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Outline

IEEE double precision arithmetic

Performing floating point operations in IEEE standards

Floating point operation count (flop count)
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IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2
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IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2

52 bits for the significand (mantissa)
11 bits for the exponent
1 bit for the sign
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IEEE Double Precision Arithmetic

64 binary digits (bits) for each floating point number

f = ± (1.b1b2 . . . b52)2 × 2(a1a2...a11)2

52 bits for the significand (mantissa)
11 bits for the exponent
1 bit for the sign

e.g.

(1. 1
︸︷︷︸

b1

0 . . . 0 1
︸︷︷︸

b52

)2 × 2(00...010)
2 =

(
1× 20 + 1× 2−1 + 1× 2−52

)
× 22

Lecture 1 - Double Precision and Operation Count – p.3/17



IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.
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IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).
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IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).

The remaining 2046 exponent values represent any integer in
[−1022, 1023].
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IEEE Double Precision Arithmetic

11 bits can be used to represent 211 = 2048 exponent values.

(00 . . . 0)2 and (11 . . . 1)2 are reserved for special purposes.

(11 . . . 1)2 for∞ and NaN (not a number e.g. ∞−∞).

The remaining 2046 exponent values represent any integer in
[−1022, 1023].

Let x be any floating point number in double precision.

−(1.11 . . . 1)2 × 21023
≤ x ≤ (1.11 . . . 1)221023

− ((10.0 . . . 0)2 − (0.0 . . . 1)2) × 21023 ≤ x ≤ ((10.0 . . . 0)2 − (0.0 . . . 1)2) × 21023

−(2 − 2−52) × 21023

| {z }

Rmin

≤ x ≤ (2 − 2−52) × 21023

| {z }

Rmax

≈ 1.8 × 10308
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E

x∗ = fl(x)+fl(x)
2 = ŝ×2E+(ŝ+2−52)×2E

2 =
(
ŝ + 2−53

)
× 2E
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IEEE Double Precision Arithmetic

ǫmach : machine precision (Unit round-off error)
maximal relative error due to floating point representation

xfl(x) fl(x)x∗

x = s× 2E ∈ (Rmin, Rmax)

fl(x) = ŝ× 2E (floating point number closest to x)

fl(x) = (ŝ + 2−52)× 2E

x∗ = fl(x)+fl(x)
2 = ŝ×2E+(ŝ+2−52)×2E

2 =
(
ŝ + 2−53

)
× 2E

Relative error

|x− fl(x)|

|x|
≤
|x∗ − fl(x)|

|x∗|
=

2−53 × 2E

s× 2E
≤ 2−53

︸︷︷︸

ǫmach

≈ 10−16 (|s| ≥ 1)
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IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value
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IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value

When (a1a2 . . . a11)2 = 0 the floating point number is in
the (subnormalized) form

(0.b1 . . . b52)2 × 2−1022
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IEEE Double Precision Arithmetic

Smallest non-zero number in absolute value

When (a1a2 . . . a11)2 = 0 the floating point number is in
the (subnormalized) form

(0.b1 . . . b52)2 × 2−1022

The smallest number

(0.0 . . . 01)2×2−1022 = 2−52×2−1022 = 2−1074 ≈ 4.94×10−324
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Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
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Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)
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Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision 1 ⊕ 2−52 = 1 + 2−52, but 1 ⊕ 2−53 = 1
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Performing Floating Point Operations in IEEE Standards

Floating point operations or flops (⊕,⊗,⊖,⊘) in single or double
precision

IEEE standards require the flops to satisfy

x⊕ y = fl(x + y)

x⊖ y = fl(x− y)

x⊗ y = fl(x× y)

x⊘ y = fl(x/y)

where x and y are floating point numbers.
e.g.
In single precision 1 ⊕ 2−23 = 1 + 2−23, but 1 ⊕ 2−24 = 1

(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

In double precision 1 ⊕ 2−52 = 1 + 2−52, but 1 ⊕ 2−53 = 1

In double precision

(1 + 2−52) ⊗ (2 + 2−51) = fl(2 + 2−51 + 2−51 + 2−103)

= fl((1 + 2−52 + 2−52 + 2−104) × 2) = 2(1 + 2−51)
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count

Time required for data transfers is ignored.
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Floating Point Operation Count

Efficiency of an algorithm is determined by the total # of ⊕,⊗,⊖,⊘

required.

Crudeness in flop count

Time required for data transfers is ignored.

All of the operations ⊕,⊗,⊖,⊘ are considered of same
computational difficulty. In reality ⊗,⊘ are more expensive.
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Floating Point Operation Count

Inner (or dot) product : Let f : Rn → R be defined as

f(x) = a1x1 + a2x2 + . . . anxn = aT x

where a =
[

a1 . . . an

]T

∈ Rn and x =
[

x1 . . . xn

]T

∈ Rn.

Pseudocode to compute f(x)

f ← 0

for j = 1, n do
f ← f + ajxj
︸ ︷︷ ︸

2 flops

end for
Return f

Total flop count : 2 flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1 2 = 2n
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Floating Point Operation Count

Matrix-vector product : Let g : Rn → Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.
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Floating Point Operation Count

Matrix-vector product : Let g : Rn → Rm be defined as

g(x) = Ax = x1A1 + x2A2 + · · ·+ xnAn

where A =
[

A1 . . . An

]T

is an m× n real matrix with

A1, . . . , An ∈ Rm and x =
[

x1 . . . xn

]T

∈ Rn.

e.g.
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for j = 1, n do

g ← g + xjAj
︸ ︷︷ ︸

2m flops

end for
Return g

Above g + xjAj requires m addition and m multiplication for each j.

Total flop count : 2m flops per iteration for j = 1, . . . , n

Total # of flops =
∑n

j=1 2m = 2mn
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Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.
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Floating Point Operation Count

Inner product view of the matrix-vector product g(x) = Ax.

g(x) =

2

6

6

6

6

6

6

4

Ā1x

Ā2x

...

Āmx

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + annxn

...

am1x1 + am2x2 + · · · + amnxn

3

7

7

7

7

7

7

5

where A =

2

6

6

6

6

6

6

4

Ā1

Ā2

...

Ām

3

7

7

7

7

7

7

5

and Ā1, . . . , Ām are the rows of A and aij is the entry of A at the ith
row and jth column.

e.g.
2

6

6

4

2 1 −2

1 0 −1

3 −1 2

3

7

7

5

2

6

6

4

2
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1

3

7

7

5

=

2

6

6

4

(2)(2) + (1)(−2) + (−2)(1)

(1)(2) + (0)(−2) + (−1)(1)

(3)(2) + (−1)(−2) + (2)(1)

3

7

7

5

=

2

6

6

4

0

1

10

3

7

7

5
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Floating Point Operation Count

Pseudocode to compute g(x) = Ax exploiting the inner-product view

Given an m× n real matrix A and x ∈ Rn.
g ← 0 (where g ∈ Rn)
for i = 1, m do

for j = 1, n do
gi ← gi + aijxj
︸ ︷︷ ︸

2 flops

end for
end for
Return g

Total flop count : 2 flops per iteration for each j = 1, . . . , n and
i = 1, . . . , m

Total # of flops =
∑m

i=1

∑n

j=1 2 =
∑m

i=1 2n = 2mn
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Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined such that

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.
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Floating Point Operation Count

Matrix-matrix product : Given an n× p matrix A and a p×m matrix
X . The product B = AX is an n×m matrix and defined such that

bij = ĀiXj =

p
∑

k=1

aikxkj

where Āi is the ith row of A, Xj is the jth column of X and bij , aij ,
xij denote the (i, j)-entry of B, A and X ,respectively.

e.g.
2

4

2 1

1 0

3

5

2

4

−1 1

1 −2

3

5 =

2

4

2(−1) + 1(1) 2(1) + 1(−2)

1(−1) + 0(1) 1(1) + 0(−2)

3

5 =

2

4

−1 0

−1 1

3

5
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Floating Point Operation Count

Pseudocode to compute the product B = AX

Given n× p and p×m matrices A and X .
B ← 0

for i = 1, n do
for j = 1, m do

for k = 1, p do
bij ← bij + aikxkj
︸ ︷︷ ︸

2 flops

end for
end for

end for
Return g

Total flop count : 2 flops per iteration for each k = 1, . . . , p,
j = 1, . . . , m and i = 1, . . . , n

Total # of flops =
Pn

i=1

Pm
j=1

Pp
k=1

2 = 2nmp
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Floating Point Operation Count

Big-O notation
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

Lecture 1 - Double Precision and Operation Count – p.16/17



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0
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Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

Lecture 1 - Double Precision and Operation Count – p.16/17



Floating Point Operation Count

Big-O notation

The inner product aT x requires 2n = O(n) flops (linear # of flops).

The matrix-vector product Ax for a square matrix A (with m = n) requires
2n2 = O(n2) flops (quadratic # of flops).

The matrix-matrix product AX for square n × n matrices A and X (with
m = n = p) requires 2n3 = O(n3) flops (cubic # of flops).

The notation g(n) = O(f(n)) means asymptotically f(n) scaled up to
a constant grows at least as fast as g(n), i.e.

g(n) = O(f(n)) if there exists an n0 and c such that

g(n) ≤ cf(n) for all n ≥ n0

Examples:
2n = O(n) as well as 2n = O(n2) and 2n = O(n3)

2n2 = O(n2) as well as 2n2 = O(n3), but 2n2 is not O(n).

Lecture 1 - Double Precision and Operation Count – p.16/17



Next Lecture

Orthogonality (Trefethen&Bau, Lecture 2)

Norms (Trefethen&Bau, Lecture 3)
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