} = 1$

In double precision

$$(1+2^{-52}) \otimes (2+2^{-51}) = fl(2+2^{-51}+2^{-51}+2^{-103})$$

= $fl((1+2^{-52}+2^{-52}+2^{-104}) \times 2) = 2(1+2^{-51})$

■ Efficiency of an algorithm is determined by the total # of ⊕, ⊗, ⊖, ⊘ required.

- Efficiency of an algorithm is determined by the total # of ⊕, ⊗, ⊖, ⊘ required.
- Crudeness in flop count

- Efficiency of an algorithm is determined by the total # of ⊕, ⊗, ⊖, ⊘ required.
- Crudeness in flop count
 - Time required for data transfers is ignored.

- Efficiency of an algorithm is determined by the total # of ⊕, ⊗, ⊖, ⊘ required.
- Crudeness in flop count
 - Time required for data transfers is ignored.
 - All of the operations ⊕, ⊗, ⊖, ⊘ are considered of same computational difficulty. In reality ⊗, ⊘ are more expensive.

Inner (or dot) product : Let $f : \mathbf{R}^n \to \mathbf{R}$ be defined as

$$f(x) = a_1 x_1 + a_2 x_2 + \dots a_n x_n = a^T x_n$$

where
$$a = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}^T \in \mathbf{R}^n$$
 and $x = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T \in \mathbf{R}^n$.

• Pseudocode to compute f(x)

$$f \leftarrow 0$$

for $j = 1, n$ do
 $\underbrace{f \leftarrow f + a_j x_j}_{2 \ flops}$
end for
Return f

• Total flop count : 2 flops per iteration for j = 1, ..., n $Total \# of flops = \sum_{j=1}^{n} 2 = 2n$

Matrix-vector product : Let $g : \mathbf{R}^n \to \mathbf{R}^m$ be defined as

$$g(x) = Ax = x_1A_1 + x_2A_2 + \dots + x_nA_n$$

where $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}^T$ is an $m \times n$ real matrix with $A_1, \dots, A_n \in \mathbf{R}^m$ and $x = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T \in \mathbf{R}^n$.

Matrix-vector product : Let $g : \mathbf{R}^n \to \mathbf{R}^m$ be defined as

$$g(x) = Ax = x_1A_1 + x_2A_2 + \dots + x_nA_n$$

where $A = \begin{bmatrix} A_1 & \dots & A_n \end{bmatrix}^T$ is an $m \times n$ real matrix with $A_1, \dots, A_n \in \mathbf{R}^m$ and $x = \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix}^T \in \mathbf{R}^n$.

e.g.

$$\begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = 2 \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix} - 2 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + 1 \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 10 \end{bmatrix}$$

Pseudocode to compute g(x) = AxGiven an $m \times n$ real matrix A and $x \in \mathbb{R}^n$. $g \leftarrow 0$ (where $g \in \mathbb{R}^n$)
for j = 1, n do $\underbrace{g \leftarrow g + x_j A_j}_{2m \ flops}$ end for
Return g

Above $g + x_j A_j$ requires m addition and m multiplication for each j.

• Total flop count : 2m flops per iteration for j = 1, ..., n

Total # of flops
$$= \sum_{j=1}^{n} 2m = 2mn$$

Inner product view of the matrix-vector product g(x) = Ax.

$$g(x) = \begin{bmatrix} \bar{A}_1 x \\ \bar{A}_2 x \\ \vdots \\ \bar{A}_m x \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{nn}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \text{ where } A = \begin{bmatrix} \bar{A}_1 \\ \bar{A}_2 \\ \vdots \\ \bar{A}_m \end{bmatrix}$$

and $\overline{A}_1, \ldots, \overline{A}_m$ are the rows of A and a_{ij} is the entry of A at the *i*th row and *j*th column.

Inner product view of the matrix-vector product g(x) = Ax.

$$g(x) = \begin{bmatrix} \bar{A}_1 x \\ \bar{A}_2 x \\ \vdots \\ \bar{A}_m x \end{bmatrix} = \begin{bmatrix} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{nn}x_n \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n \end{bmatrix} \text{ where } A = \begin{bmatrix} \bar{A}_1 \\ \bar{A}_2 \\ \vdots \\ \bar{A}_m \end{bmatrix}$$

and $\overline{A}_1, \ldots, \overline{A}_m$ are the rows of A and a_{ij} is the entry of A at the *i*th row and *j*th column.

e.g.

$$\begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & -1 \\ 3 & -1 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix} = \begin{bmatrix} (2)(2) + (1)(-2) + (-2)(1) \\ (1)(2) + (0)(-2) + (-1)(1) \\ (3)(2) + (-1)(-2) + (2)(1) \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 10 \end{bmatrix}$$

Pseudocode to compute g(x) = Ax exploiting the inner-product view
Given an $m \times n$ real matrix A and $x \in \mathbb{R}^n$. $g \leftarrow 0$ (where $g \in \mathbb{R}^n$)
for i = 1, m do
for j = 1, n do $g_i \leftarrow g_i + a_{ij}x_j$ end for
end for

Return g

• Total flop count : 2 flops per iteration for each j = 1, ..., n and i = 1, ..., m

Total # of flops =
$$\sum_{i=1}^{m} \sum_{j=1}^{n} 2 = \sum_{i=1}^{m} 2n = 2mn$$

Matrix-matrix product : Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product B = AX is an $n \times m$ matrix and defined such that

$$b_{ij} = \bar{A}_i X_j = \sum_{k=1}^p a_{ik} x_{kj}$$

where \overline{A}_i is the *i*th row of A, X_j is the *j*th column of X and b_{ij} , a_{ij} , x_{ij} denote the (i, j)-entry of B, A and X, respectively.

Matrix-matrix product : Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product B = AX is an $n \times m$ matrix and defined such that

$$b_{ij} = \bar{A}_i X_j = \sum_{k=1}^p a_{ik} x_{kj}$$

where \overline{A}_i is the *i*th row of A, X_j is the *j*th column of X and b_{ij} , a_{ij} , x_{ij} denote the (i, j)-entry of B, A and X, respectively.

e.g.

$$\begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 2(-1) + 1(1) & 2(1) + 1(-2) \\ 1(-1) + 0(1) & 1(1) + 0(-2) \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$$

Pseudocode to compute the product B = AXGiven $n \times p$ and $p \times m$ matrices A and X. $B \leftarrow 0$ for i = 1, n do for j = 1, m do for k = 1, p do $\underbrace{b_{ij} \leftarrow b_{ij} + a_{ik} x_{kj}}_{ij}$ 2 flops end for end for end for Return g

• Total flop count : 2 flops per iteration for each k = 1, ..., p, j = 1, ..., m and i = 1, ..., n

Total # of flops =
$$\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} 2 = 2nmp$$

Big-O notation

• The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).

Big-O notation

- The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with m = n) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).

Big-O notation

- The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with m = n) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
- The matrix-matrix product AX for square $n \times n$ matrices A and X (with m = n = p) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

Big-O notation

- The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with m = n) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
- The matrix-matrix product AX for square $n \times n$ matrices A and X (with m = n = p) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to a constant grows at least as fast as g(n), *i.e.*

g(n) = O(f(n)) if there exists an n_0 and c such that $g(n) \le cf(n)$ for all $n \ge n_0$

Big-O notation

- The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with m = n) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
- The matrix-matrix product AX for square $n \times n$ matrices A and X (with m = n = p) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to a constant grows at least as fast as g(n), *i.e.*

> g(n) = O(f(n)) if there exists an n_0 and c such that $g(n) \le cf(n)$ for all $n \ge n_0$

Examples:

 $\overline{2n = O(n)}$ as well as $2n = O(n^2)$ and $2n = O(n^3)$

Big-O notation

- The inner product $a^T x$ requires 2n = O(n) flops (linear # of flops).
- The matrix-vector product Ax for a square matrix A (with m = n) requires $2n^2 = O(n^2)$ flops (quadratic # of flops).
- The matrix-matrix product AX for square $n \times n$ matrices A and X (with m = n = p) requires $2n^3 = O(n^3)$ flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to a constant grows at least as fast as g(n), *i.e.*

> g(n) = O(f(n)) if there exists an n_0 and c such that $g(n) \le cf(n)$ for all $n \ge n_0$

Examples:

$$\overline{2n = O(n)}$$
 as well as $2n = O(n^2)$ and $2n = O(n^3)$
 $2n^2 = O(n^2)$ as well as $2n^2 = O(n^3)$, but $2n^2$ is not $O(n)$.

Next Lecture

Norms (Trefethen&Bau, Lecture 3)