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QR factorization by HH reflectors, Algorithm

Step k of the algorithm: (k = 1, . . . , n− 1)




R B

0 A(k)





︸ ︷︷ ︸

Qk−1...Q1A

−→




R B

0 Q̂kA(k)





︸ ︷︷ ︸

QkQk−1...Q1A
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QR factorization by HH reflectors, Algorithm

Step k of the algorithm: (k = 1, . . . , n− 1)




R B

0 A(k)





︸ ︷︷ ︸

Qk−1...Q1A

−→




R B

0 Q̂kA(k)





︸ ︷︷ ︸

QkQk−1...Q1A

Qk =




Ik−1 0

0 Q̂k



 ∈ C
m×m, R ∈ C

(k−1)×(k−1) is upper triangular
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QR factorization by HH reflectors, Algorithm

Step k of the algorithm: (k = 1, . . . , n− 1)




R B

0 A(k)





︸ ︷︷ ︸

Qk−1...Q1A

−→




R B

0 Q̂kA(k)





︸ ︷︷ ︸

QkQk−1...Q1A

Qk =




Ik−1 0

0 Q̂k



 ∈ C
m×m, R ∈ C

(k−1)×(k−1) is upper triangular

Q̂k ∈ C
(m−k+1)×(m−k+1) is the HH reflector assoc with a

(k)
1 so that

A(k) =











x x x . . . x

x x x . . . x
...

...
...

x x x . . . x











−→ Q̂kA(k) =











x x x . . . x

0 x x . . . x
...

...
...

0 x x . . . x
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QR factorization by HH reflectors, Algorithm

ALGORITHM

Input: A ∈ Cm×n with m ≥ n

Output: Upper triangular R ∈ C
m×n and the HH vectors u1, . . . , un−1 ∈

Cm. The unitary factor Q ∈ Cm×m can be formed from the HH
vectors so that A = QR is a full QR factorization.

for k = 1, n do

v ← Ak:m,k

uk ← v − ‖v‖e1

uk ← uk/‖uk‖

Ak:m,k:n ← Ak:m,k:n − 2uk(u∗

kAk:m,k:n)

end for

R← A

Return R
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QR factorization by HH reflectors, Algorithm

The unitary factor Q such that A = QR can be recovered from the HH
vectors uk.
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QR factorization by HH reflectors, Algorithm

The unitary factor Q such that A = QR can be recovered from the HH
vectors uk.

Qn · · ·Q1A = R where Qk =




Ik−1 0

0 Im−k+1 − 2uku∗

k
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QR factorization by HH reflectors, Algorithm

The unitary factor Q such that A = QR can be recovered from the HH
vectors uk.

Qn · · ·Q1A = R where Qk =




Ik−1 0

0 Im−k+1 − 2uku∗

k





equivalently

A = Q∗

1Q
∗

2 · · ·Q
∗

nR = Q1Q2 · · ·Qn
︸ ︷︷ ︸

Q

R.
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QR factorization by HH reflectors, Algorithm

A very common use of the QR factorization is the numerical solution
of the least squares problem.
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QR factorization by HH reflectors, Algorithm

A very common use of the QR factorization is the numerical solution
of the least squares problem.

For the least squares problem Q does not need to be formed
explicitly. Given b ∈ C

m. We will need the product Q∗b, which can be
computed by means of the vectors uk, since

Q∗

kb =




Ik−1 0

0 Im−k+1 − 2uku∗

k





︸ ︷︷ ︸

Q∗

k
=Qk




b̂ ∈ Ck−1

b̃ ∈ C
m−k+1





︸ ︷︷ ︸

b

=




b̂

b̃− 2uk(u∗

k b̃)



 .
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗

kAk:m,k:n.
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗

kAk:m,k:n.

Inefficient way: 2(uku∗

k)Ak:m,k:n
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗

kAk:m,k:n.

Inefficient way: 2(uku∗

k)Ak:m,k:n

#FLOPS = 2(m− k + 1)2 × (n− k + 1) + O(mn) + O(n2)
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗

kAk:m,k:n.

Inefficient way: 2(uku∗

k)Ak:m,k:n

#FLOPS = 2(m− k + 1)2 × (n− k + 1) + O(mn) + O(n2)

Efficient way: 2uk(u∗

kAk:m,k:n)
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QR factorization by HH reflectors, Algorithm

Remarks

The algorithm based on HH reflectors shows the existence of a QR
factorization.

Theorem (Existence of a QR factorization)
Every matrix A ∈ C

m×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗

kAk:m,k:n.

Inefficient way: 2(uku∗

k)Ak:m,k:n

#FLOPS = 2(m− k + 1)2 × (n− k + 1) + O(mn) + O(n2)

Efficient way: 2uk(u∗

kAk:m,k:n)

#FLOPS = 3(m− k + 1)× (n− k + 1) + O(n)
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QR factorization by HH reflectors, Operation Count

for k = 1, n do
v ← Ak:m,k

uk ← v − ‖v‖e1

uk ← uk/‖uk‖

Ak:m,k:n ← Ak:m,k:n − 2uk(u∗

kAk:m,k:n)

end for
R← A

Return R
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QR factorization by HH reflectors, Operation Count

for k = 1, n do
v ← Ak:m,k

uk ← v − ‖v‖e1
︸ ︷︷ ︸

O(m) flops

uk ← uk/‖uk‖

Ak:m,k:n ← Ak:m,k:n − 2uk(u∗

kAk:m,k:n)

end for
R← A

Return R
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QR factorization by HH reflectors, Operation Count

for k = 1, n do
v ← Ak:m,k

uk ← v − ‖v‖e1
︸ ︷︷ ︸

O(m) flops

uk ← uk/‖uk‖
︸ ︷︷ ︸

O(m) flops

Ak:m,k:n ← Ak:m,k:n − 2uk(u∗

kAk:m,k:n)

end for
R← A

Return R
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QR factorization by HH reflectors, Operation Count

for k = 1, n do
v ← Ak:m,k

uk ← v − ‖v‖e1
︸ ︷︷ ︸

O(m) flops

uk ← uk/‖uk‖
︸ ︷︷ ︸

O(m) flops

Ak:m,k:n ← Ak:m,k:n − 2uk(u∗

kAk:m,k:n)
︸ ︷︷ ︸

4(m−k+1)×(n−k+1)+O(n) flops

end for
R← A

Return R
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QR factorization by HH reflectors, Operation Count

Total # FLOPS =
∑n

k=1 (4(m− k + 1)(n− k + 1) + O(m) + O(n))

= 4(mn2 −mn(n+1)
2 − nn(n+1)

2 + n(n+1)(2n+1)
6 )

+O(mn) + O(n2)

= 2mn2 − 2n3

3 + O(mn) + O(n2)
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QR factorization by HH reflectors, Operation Count

Total # FLOPS =
∑n

k=1 (4(m− k + 1)(n− k + 1) + O(m) + O(n))

= 4(mn2 −mn(n+1)
2 − nn(n+1)

2 + n(n+1)(2n+1)
6 )

+O(mn) + O(n2)

= 2mn2 − 2n3

3 + O(mn) + O(n2)

(Recall that Gram-Schmidt requires 2mn2 flops.)
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QR factorization by HH reflectors, Operation Count

Total # FLOPS =
∑n

k=1 (4(m− k + 1)(n− k + 1) + O(m) + O(n))

= 4(mn2 −mn(n+1)
2 − nn(n+1)

2 + n(n+1)(2n+1)
6 )

+O(mn) + O(n2)

= 2mn2 − 2n3

3 + O(mn) + O(n2)

(Recall that Gram-Schmidt requires 2mn2 flops.)

If A is square (m = n)

Total # FLOPS =
4n3

3
+ O(n2)
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QR factorization by HH reflectors, Operation Count

Total # FLOPS =
∑n

k=1 (4(m− k + 1)(n− k + 1) + O(m) + O(n))

= 4(mn2 −mn(n+1)
2 − nn(n+1)

2 + n(n+1)(2n+1)
6 )

+O(mn) + O(n2)

= 2mn2 − 2n3

3 + O(mn) + O(n2)

(Recall that Gram-Schmidt requires 2mn2 flops.)

If A is square (m = n)

Total # FLOPS =
4n3

3
+ O(n2)

(Gram-Schmidt would require 2n3 + O(n2) flops.)
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Least Squares, Problem Definition

Given p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).

t

(t1, y1)

(t2, y2)

(t3, y3)

y
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Least Squares, Problem Definition

Given p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).

y = ℓ(t)
(t1, y1)

(t2, y2)

(t3, y3)

(t3, ℓ(t3))

r2

r3

r1

y

t

(t1, ℓ(t1))

(t2, ℓ(t2))

Find the line ℓ(t) = x1t + x0 that best fits the points p1, p2, p3. (The
unknowns are x0, x1.)
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Least Squares, Problem Definition

Find the line ℓ(t) = x1t + x0 so that

q

P

3

i=1
(ℓ(ti) − yi)2 =

p

(−2x1 + x0 − (−1))2 + (3x1 + x0 − 1)2 + (4x1 + x0 − 3)2

is small as possible.
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Least Squares, Problem Definition

Find the line ℓ(t) = x1t + x0 so that

q

P

3

i=1
(ℓ(ti) − yi)2 =

p

(−2x1 + x0 − (−1))2 + (3x1 + x0 − 1)2 + (4x1 + x0 − 3)2

is small as possible.

Define

r =







r1

r2

r3







=







ℓ(t1)− y1

ℓ(t2)− y2

ℓ(t3)− y3







=







1 −2

1 3

1 4







︸ ︷︷ ︸

A




x0

x1





︸ ︷︷ ︸

x

−







−1

1

3







︸ ︷︷ ︸

b
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Least Squares, Problem Definition

Find the line ℓ(t) = x1t + x0 so that

q

P

3

i=1
(ℓ(ti) − yi)2 =

p

(−2x1 + x0 − (−1))2 + (3x1 + x0 − 1)2 + (4x1 + x0 − 3)2

is small as possible.

Define

r =







r1

r2

r3







=







ℓ(t1)− y1

ℓ(t2)− y2

ℓ(t3)− y3







=







1 −2

1 3

1 4







︸ ︷︷ ︸

A




x0

x1





︸ ︷︷ ︸

x

−







−1

1

3







︸ ︷︷ ︸

b

The problem can be posed as

find x =




x0

x1



 such that ‖r‖2 = ‖Ax− b‖2 is as small as possible.
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Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m
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Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m

Suppose you want to find the polynomial of degree n− 1 (n < m) in
the form

P (t) = xn−1t
n−1 + xn−2t

n−2 + · · ·+ x1t + x0
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Least Squares, Problem Definition

More generally given m points in R2

pi = (ti, yi), i = 1, . . . , m

Suppose you want to find the polynomial of degree n− 1 (n < m) in
the form

P (t) = xn−1t
n−1 + xn−2t

n−2 + · · ·+ x1t + x0

minimizing
√
√
√
√

m∑

i=1

(p(ti)− yi)2.
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Least Squares, Problem Definition

Define
2

6

6

6

6

6

6

4

r1

r2

...

rm

3

7

7

7

7

7

7

5

| {z }

r

=

2

6

6

6

6

6

6

4

P (t1) − y1

P (t2) − y2

...

P (tm) − ym

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

1 · · · tn−2

1
tn−1

1

1 · · · tn−2

2
tn−1

2

...
...

1 · · · tn−2
m tn−1

m

3

7

7

7

7

7

7

5

| {z }

A

2

6

6

6

6

6

6

4

x0

x1

...

xn−1

3

7

7

7

7

7

7

5

| {z }

x

−

2

6

6

6

6

6

6

4

y1

y2

...

ym

3

7

7

7

7

7

7

5

| {z }

b
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Least Squares, Problem Definition

Define
2

6

6

6

6

6

6

4

r1

r2

...

rm

3

7

7

7

7

7

7

5

| {z }

r

=

2

6

6

6

6

6

6

4

P (t1) − y1

P (t2) − y2

...

P (tm) − ym

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

1 · · · tn−2

1
tn−1

1

1 · · · tn−2

2
tn−1

2

...
...

1 · · · tn−2
m tn−1

m

3

7

7

7

7

7

7

5

| {z }

A

2

6

6

6

6

6

6

4

x0

x1

...

xn−1

3

7

7

7

7

7

7

5

| {z }

x

−

2

6

6

6

6

6

6

4

y1

y2

...

ym

3

7

7

7

7

7

7

5

| {z }

b

Remark: The matrix A above is called the Vandermonde matrix.
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Least Squares, Problem Definition

Define
2

6

6

6

6

6

6

4

r1

r2

...

rm

3

7

7

7

7

7

7

5

| {z }

r

=

2

6

6

6

6

6

6

4

P (t1) − y1

P (t2) − y2

...

P (tm) − ym

3

7

7

7

7

7

7

5

=

2

6

6

6

6

6

6

4

1 · · · tn−2

1
tn−1

1

1 · · · tn−2

2
tn−1

2

...
...

1 · · · tn−2
m tn−1

m

3

7

7

7

7

7

7

5

| {z }

A

2

6

6

6

6

6

6

4

x0

x1

...

xn−1

3

7

7

7

7

7

7

5

| {z }

x

−

2

6

6

6

6

6

6

4

y1

y2

...

ym

3

7

7

7

7

7

7

5

| {z }

b

Remark: The matrix A above is called the Vandermonde matrix.

We want to find x =
[

x0 x1 · · · xn−1

]T

minimizing

‖r‖2 = ‖Ax− b‖2.
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Least Squares, Problem Definition

Definition: An m× n system Ax = b is called overdetermined if m > n.

Lecture 12 – p.14/20



Least Squares, Problem Definition

Definition: An m× n system Ax = b is called overdetermined if m > n.

Overdetermined systems are usually inconsistent. (e.g. It is unlikely
that three lines in R2 intersect each other at a common point.)
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Least Squares, Problem Definition

Definition: An m× n system Ax = b is called overdetermined if m > n.

Overdetermined systems are usually inconsistent. (e.g. It is unlikely
that three lines in R2 intersect each other at a common point.)
Example:

[ A | b ] =







1 −2 −1

1 3 1

1 4 2






 







1 −2 −1

0 5 2

0 0 3/5







︸ ︷︷ ︸

inconsistent
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Least Squares, Problem Definition

Justification:

range(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Cm
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Least Squares, Problem Definition

Justification:

range(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Cm

=⇒

Most b ∈ C
m are not in range(A)
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Least Squares, Problem Definition

Justification:

range(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Cm

=⇒

Most b ∈ C
m are not in range(A)

=⇒

Ax = b is inconsistent for most b ∈ C
m
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Least Squares, Problem Definition

Justification:

range(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Cm

=⇒

Most b ∈ C
m are not in range(A)

=⇒

Ax = b is inconsistent for most b ∈ C
m

R
3

b

Col(A)
(2-dimensional)

e.g. m = 3, n = 2

A =







x x

x x

x x
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Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system Ax = b.

Find x ∈ Cn such that ‖Ax− b‖2 is as small as possible.
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Least Squares, Problem Definition

Least Squares Problem: Given an overdetermined system Ax = b.

Find x ∈ Cn such that ‖Ax− b‖2 is as small as possible.

Geometric interpretation: Find the point on the hyperplane range(A)

that is closest to b.

R
3

b

Col(A)
(2-dimensional)
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Least Squares, Problem Definition

A motivating example

US population as a function of time

t y (population)

1900 75.995

1910 91.972

1920 105.711

1930 123.203

1940 131.669

1950 150.697

1960 179.323

1970 203.212

1980 226.505

1990 249.633

2000 281.422
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Least Squares, Problem Definition

A motivating example

US population as a function of time

t y (population)

1900 75.995

1910 91.972

1920 105.711

1930 123.203

1940 131.669

1950 150.697

1960 179.323

1970 203.212

1980 226.505

1990 249.633

2000 281.422

Fit a cubic model y ≈ p(t) = x3t3 + x2t2 + x1t + x0 approximating the US population
by solving the least squares problem. Use it to estimate the US population in 2020.
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Least Squares, Problem Definition

Need to find x =
h

x0 x1 x2 x3

iT

∈ R
4 minimizing

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

‚

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 1900 19002 19003

1 1910 19102 19103

1 1920 19202 19203

1 1930 19302 19303

1 1940 19402 19403

1 1950 19502 19503

1 1960 19602 19603

1 1970 19702 19703

1 1980 19802 19803

1 1990 19902 19903

1 2000 20002 20003

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

| {z }

A

2

6

6

6

6

6

4

x0

x1

x2

x3

3

7

7

7

7

7

5

| {z }

x

−

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

75.995

91.972

105.711

123.203

131.669

150.697

179.323

203.212
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Least Squares, Problem Definition

The optimal cubic polynomial solving the least squares problem

p(t) = 56.0821
`

t−1950

50

´3
+ 127.3056

`

t−1950

50

´2
− 80.6311

`

t−1950

50

´

+ 165.3947
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Black squares - given pairs of (year,population) data; Blue curve - optimal cubic polynomial

Lecture 12 – p.19/20



Next Lecture

Conditioning and condition numbers - Lecture 12
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