Math 504 (Fall 2010) - Lecture 12

Householder Triangularization and Least Squares Problem

Emre Mengi
Department of Mathematics
Koç University
emengi@ku.edu.tr

Outline

- QR factorization by Householder reflectors - Lecture 10
- Algorithm
- Operation count
- Least squares - Lecture 11
- Problem definition
- Numerical solution by QR factorization
- Normal equations

QR factorization by HH reflectors, Algorithm

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \longrightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

QR factorization by HH reflectors, Algorithm

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \longrightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

- $Q_{k}=\left[\begin{array}{cc}I_{k-1} & 0 \\ 0 & \hat{Q}_{k}\end{array}\right] \in \mathbb{C}^{m \times m}, R \in \mathbb{C}^{(k-1) \times(k-1)}$ is upper triangular

QR factorization by HH reflectors, Algorithm

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \longrightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

- $Q_{k}=\left[\begin{array}{cc}I_{k-1} & 0 \\ 0 & \hat{Q}_{k}\end{array}\right] \in \mathbb{C}^{m \times m}, R \in \mathbb{C}^{(k-1) \times(k-1)}$ is upper triangular
- $\hat{Q}_{k} \in \mathbb{C}^{(m-k+1) \times(m-k+1)}$ is the HH reflector assoc with $a_{1}^{(k)}$ so that

$$
A^{(k)}=\left[\begin{array}{ccccc}
x & x & x & \ldots & x \\
x & x & x & \ldots & x \\
\vdots & \vdots & & & \vdots \\
x & x & x & \ldots & x
\end{array}\right] \longrightarrow \hat{Q}_{k} A^{(k)}=\left[\begin{array}{ccccc}
x & x & x & \ldots & x \\
0 & x & x & \ldots & x \\
\vdots & \vdots & & & \vdots \\
0 & x & x & \ldots & x
\end{array}\right]
$$

QR factorization by HH reflectors, Algorithm

Algorithm

Input: $\quad A \in \mathbb{C}^{m \times n}$ with $m \geq n$
Output: \quad Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in$ \mathbb{C}^{m}. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.

$$
\begin{aligned}
& \text { for } k=1, n \text { do } \\
& \qquad \begin{array}{l}
v \leftarrow A_{k: m, k} \\
u_{k} \leftarrow v-\|v\| e_{1} \\
u_{k} \leftarrow u_{k} /\left\|u_{k}\right\| \\
A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)
\end{array}
\end{aligned}
$$

end for
$R \leftarrow A$
Return R

QR factorization by HH reflectors, Algorithm

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

QR factorization by HH reflectors, Algorithm

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

$$
Q_{n} \cdots Q_{1} A=R \text { where } Q_{k}=\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]
$$

QR factorization by HH reflectors, Algorithm

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

$$
Q_{n} \cdots Q_{1} A=R \text { where } Q_{k}=\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]
$$

equivalently

$$
A=Q_{1}^{*} Q_{2}^{*} \cdots Q_{n}^{*} R=\underbrace{Q_{1} Q_{2} \cdots Q_{n}}_{Q} R
$$

QR factorization by HH reflectors, Algorithm

- A very common use of the QR factorization is the numerical solution of the least squares problem.

QR factorization by HH reflectors, Algorithm

- A very common use of the QR factorization is the numerical solution of the least squares problem.
- For the least squares problem Q does not need to be formed explicitly. Given $b \in \mathbb{C}^{m}$. We will need the product $Q^{*} b$, which can be computed by means of the vectors u_{k}, since

$$
Q_{k}^{*} b=\underbrace{\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]}_{Q_{k}^{*}=Q_{k}} \underbrace{\left[\begin{array}{l}
\hat{b} \in \mathbb{C}^{k-1} \\
\tilde{b} \in \mathbb{C}^{m-k+1}
\end{array}\right]}_{b}=\left[\begin{array}{c}
\hat{b} \\
\tilde{b}-2 u_{k}\left(u_{k}^{*} \tilde{b}\right)
\end{array}\right] .
$$

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

- Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

- Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.
- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

- Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.
- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

- Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.
- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

QR factorization by HH reflectors, Algorithm

Remarks

- The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem (Existence of a QR factorization)
Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a QR factorization.

- Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.
- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

$$
\# F L O P S=3(m-k+1) \times(n-k+1)+O(n)
$$

QR factorization by HH reflectors, Operation Count

```
for \(k=1, n\) do
    \(v \leftarrow A_{k: m, k}\)
    \(u_{k} \leftarrow v-\|v\| e_{1}\)
    \(u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|\)
    \(A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)\)
end for
\(R \leftarrow A\)
```

Return R

QR factorization by HH reflectors, Operation Count

$$
\begin{aligned}
& \text { for } k=1, n \mathbf{d o} \\
& \qquad \begin{array}{l}
v \leftarrow A_{k: m, k} \\
\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m)} \\
u_{k} \leftarrow u_{k} /\left\|u_{k}\right\| \\
A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)
\end{array}
\end{aligned}
$$

end for
$R \leftarrow A$
Return R

QR factorization by HH reflectors, Operation Count

for $k=1, n$ do

$$
v \leftarrow A_{k: m, k}
$$

$$
\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }}
$$

$$
\underbrace{u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|}_{O(m) \text { flops }}
$$

$$
A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)
$$

end for
$R \leftarrow A$
Return R

QR factorization by HH reflectors, Operation Count

for $k=1, n$ do

$$
\begin{aligned}
& v \leftarrow A_{k: m, k} \\
& \underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }} \\
& \underbrace{u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|}_{O(m) \text { flops }}
\end{aligned}
$$

$$
\underbrace{A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)}_{4(m-k+1) \times(n-k+1)+O(n) \text { flops }}
$$

end for
$R \leftarrow A$
Return R

QR factorization by HH reflectors, Operation Count

Total \# FLOPS $=\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)+O(n))$

$$
\begin{aligned}
& =\quad 4\left(m n^{2}-m \frac{n(n+1)}{2}-n \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right) \\
& \quad+O(m n)+O\left(n^{2}\right) \\
& =\quad 2 m n^{2}-\frac{2 n^{3}}{3}+O(m n)+O\left(n^{2}\right)
\end{aligned}
$$

QR factorization by HH reflectors, Operation Count

Total \# FLOPS $=\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)+O(n))$

$$
\begin{aligned}
& =\quad 4\left(m n^{2}-m \frac{n(n+1)}{2}-n \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right) \\
& \quad+O(m n)+O\left(n^{2}\right) \\
& =\quad 2 m n^{2}-\frac{2 n^{3}}{3}+O(m n)+O\left(n^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

QR factorization by HH reflectors, Operation Count

Total \# FLOPS $=\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)+O(n))$

$$
\begin{aligned}
& =\quad 4\left(m n^{2}-m \frac{n(n+1)}{2}-n \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right) \\
& \quad+O(m n)+O\left(n^{2}\right) \\
& =\quad 2 m n^{2}-\frac{2 n^{3}}{3}+O(m n)+O\left(n^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

$$
\text { Total \# FLOPS }=\frac{4 n^{3}}{3}+O\left(n^{2}\right)
$$

QR factorization by HH reflectors, Operation Count

Total \# FLOPS $=\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)+O(n))$

$$
\begin{aligned}
& =\quad 4\left(m n^{2}-m \frac{n(n+1)}{2}-n \frac{n(n+1)}{2}+\frac{n(n+1)(2 n+1)}{6}\right) \\
& \quad+O(m n)+O\left(n^{2}\right) \\
& =\quad 2 m n^{2}-\frac{2 n^{3}}{3}+O(m n)+O\left(n^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

$$
\text { Total \# FLOPS }=\frac{4 n^{3}}{3}+O\left(n^{2}\right)
$$

(Gram-Schmidt would require $2 n^{3}+O\left(n^{2}\right)$ flops.)

Least Squares, Problem Definition

Given $p_{1}=\left(t_{1}, y_{1}\right)=(-2,-1), p_{2}=\left(t_{2}, y_{2}\right)=(3,1), p_{3}=\left(t_{3}, y_{3}\right)=(4,3)$.

Least Squares, Problem Definition

Given $p_{1}=\left(t_{1}, y_{1}\right)=(-2,-1), p_{2}=\left(t_{2}, y_{2}\right)=(3,1), p_{3}=\left(t_{3}, y_{3}\right)=(4,3)$.

- Find the line $\ell(t)=x_{1} t+x_{0}$ that best fits the points p_{1}, p_{2}, p_{3}. (The unknowns are x_{0}, x_{1}.)

Least Squares, Problem Definition

2 Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

Least Squares, Problem Definition

- Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

- Define

$$
r=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
\ell\left(t_{1}\right)-y_{1} \\
\ell\left(t_{2}\right)-y_{2} \\
\ell\left(t_{3}\right)-y_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
1 & -2 \\
1 & 3 \\
1 & 4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{r}
-1 \\
1 \\
3
\end{array}\right]}_{b}
$$

Least Squares, Problem Definition

- Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

- Define

$$
r=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
\ell\left(t_{1}\right)-y_{1} \\
\ell\left(t_{2}\right)-y_{2} \\
\ell\left(t_{3}\right)-y_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
1 & -2 \\
1 & 3 \\
1 & 4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{r}
-1 \\
1 \\
3
\end{array}\right]}_{b}
$$

- The problem can be posed as
find $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]$ such that $\|r\|_{2}=\|A x-b\|_{2}$ is as small as possible.

Least Squares, Problem Definition

- More generally given m points in \mathbf{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

Least Squares, Problem Definition

- More generally given m points in \mathbf{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

- Suppose you want to find the polynomial of degree $n-1(n<m)$ in the form

$$
P(t)=x_{n-1} t^{n-1}+x_{n-2} t^{n-2}+\cdots+x_{1} t+x_{0}
$$

Least Squares, Problem Definition

- More generally given m points in \mathbf{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

- Suppose you want to find the polynomial of degree $n-1(n<m)$ in the form

$$
P(t)=x_{n-1} t^{n-1}+x_{n-2} t^{n-2}+\cdots+x_{1} t+x_{0}
$$

minimizing

$$
\sqrt{\sum_{i=1}^{m}\left(p\left(t_{i}\right)-y_{i}\right)^{2}}
$$

Least Squares, Problem Definition

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Least Squares, Problem Definition

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Remark: The matrix A above is called the Vandermonde matrix.

Least Squares, Problem Definition

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Remark: The matrix A above is called the Vandermonde matrix.

- We want to find $x=\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{n-1}\end{array}\right]^{T}$ minimizing

$$
\|r\|_{2}=\|A x-b\|_{2} .
$$

Least Squares, Problem Definition

Definition: An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

Least Squares, Problem Definition

Definition: An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

- Overdetermined systems are usually inconsistent. (e.g. It is unlikely that three lines in \mathbf{R}^{2} intersect each other at a common point.)

Least Squares, Problem Definition

Definition: An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

- Overdetermined systems are usually inconsistent. (e.g. It is unlikely that three lines in \mathbf{R}^{2} intersect each other at a common point.) Example:

$$
[A \mid b]=\left[\begin{array}{rrr}
1 & -2 & -1 \\
1 & 3 & 1 \\
1 & 4 & 2
\end{array}\right] \rightsquigarrow \underbrace{\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 5 & 2 \\
0 & 0 & 3 / 5
\end{array}\right]}_{\text {inconsistent }}
$$

Least Squares, Problem Definition

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}

Least Squares, Problem Definition

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}

Most $b \in \mathbb{C}^{m}$ are not in range (A)

Least Squares, Problem Definition

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}

Most $b \in \mathbb{C}^{m}$ are not in range (A)

$$
\Longrightarrow
$$

$A x=b$ is inconsistent for most $b \in \mathbb{C}^{m}$

Least Squares, Problem Definition

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}

$$
\Longrightarrow
$$

Most $b \in \mathbb{C}^{m}$ are not in range (A)

$$
\Longrightarrow
$$

$A x=b$ is inconsistent for most $b \in \mathbb{C}^{m}$

$$
\begin{aligned}
\text { e.g. } m & =3, n=2 \\
\qquad A & =\left[\begin{array}{ll}
x & x \\
x & x \\
x & x
\end{array}\right]
\end{aligned}
$$

Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system $A x=b$. Find $x \in \mathbb{C}^{n}$ such that $\|A x-b\|_{2}$ is as small as possible.

Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system $A x=b$. Find $x \in \mathbb{C}^{n}$ such that $\|A x-b\|_{2}$ is as small as possible.

- Geometric interpretation: Find the point on the hyperplane range (A) that is closest to b.

Least Squares, Problem Definition

A motivating example

- US population as a function of time

t	y (population)
1900	75.995
1910	91.972
1920	105.711
1930	123.203
1940	131.669
1950	150.697
1960	179.323
1970	203.212
1980	226.505
1990	249.633
2000	281.422

Least Squares, Problem Definition

A motivating example

- US population as a function of time

t	y (population)
1900	75.995
1910	91.972
1920	105.711
1930	123.203
1940	131.669
1950	150.697
1960	179.323
1970	203.212
1980	226.505
1990	249.633
2000	281.422

- Fit a cubic model $y \approx p(t)=x_{3} t^{3}+x_{2} t^{2}+x_{1} t+x_{0}$ approximating the US population by solving the least squares problem. Use it to estimate the US population in 2020.

Least Squares, Problem Definition

Need to find $x=\left[\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3}\end{array}\right]^{T} \in \mathbb{R}^{4}$ minimizing
$\|\underbrace{\left[\begin{array}{llll}1 & 1900 & 1900^{2} & 1900^{3} \\ 1 & 1910 & 1910^{2} & 1910^{3} \\ 1 & 1920 & 1920^{2} & 1920^{3} \\ 1 & 1930 & 1930^{2} & 1930^{3} \\ 1 & 1940 & 1940^{2} & 1940^{3} \\ 1 & 1950 & 1950^{2} & 1950^{3} \\ 1 & 1960 & 1960^{2} & 1960^{3} \\ 1 & 1970 & 1970^{2} & 1970^{3} \\ 1 & 1980 & 1980^{2} & 1980^{3} \\ 1 & 1990 & 1990^{2} & 1990^{3} \\ 1 & 2000 & 2000^{2} & 2000^{3}\end{array}\right]} \underbrace{\left[\begin{array}{c}x_{0} \\ x_{1} \\ x_{2} \\ x_{3}\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}75.995 \\ 91.972 \\ 105.711 \\ 123.203 \\ 131.669 \\ 150.697 \\ 179.323 \\ 203.212 \\ 226.505 \\ 249.633 \\ 281.422\end{array}\right]}_{b}\|$

Least Squares, Problem Definition

The optimal cubic polynomial solving the least squares problem

$$
p(t)=56.0821\left(\frac{t-1950}{50}\right)^{3}+127.3056\left(\frac{t-1950}{50}\right)^{2}-80.6311\left(\frac{t-1950}{50}\right)+165.3947
$$

Least Squares, Problem Definition

The optimal cubic polynomial solving the least squares problem

$$
p(t)=56.0821\left(\frac{t-1950}{50}\right)^{3}+127.3056\left(\frac{t-1950}{50}\right)^{2}-80.6311\left(\frac{t-1950}{50}\right)+165.3947
$$

Black squares - given pairs of (year,population) data; Blue curve - optimal cubic polynomial

Next Lecture

Conditioning and condition numbers - Lecture 12

