Math 504 (Fall 2010) - Lecture 1

IEEE Double Precision Arithmetic and Operation Count

Emre Mengi
Department of Mathematics
Koç University, Istanbul

```
emengi@ku.edu.tr
```


Outline

- IEEE double precision arithmetic
- Performing floating point operations in IEEE standards
- Floating point operation count (flop count)

IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

$$
f= \pm\left(1 . b_{1} b_{2} \ldots b_{52}\right)_{2} \times 2^{\left(a_{1} a_{2} \ldots a_{11}\right)_{2}}
$$

IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

$$
f= \pm\left(1 . b_{1} b_{2} \ldots b_{52}\right)_{2} \times 2^{\left(a_{1} a_{2} \ldots a_{11}\right)_{2}}
$$

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign

IEEE Double Precision Arithmetic

- 64 binary digits (bits) for each floating point number

$$
f= \pm\left(1 . b_{1} b_{2} \ldots b_{52}\right)_{2} \times 2^{\left(a_{1} a_{2} \ldots a_{11}\right)_{2}}
$$

- 52 bits for the significand (mantissa)
- 11 bits for the exponent
- 1 bit for the sign
e.g.
$(1 . \underbrace{1}_{b_{1}} 0 \ldots 0 \underbrace{1}_{b_{52}})_{2} \times 2^{(00 \ldots 010)_{2}}=\left(1 \times 2^{0}+1 \times 2^{-1}+1 \times 2^{-52}\right) \times 2^{2}$

IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11}=2048$ exponent values.

IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11}=2048$ exponent values.
- $(00 \ldots 0)_{2}$ and $(11 \ldots 1)_{2}$ are reserved for special purposes.
- $(11 \ldots 1)_{2}$ for ∞ and $N a N$ (not a number e.g. $\infty-\infty$).

IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11}=2048$ exponent values.
- $(00 \ldots 0)_{2}$ and $(11 \ldots 1)_{2}$ are reserved for special purposes.
- $(11 \ldots 1)_{2}$ for ∞ and $N a N$ (not a number e.g. $\infty-\infty$).
- The remaining 2046 exponent values represent any integer in [-1022, 1023].

IEEE Double Precision Arithmetic

- 11 bits can be used to represent $2^{11}=2048$ exponent values.
- $(00 \ldots 0)_{2}$ and $(11 \ldots 1)_{2}$ are reserved for special purposes.
- $(11 \ldots 1)_{2}$ for ∞ and $N a N$ (not a number e.g. $\infty-\infty$).
- The remaining 2046 exponent values represent any integer in [-1022, 1023].
- Let x be any floating point number in double precision.

$$
\begin{aligned}
-(1.11 \ldots 1)_{2} \times 2^{1023} & \leq x \leq(1.11 \ldots 1)_{2} 2^{1023} \\
-\left((10.0 \ldots 0)_{2}-(0.0 \ldots 1)_{2}\right) \times 2^{1023} & \leq x \leq\left((10.0 \ldots 0)_{2}-(0.0 \ldots 1)_{2}\right) \times 2^{1023} \\
\underbrace{-\left(2-2^{-52}\right) \times 2^{1023}}_{R_{\min }} & \leq x \leq \underbrace{\left(2-2^{-52}\right) \times 2^{1023}}_{R_{\max }} \approx 1.8 \times 10^{308}
\end{aligned}
$$

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

$$
x=s \times 2^{E} \in\left(R_{\min }, R_{\max }\right)
$$

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

$x=s \times 2^{E} \in\left(R_{\text {min }}, R_{\text {max }}\right)$
$f l(x)=\hat{s} \times 2^{E}$ (floating point number closest to \mathbf{x})

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

$x=s \times 2^{E} \in\left(R_{\text {min }}, R_{\text {max }}\right)$
$f l(x)=\hat{s} \times 2^{E}$ (floating point number closest to \mathbf{x})
$\overline{f l}(x)=\left(\hat{s}+2^{-52}\right) \times 2^{E}$

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

$$
\begin{aligned}
& x=s \times 2^{E} \in\left(R_{\min }, R_{\max }\right) \\
& f l(x)=\hat{s} \times 2^{E} \text { (floating point number closest to } \mathrm{x} \text {) } \\
& \overline{f l}(x)=\left(\hat{s}+2^{-52}\right) \times 2^{E} \\
& x_{*}=\frac{f l(x)+\overline{f l}(x)}{2}=\frac{\hat{s} \times 2^{E}+\left(\hat{s}+2^{-52}\right) \times 2^{E}}{2}=\left(\hat{s}+2^{-53}\right) \times 2^{E}
\end{aligned}
$$

IEEE Double Precision Arithmetic

- $\epsilon_{\text {mach }}$: machine precision (Unit round-off error) maximal relative error due to floating point representation

$$
\begin{aligned}
& x=s \times 2^{E} \in\left(R_{\min }, R_{\max }\right) \\
& f l(x)=\hat{s} \times 2^{E} \text { (floating point number closest to } \mathrm{x} \text {) } \\
& \overline{f l}(x)=\left(\hat{s}+2^{-52}\right) \times 2^{E} \\
& x_{*}=\frac{f l(x)+\overline{f l}(x)}{2}=\frac{\hat{s} \times 2^{E}+\left(\hat{s}+2^{-52}\right) \times 2^{E}}{2}=\left(\hat{s}+2^{-53}\right) \times 2^{E}
\end{aligned}
$$

- Relative error

$$
\frac{|x-f l(x)|}{|x|} \leq \frac{\left|x_{*}-f l(x)\right|}{\left|x_{*}\right|}=\frac{2^{-53} \times 2^{E}}{s \times 2^{E}} \leq \underbrace{2^{-53}}_{\epsilon_{\text {mach }}} \approx 10^{-16} \quad(|s| \geq 1)
$$

IEEE Double Precision Arithmetic

- Smallest non-zero number in absolute value

IEEE Double Precision Arithmetic

- Smallest non-zero number in absolute value
- When $\left(a_{1} a_{2} \ldots a_{11}\right)_{2}=0$ the floating point number is in the (subnormalized) form

$$
\left(0 . b_{1} \ldots b_{52}\right)_{2} \times 2^{-1022}
$$

IEEE Double Precision Arithmetic

- Smallest non-zero number in absolute value
- When $\left(a_{1} a_{2} \ldots a_{11}\right)_{2}=0$ the floating point number is in the (subnormalized) form

$$
\left(0 . b_{1} \ldots b_{52}\right)_{2} \times 2^{-1022}
$$

- The smallest number

$$
(0.0 \ldots 01)_{2} \times 2^{-1022}=2^{-52} \times 2^{-1022}=2^{-1074} \approx 4.94 \times 10^{-324}
$$

Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops $(\oplus, \otimes, \ominus, \oslash)$ in single or double precision
- IEEE standards require the flops to satisfy

$$
\begin{gathered}
x \oplus y=f l(x+y) \\
x \ominus y=f l(x-y) \\
x \otimes y=f l(x \times y) \\
x \oslash y=f l(x / y)
\end{gathered}
$$

where x and y are floating point numbers.

Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops $(\oplus, \otimes, \ominus, \oslash)$ in single or double precision
- IEEE standards require the flops to satisfy

$$
\begin{gathered}
x \oplus y=f l(x+y) \\
x \ominus y=f l(x-y) \\
x \otimes y=f l(x \times y) \\
x \oslash y=f l(x / y)
\end{gathered}
$$

where x and y are floating point numbers.
e.g.

In single precision $1 \oplus 2^{-23}=1+2^{-23}$, but $1 \oplus 2^{-24}=1$
(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)

Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops $(\oplus, \otimes, \ominus, \oslash)$ in single or double precision
- IEEE standards require the flops to satisfy

$$
\begin{gathered}
x \oplus y=f l(x+y) \\
x \ominus y=f l(x-y) \\
x \otimes y=f l(x \times y) \\
x \oslash y=f l(x / y)
\end{gathered}
$$

where x and y are floating point numbers.
e.g.

In single precision $1 \oplus 2^{-23}=1+2^{-23}$, but $1 \oplus 2^{-24}=1$
(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)
In double precision $1 \oplus 2^{-52}=1+2^{-52}$, but $1 \oplus 2^{-53}=1$

Performing Floating Point Operations in IEEE Standards

- Floating point operations or flops $(\oplus, \otimes, \ominus, \varnothing)$ in single or double precision
- IEEE standards require the flops to satisfy

$$
\begin{gathered}
x \oplus y=f l(x+y) \\
x \ominus y=f l(x-y) \\
x \otimes y=f l(x \times y) \\
x \oslash y=f l(x / y)
\end{gathered}
$$

where x and y are floating point numbers.
e.g.

In single precision $1 \oplus 2^{-23}=1+2^{-23}$, but $1 \oplus 2^{-24}=1$
(Note: In single precision 23 and 8 bits are reserved for mantissa and exponent.)
In double precision $1 \oplus 2^{-52}=1+2^{-52}$, but $1 \oplus 2^{-53}=1$
In double precision

$$
\begin{aligned}
\left(1+2^{-52}\right) \otimes\left(2+2^{-51}\right) & =f l\left(2+2^{-51}+2^{-51}+2^{-103}\right) \\
& =f l\left(\left(1+2^{-52}+2^{-52}+2^{-104}\right) \times 2\right)=2\left(1+2^{-51}\right)
\end{aligned}
$$

Floating Point Operation Count

- Efficiency of an algorithm is determined by the total \# of $\oplus, \otimes, \ominus, \varnothing$ required.

Floating Point Operation Count

- Efficiency of an algorithm is determined by the total \# of $\oplus, \otimes, \ominus, \varnothing$ required.
- Crudeness in flop count

Floating Point Operation Count

- Efficiency of an algorithm is determined by the total \# of $\oplus, \otimes, \ominus, \varnothing$ required.
- Crudeness in flop count
- Time required for data transfers is ignored.

Floating Point Operation Count

- Efficiency of an algorithm is determined by the total \# of $\oplus, \otimes, \ominus, \varnothing$ required.
- Crudeness in flop count
- Time required for data transfers is ignored.
- All of the operations $\oplus, \otimes, \ominus, \oslash$ are considered of same computational difficulty. In reality \otimes, \oslash are more expensive.

Floating Point Operation Count

- Inner (or dot) product : Let $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ be defined as

$$
f(x)=a_{1} x_{1}+a_{2} x_{2}+\ldots a_{n} x_{n}=a^{T} x
$$

where $a=\left[\begin{array}{lll}a_{1} & \ldots & a_{n}\end{array}\right]^{T} \in \mathbf{R}^{n}$ and $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T} \in \mathbf{R}^{n}$.

- Pseudocode to compute $f(x)$

$$
\begin{aligned}
& f \leftarrow 0 \\
& \text { for } j=1, n \text { do } \\
& \underbrace{f \leftarrow f+a_{j} x_{j}}_{\text {enflops }} \\
& \text { end for }
\end{aligned}
$$

Return f

- Total flop count : 2 flops per iteration for $j=1, \ldots, n$

$$
\text { Total } \# \text { of flops }=\sum_{j=1}^{n} 2=2 n
$$

Floating Point Operation Count

- Matrix-vector product : Let $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be defined as

$$
g(x)=A x=x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}
$$

where $A=\left[\begin{array}{lll}A_{1} & \ldots & A_{n}\end{array}\right]^{T}$ is an $m \times n$ real matrix with $A_{1}, \ldots, A_{n} \in \mathbf{R}^{m}$ and $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T} \in \mathbf{R}^{n}$.

Floating Point Operation Count

- Matrix-vector product : Let $g: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be defined as

$$
g(x)=A x=x_{1} A_{1}+x_{2} A_{2}+\cdots+x_{n} A_{n}
$$

where $A=\left[\begin{array}{lll}A_{1} & \ldots & A_{n}\end{array}\right]^{T}$ is an $m \times n$ real matrix with $A_{1}, \ldots, A_{n} \in \mathbf{R}^{m}$ and $x=\left[\begin{array}{lll}x_{1} & \ldots & x_{n}\end{array}\right]^{T} \in \mathbf{R}^{n}$.
e.g.

$$
\left[\begin{array}{rrr}
2 & 1 & -2 \\
1 & 0 & -1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]=2\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right]-2\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+1\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
10
\end{array}\right]
$$

Floating Point Operation Count

- Pseudocode to compute $g(x)=A x$

Given an $m \times n$ real matrix A and $x \in \mathbf{R}^{n}$.
$g \leftarrow 0$ (where $g \in \mathbf{R}^{n}$)
for $j=1, n$ do
$\underbrace{g \leftarrow g+x_{j} A_{j}}_{2 m \text { flops }}$
end for
Return g

- Above $g+x_{j} A_{j}$ requires m addition and m multiplication for each j.
- Total flop count : $2 m$ flops per iteration for $j=1, \ldots, n$

$$
\text { Total \# of flops }=\sum_{j=1}^{n} 2 m=2 m n
$$

Floating Point Operation Count

- Inner product view of the matrix-vector product $g(x)=A x$.

$$
g(x)=\left[\begin{array}{c}
\bar{A}_{1} x \\
\bar{A}_{2} x \\
\vdots \\
\bar{A}_{m} x
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{n n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right] \text { where } A=\left[\begin{array}{c}
\bar{A}_{1} \\
\bar{A}_{2} \\
\vdots \\
\bar{A}_{m}
\end{array}\right]
$$

and $\bar{A}_{1}, \ldots, \bar{A}_{m}$ are the rows of A and $a_{i j}$ is the entry of A at the i th row and j th column.

Floating Point Operation Count

- Inner product view of the matrix-vector product $g(x)=A x$.

$$
g(x)=\left[\begin{array}{c}
\bar{A}_{1} x \\
\bar{A}_{2} x \\
\vdots \\
\bar{A}_{m} x
\end{array}\right]=\left[\begin{array}{c}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{n n} x_{n} \\
\vdots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n}
\end{array}\right] \text { where } A=\left[\begin{array}{c}
\bar{A}_{1} \\
\bar{A}_{2} \\
\vdots \\
\bar{A}_{m}
\end{array}\right]
$$

and $\bar{A}_{1}, \ldots, \bar{A}_{m}$ are the rows of A and $a_{i j}$ is the entry of A at the i th row and j th column.
e.g.

$$
\left[\begin{array}{rrr}
2 & 1 & -2 \\
1 & 0 & -1 \\
3 & -1 & 2
\end{array}\right]\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right]=\left[\begin{array}{c}
(2)(2)+(1)(-2)+(-2)(1) \\
(1)(2)+(0)(-2)+(-1)(1) \\
(3)(2)+(-1)(-2)+(2)(1)
\end{array}\right]=\left[\begin{array}{c}
0 \\
1 \\
10
\end{array}\right]
$$

Floating Point Operation Count

- Pseudocode to compute $g(x)=A x$ exploiting the inner-product view Given an $m \times n$ real matrix A and $x \in \mathbf{R}^{n}$.
$g \leftarrow 0$ (where $g \in \mathbf{R}^{n}$)
for $i=1, m$ do

$$
\text { for } j=1, n \text { do }
$$

$$
\underbrace{g_{i} \leftarrow g_{i}+a_{i j} x_{j}}_{2 \text { flops }}
$$

end for
end for
Return g

- Total flop count : 2 flops per iteration for each $j=1, \ldots, n$ and $i=1, \ldots, m$

$$
\text { Total \# of flops }=\sum_{i=1}^{m} \sum_{j=1}^{n} 2=\sum_{i=1}^{m} 2 n=2 m n
$$

Floating Point Operation Count

- Matrix-matrix product : Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product $B=A X$ is an $n \times m$ matrix and defined such that

$$
b_{i j}=\bar{A}_{i} X_{j}=\sum_{k=1}^{p} a_{i k} x_{k j}
$$

where \bar{A}_{i} is the i th row of A, X_{j} is the j th column of X and $b_{i j}, a_{i j}$, $x_{i j}$ denote the (i, j)-entry of B, A and X, respectively.

Floating Point Operation Count

- Matrix-matrix product : Given an $n \times p$ matrix A and a $p \times m$ matrix X. The product $B=A X$ is an $n \times m$ matrix and defined such that

$$
b_{i j}=\bar{A}_{i} X_{j}=\sum_{k=1}^{p} a_{i k} x_{k j}
$$

where \bar{A}_{i} is the i th row of A, X_{j} is the j th column of X and $b_{i j}, a_{i j}$, $x_{i j}$ denote the (i, j)-entry of B, A and X, respectively.
e.g.

$$
\left[\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rr}
-1 & 1 \\
1 & -2
\end{array}\right]=\left[\begin{array}{ll}
2(-1)+1(1) & 2(1)+1(-2) \\
1(-1)+0(1) & 1(1)+0(-2)
\end{array}\right]=\left[\begin{array}{ll}
-1 & 0 \\
-1 & 1
\end{array}\right]
$$

Floating Point Operation Count

- Pseudocode to compute the product $B=A X$

Given $n \times p$ and $p \times m$ matrices A and X.

$$
B \leftarrow 0
$$

for $i=1, n$ do for $j=1, m$ do for $k=1, p$ do

end for
end for
end for
Return g

- Total flop count : 2 flops per iteration for each $k=1, \ldots, p$, $j=1, \ldots, m$ and $i=1, \ldots, n$

$$
\text { Total } \# \text { of flops }=\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{p} 2=2 n m p
$$

Floating Point Operation Count

- Big-O notation

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).
- The matrix-vector product $A x$ for a square matrix A (with $m=n$) requires $2 n^{2}=O\left(n^{2}\right)$ flops (quadratic \# of flops).

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).
- The matrix-vector product $A x$ for a square matrix A (with $m=n$) requires $2 n^{2}=O\left(n^{2}\right)$ flops (quadratic \# of flops).
- The matrix-matrix product $A X$ for square $n \times n$ matrices A and X (with $m=n=p$) requires $2 n^{3}=O\left(n^{3}\right)$ flops (cubic \# of flops).

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).
- The matrix-vector product $A x$ for a square matrix A (with $m=n$) requires $2 n^{2}=O\left(n^{2}\right)$ flops (quadratic \# of flops).
- The matrix-matrix product $A X$ for square $n \times n$ matrices A and X (with $m=n=p$) requires $2 n^{3}=O\left(n^{3}\right)$ flops (cubic \# of flops).
- The notation $g(n)=O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, i.e.

$$
\begin{aligned}
& g(n)=O(f(n)) \text { if there exists an } n_{0} \text { and } c \text { such that } \\
& \qquad g(n) \leq c f(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).
- The matrix-vector product $A x$ for a square matrix A (with $m=n$) requires $2 n^{2}=O\left(n^{2}\right)$ flops (quadratic \# of flops).
- The matrix-matrix product $A X$ for square $n \times n$ matrices A and X (with $m=n=p$) requires $2 n^{3}=O\left(n^{3}\right)$ flops (cubic \# of flops).
- The notation $g(n)=O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, i.e.

$$
\begin{aligned}
& g(n)=O(f(n)) \text { if there exists an } n_{0} \text { and } c \text { such that } \\
& \qquad g(n) \leq c f(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Examples:
$2 n=O(n)$ as well as $2 n=O\left(n^{2}\right)$ and $2 n=O\left(n^{3}\right)$

Floating Point Operation Count

- Big-O notation
- The inner product $a^{T} x$ requires $2 n=O(n)$ flops (linear \# of flops).
- The matrix-vector product $A x$ for a square matrix A (with $m=n$) requires $2 n^{2}=O\left(n^{2}\right)$ flops (quadratic \# of flops).
- The matrix-matrix product $A X$ for square $n \times n$ matrices A and X (with $m=n=p$) requires $2 n^{3}=O\left(n^{3}\right)$ flops (cubic \# of flops).
- The notation $g(n)=O(f(n))$ means asymptotically $f(n)$ scaled up to a constant grows at least as fast as $g(n)$, i.e.

$$
\begin{aligned}
& g(n)=O(f(n)) \text { if there exists an } n_{0} \text { and } c \text { such that } \\
& \qquad g(n) \leq c f(n) \text { for all } n \geq n_{0}
\end{aligned}
$$

Examples:
$2 n=O(n)$ as well as $2 n=O\left(n^{2}\right)$ and $2 n=O\left(n^{3}\right)$
$2 n^{2}=O\left(n^{2}\right)$ as well as $2 n^{2}=O\left(n^{3}\right)$, but $2 n^{2}$ is not $O(n)$.

Next Lecture

- Orthogonality (Trefethen\&Bau, Lecture 2)
- Norms (Trefethen\&Bau, Lecture 3)

