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Algorithm
Operation Count

Step k of the algorithm: (k = 1, . . . ,n − 1)[
R B
0 A(k)

]
︸ ︷︷ ︸

Qk−1...Q1A

−→
[

R B
0 Q̂kA(k)

]
︸ ︷︷ ︸

Qk Qk−1...Q1A

Qk =

[
Ik−1 0

0 Q̂k

]
∈ Cm×m, R ∈ C(k−1)×(k−1) is upper

triangular
Q̂k ∈ C(m−k+1)×(m−k+1) is the HH reflector assoc with a(k)

1
so that

A(k) =


x x x . . . x
x x x . . . x
...

...
...

x x x . . . x

 −→ Q̂kA(k) =


x x x . . . x
0 x x . . . x
...

...
...

0 x x . . . x


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QR Factorization by Householder Reflectors
Least Squares Problem

Algorithm
Operation Count

ALGORITHM

Input: A ∈ Cm×n with m ≥ n
Output: Upper triangular R ∈ Cm×n and the HH vectors
u1, . . . ,un−1 ∈ Cm. The unitary factor Q ∈ Cm×m can be
formed from the HH vectors so that A = QR is a full QR
factorization.

for k = 1,n do
v ← Ak :m,k
uk ← v − ‖v‖e1
uk ← uk/‖uk‖
Ak :m,k :n ← Ak :m,k :n − 2uk (u∗

kAk :m,k :n)
end for
R ← A
Return R
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The unitary factor Q such that A = QR can be recovered from
the HH vectors uk .

Qn · · ·Q1A = R where Qk =

[
Ik−1 0

0 Im−k+1 − 2uku∗
k

]
equivalently

A = Q∗
1Q∗

2 · · ·Q∗
nR = Q1Q2 · · ·Qn︸ ︷︷ ︸

Q

R.
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Operation Count

A very common use of the QR factorization is the
numerical solution of the least squares problem.

For the least squares problem Q does not need to be
formed explicitly.

Let b ∈ Cm. We will need the product Q∗b, which can be
computed by means of the vectors uk , since

Q∗
k b =

[
Ik−1 0

0 Im−k+1 − 2uk u∗
k

]
︸ ︷︷ ︸

Q∗
k =Qk

[
b̂ ∈ Ck−1

b̃ ∈ Cm−k+1

]
︸ ︷︷ ︸

b

=

[
b̂

b̃ − 2uk (u∗
k b̃)

]
.

Emre Mengi



QR Factorization by Householder Reflectors
Least Squares Problem

Algorithm
Operation Count

A very common use of the QR factorization is the
numerical solution of the least squares problem.

For the least squares problem Q does not need to be
formed explicitly.

Let b ∈ Cm. We will need the product Q∗b, which can be
computed by means of the vectors uk , since

Q∗
k b =

[
Ik−1 0

0 Im−k+1 − 2uk u∗
k

]
︸ ︷︷ ︸

Q∗
k =Qk

[
b̂ ∈ Ck−1

b̃ ∈ Cm−k+1

]
︸ ︷︷ ︸

b

=

[
b̂

b̃ − 2uk (u∗
k b̃)

]
.

Emre Mengi



QR Factorization by Householder Reflectors
Least Squares Problem

Algorithm
Operation Count

A very common use of the QR factorization is the
numerical solution of the least squares problem.

For the least squares problem Q does not need to be
formed explicitly.

Let b ∈ Cm. We will need the product Q∗b, which can be
computed by means of the vectors uk , since

Q∗
k b =

[
Ik−1 0

0 Im−k+1 − 2uk u∗
k

]
︸ ︷︷ ︸

Q∗
k =Qk

[
b̂ ∈ Ck−1

b̃ ∈ Cm−k+1

]
︸ ︷︷ ︸

b

=

[
b̂

b̃ − 2uk (u∗
k b̃)

]
.

Emre Mengi



QR Factorization by Householder Reflectors
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Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Theorem
Every matrix A ∈ Cm×n with m ≥ n has a QR factorization.

Pay attention to the order of operation to perform 2uku∗
kAk :m,k :n.

Inefficient way: 2(uku∗
k )Ak :m,k :n

#FLOPS = 2(m− k + 1)2 × (n− k + 1) + O(mn) + O(n2)

Efficient way: 2uk (u∗
kAk :m,k :n)

#FLOPS = 3(m − k + 1)× (n − k + 1) + O(n)
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Algorithm
Operation Count

Total # FLOPS =
∑n

k=1 (4(m − k + 1)(n − k + 1) + O(m))

= 2mn2 − 2n3

3 + O(m2)

(Recall that Gram-Schmidt requires 2mn2 flops.)

If A is square (m = n)

Total # FLOPS =
4n3

3
+ O(n2)

(Gram-Schmidt would require 2n3 + O(n2) flops.)
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Least Squares Problem

Problem Definition

Let p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).

t

(t1, y1)

(t2, y2)

(t3, y3)

y
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y = ℓ(t)
(t1, y1)

(t2, y2)

(t3, y3)

(t3, ℓ(t3))

r2

r3

r1

y

t

(t1, ℓ(t1))

(t2, ℓ(t2))

Emre Mengi



QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Let p1 = (t1, y1) = (−2,−1), p2 = (t2, y2) = (3, 1), p3 = (t3, y3) = (4, 3).

y = ℓ(t)
(t1, y1)

(t2, y2)

(t3, y3)

(t3, ℓ(t3))

r2

r3

r1

y

t

(t1, ℓ(t1))

(t2, ℓ(t2))

Find the line `(t) = x1t + x0 that best fits the points p1, p2, p3. (The
unknowns are x0, x1.)
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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Find the line `(t) = x1t + x0 so that√∑3
i=1(`(ti ) − yi )

2 =
√

(−2x1 + x0 − (−1))2 + (3x1 + x0 − 1)2 + (4x1 + x0 − 3)2

is small as possible.

Define

r =

 r1

r2

r3

 =

 `(t1)− y1

`(t2)− y2

`(t3)− y3

 =

 1 −2
1 3
1 4


︸ ︷︷ ︸

A

[
x0

x1

]
︸ ︷︷ ︸

x

−

 −1
1
3


︸ ︷︷ ︸

b

The problem can be posed as

find x =

[
x0

x1

]
such that ‖r‖2 = ‖Ax − b‖2 is as small as possible.
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Problem Definition

More generally given m points in R2

pi = (ti , yi), i = 1, . . . ,m

Suppose you want to find the polynomial of degree
n − 1 (n < m) in the form

P(t) = xn−1tn−1 + xn−2tn−2 + · · ·+ x1t + x0

minimizing √√√√ m∑
i=1

(P(ti)− yi)2.
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Least Squares Problem

Problem Definition

Define
r1
r2
.
.
.

rm


︸ ︷︷ ︸

r

=


P(t1) − y1
P(t2) − y2

.

.

.
P(tm) − ym

 =


1 · · · tn−2

1 tn−1
1

1 · · · tn−2
2 tn−1

2
.
.
.

.

.

.
1 · · · tn−2

m tn−1
m


︸ ︷︷ ︸

A


x0
x1
.
.
.

xn−1


︸ ︷︷ ︸

x

−


y1
y2
.
.
.

ym


︸ ︷︷ ︸

b

Remark: The matrix A is called the Vandermonde matrix.

We want to find x =
[

x0 x1 · · · xn−1
]T minimizing

‖r‖2 = ‖Ax − b‖2.
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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Definition
An m × n system Ax = b is called overdetermined if m > n.

Overdetermined systems are usually inconsistent. (e.g. It
is unlikely that three lines in R2 intersect each other at a
common point.)

Example:

[ A | b ] =

 1 −2 −1
1 3 1
1 4 2

 
 1 −2 −1

0 5 2
0 0 3/5


︸ ︷︷ ︸

inconsistent
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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Justification:
range(A) = span{a1, a2, . . . , an} is at most an n-dimen subspace in Cm

=⇒
Most b ∈ Cm are not in range(A)

=⇒
Ax = b is inconsistent for most b ∈ Cm

R3
b

Col(A)
(2-dimensional)

e.g. m = 3, n = 2

A =

 x x
x x
x x


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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Least Squares Problem
Given an overdetermined system Ax = b.

Find x ∈ Cn such that ‖Ax − b‖2 is as small as possible.

Geometric interpretation: Find the point on the hyperplane
range(A) that is closest to b.

R3
b

Col(A)
(2-dimensional)
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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

US population as a function of time
t y (population)

1900 75.995
1910 91.972
1920 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422

Fit a cubic model y ≈ p(t) = x3t3 + x2t2 + x1t + x0
approximating the US population by solving the least
squares problem. Use it to estimate population in 2020.
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QR Factorization by Householder Reflectors
Least Squares Problem

Problem Definition

Need to find x =
[

x0 x1 x2 x3
]T ∈ C4 minimizing∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



1 1900 19002 19003

1 1910 19102 19103

1 1920 19202 19203

1 1930 19302 19303

1 1940 19402 19403

1 1950 19502 19503

1 1960 19602 19603

1 1970 19702 19703

1 1980 19802 19803

1 1990 19902 19903

1 2000 20002 20003


︸ ︷︷ ︸

A


x0

x1

x2

x3


︸ ︷︷ ︸

x

−



75.995
91.972

105.711
123.203
131.669
150.697
179.323
203.212
226.505
249.633
281.422


︸ ︷︷ ︸

b

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
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Least Squares Problem

Problem Definition

The optimal cubic polynomial solving the least squares problem

p(t) = 56.0821
(

t−1950
50

)3
+ 127.3056

(
t−1950

50

)2
− 80.6311

(
t−1950

50

)
+ 165.3947

1860 1880 1900 1920 1940 1960 1980 2000 2020
−500

−400

−300

−200

−100

0

100

200

300

400

Black squares - given pairs of (year,population) data; Blue curve - optimal cubic polynomial
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