Householder Triangularization and Least Squares Problem

Emre Mengi

Department of Mathemtics
Koç University
Istanbul, Turkey

October 26, 2011

Outline

(1) QR Factorization by Householder Reflectors
 - Algorithm
 - Operation Count

2) Least Squares Problem

- Problem Definition

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \longrightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

triangular

- $\hat{Q}_{k} \in \mathbb{C}^{(m-k+1) \times(m-k+1)}$ is the HH reflector assoc with $a_{1}^{(k)}$ so that

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \longrightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

- $Q_{k}=\left[\begin{array}{cc}I_{k-1} & 0 \\ 0 & \hat{Q}_{k}\end{array}\right] \in \mathbb{C}^{m \times m}, R \in \mathbb{C}^{(k-1) \times(k-1)}$ is upper triangular
$\hat{Q}_{k} \in \mathbb{C}^{(m-k+1) \times(m-k+1)}$ is the HH reflector assoc with $a_{1}^{(k)}$ so that

Step k of the algorithm: $(k=1, \ldots, n-1)$

$$
\underbrace{\left[\begin{array}{cc}
R & B \\
0 & A^{(k)}
\end{array}\right]}_{Q_{k-1} \ldots Q_{1} A} \rightarrow \underbrace{\left[\begin{array}{cc}
R & B \\
0 & \hat{Q}_{k} A^{(k)}
\end{array}\right]}_{Q_{k} Q_{k-1} \ldots Q_{1} A}
$$

- $Q_{k}=\left[\begin{array}{cc}I_{k-1} & 0 \\ 0 & \hat{Q}_{k}\end{array}\right] \in \mathbb{C}^{m \times m}, R \in \mathbb{C}^{(k-1) \times(k-1)}$ is upper
triangular
- $\hat{Q}_{k} \in \mathbb{C}^{(m-k+1) \times(m-k+1)}$ is the HH reflector assoc with $a_{1}^{(k)}$ so that

$$
A^{(k)}=\left[\begin{array}{ccccc}
x & x & x & \ldots & x \\
x & x & x & \ldots & x \\
\vdots & \vdots & & & \vdots \\
x & x & x & \ldots & x
\end{array}\right] \longrightarrow \hat{Q}_{k} A^{(k)}=\left[\begin{array}{ccccc}
x & x & x & \ldots & x \\
0 & x & x & \ldots & x \\
\vdots & \vdots & & & \vdots \\
0 & x & x & \ldots & x
\end{array}\right]
$$

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.

end for

$R \leftarrow A$
Return R

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.
for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$u_{k} \leftarrow v-\|v\| e_{1}$

$A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$
end for

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.
for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$u_{k} \leftarrow v-\|v\| e_{1}$
end for
$R \leftarrow A$
Return R

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.
for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$u_{k} \leftarrow v-\|v\| e_{1}$
$u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|$
end for
$R \leftarrow A$
Return R

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.

```
for k=1,n do
    v}\leftarrow\mp@subsup{A}{k:m,k}{
    uk}\leftarrowv-|v|\mp@subsup{e}{1}{
    uk}
    Ak:m,k:n}<\mp@subsup{A}{k:m,k:n}{}-2\mp@subsup{u}{k}{}(\mp@subsup{u}{k}{*}\mp@subsup{A}{k:m,k:n}{}
end for
```

Return R

Algorithm

- Input: $A \in \mathbb{C}^{m \times n}$ with $m \geq n$
- Output: Upper triangular $R \in \mathbb{C}^{m \times n}$ and the HH vectors $u_{1}, \ldots, u_{n-1} \in \mathbb{C}^{m}$. The unitary factor $Q \in \mathbb{C}^{m \times m}$ can be formed from the HH vectors so that $A=Q R$ is a full QR factorization.

```
for k=1,n do
    v}\leftarrow\mp@subsup{A}{k:m,k}{
    uk
    uk}
    Ak:m,k:n}<\mp@subsup{A}{k:m,k:n}{}-2\mp@subsup{u}{k}{}(\mp@subsup{u}{k}{*}\mp@subsup{A}{k:m,k:n}{}
end for
```

$R \leftarrow A$
Return R

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

$$
Q_{n} \cdots Q_{1} A=R \text { where } Q_{k}=\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]
$$

equivalently

The unitary factor Q such that $A=Q R$ can be recovered from the HH vectors u_{k}.

$$
Q_{n} \cdots Q_{1} A=R \text { where } Q_{k}=\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]
$$

equivalently

$$
A=Q_{1}^{*} Q_{2}^{*} \cdots Q_{n}^{*} R=\underbrace{Q_{1} Q_{2} \cdots Q_{n}}_{Q} R
$$

- A very common use of the QR factorization is the numerical solution of the least squares problem.

- For the least squares problem Q does not need to be formed explicitly.

- Let $b \in \mathbb{C}^{m}$. We will need the product $Q^{*} b$, which can be computed by means of the vectors u_{k}, since

- A very common use of the QR factorization is the numerical solution of the least squares problem.
- For the least squares problem Q does not need to be formed explicitly.
- Let $b \in \mathbb{C}^{m}$. We will need the product $Q^{*} b$, which can be computed by means of the vectors u_{k}, since
- A very common use of the QR factorization is the numerical solution of the least squares problem.
- For the least squares problem Q does not need to be formed explicitly.
- Let $b \in \mathbb{C}^{m}$. We will need the product $Q^{*} b$, which can be computed by means of the vectors u_{k}, since

$$
Q_{k}^{*} b=\underbrace{\left[\begin{array}{cc}
I_{k-1} & 0 \\
0 & I_{m-k+1}-2 u_{k} u_{k}^{*}
\end{array}\right]}_{Q_{k}^{*}=Q_{k}} \underbrace{\left[\begin{array}{l}
\hat{b} \in \mathbb{C}^{k-1} \\
\tilde{b} \in \mathbb{C}^{m-k+1}
\end{array}\right]}_{b}=\left[\begin{array}{c}
\hat{b} \\
\tilde{b}-2 u_{k}\left(u_{k}^{*} \tilde{b}\right)
\end{array}\right] .
$$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

Remarks

The algorithm based on HH reflectors shows the existence of a QR factorization.

Theorem

Every matrix $A \in \mathbb{C}^{m \times n}$ with $m \geq n$ has a $Q R$ factorization.

Pay attention to the order of operation to perform $2 u_{k} u_{k}^{*} A_{k: m, k: n}$.

- Inefficient way: $2\left(u_{k} u_{k}^{*}\right) A_{k: m, k: n}$

$$
\# F L O P S=2(m-k+1)^{2} \times(n-k+1)+O(m n)+O\left(n^{2}\right)
$$

- Efficient way: $2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)$

$$
\# F L O P S=3(m-k+1) \times(n-k+1)+O(n)
$$

Outline

(1) QR Factorization by Householder Reflectors

- Algorithm
- Operation Count

2) Least Squares Problem - Problem Definition

for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }}$

$\underbrace{A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)}$ $4(m-k+1) \times(n-k+1)+O(n)$ flops

end for

Return R

for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }}$
$\underbrace{u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|}_{O(m) \text { flops }}$
$\underbrace{A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)}$ $4(m-k+1) \times(n-k+1)+O(n)$ flops

end for

Return R

for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }}$
$\underbrace{u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|}_{O(m)}$
$\underbrace{A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)}_{4(m-k+1) \times(n-k+1)+O(n) \text { flops }}$
end for
for $k=1, n$ do
$v \leftarrow A_{k: m, k}$
$\underbrace{u_{k} \leftarrow v-\|v\| e_{1}}_{O(m) \text { flops }}$
$\underbrace{u_{k} \leftarrow u_{k} /\left\|u_{k}\right\|}_{O(m)}$
$\underbrace{A_{k: m, k: n} \leftarrow A_{k: m, k: n}-2 u_{k}\left(u_{k}^{*} A_{k: m, k: n}\right)}_{4(m-k+1) \times(n-k+1)+O(n) \text { flops }}$
end for
$R \leftarrow A$
Return R

Total \# FLOPS $=\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m))$
 $$
=2 m n^{2}-\frac{2 n^{3}}{3}+O\left(m^{2}\right)
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

(Gram-Schmidt would require $2 n^{3}+O\left(n^{2}\right)$ flops.)

$$
\begin{aligned}
\text { Total \# FLOPS } & =\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)) \\
& =2 m n^{2}-\frac{2 n^{3}}{3}+O\left(m^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

Total \# FLOPS $=\frac{4 n^{3}}{3}+O\left(n^{2}\right)$
(Gram-Schmidt would require $2 n^{3}+O\left(n^{2}\right)$ flops.)

$$
\begin{aligned}
\text { Total \# FLOPS } & =\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)) \\
& =2 m n^{2}-\frac{2 n^{3}}{3}+O\left(m^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

$$
\text { Total } \# \text { FLOPS }=\frac{4 n^{3}}{3}+O\left(n^{2}\right)
$$

(Gram-Schmidt would require $2 n^{3}+O\left(n^{2}\right)$ flops.)

$$
\begin{aligned}
\text { Total \# FLOPS } & =\sum_{k=1}^{n}(4(m-k+1)(n-k+1)+O(m)) \\
& =2 m n^{2}-\frac{2 n^{3}}{3}+O\left(m^{2}\right)
\end{aligned}
$$

(Recall that Gram-Schmidt requires $2 m n^{2}$ flops.)

- If A is square $(m=n)$

$$
\text { Total \# FLOPS }=\frac{4 n^{3}}{3}+O\left(n^{2}\right)
$$

(Gram-Schmidt would require $2 n^{3}+O\left(n^{2}\right)$ flops.)

Outline

(1) QR Factorization by Householder Reflectors
 - Algorithm
 - Operation Count

2 Least Squares Problem

- Problem Definition

Let $p_{1}=\left(t_{1}, y_{1}\right)=(-2,-1), p_{2}=\left(t_{2}, y_{2}\right)=(3,1), p_{3}=\left(t_{3}, y_{3}\right)=(4,3)$.

Let $p_{1}=\left(t_{1}, y_{1}\right)=(-2,-1), p_{2}=\left(t_{2}, y_{2}\right)=(3,1), p_{3}=\left(t_{3}, y_{3}\right)=(4,3)$.

Let $p_{1}=\left(t_{1}, y_{1}\right)=(-2,-1), p_{2}=\left(t_{2}, y_{2}\right)=(3,1), p_{3}=\left(t_{3}, y_{3}\right)=(4,3)$.

- Find the line $\ell(t)=x_{1} t+x_{0}$ that best fits the points p_{1}, p_{2}, p_{3}. (The unknowns are x_{0}, x_{1}.)
- Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

- Define

- The problem can be posed as

- Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

- Define

$$
r=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
\ell\left(t_{1}\right)-y_{1} \\
\ell\left(t_{2}\right)-y_{2} \\
\ell\left(t_{3}\right)-y_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
1 & -2 \\
1 & 3 \\
1 & 4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{r}
-1 \\
1 \\
3
\end{array}\right]}_{b}
$$

- The problem can be posed as

find $x=\left[\begin{array}{c}x_{0} \\ x_{1}\end{array}\right]$ such that $\|r\|_{2}=\|\Delta x-b\|_{2}$ is as small as possible.

- Find the line $\ell(t)=x_{1} t+x_{0}$ so that

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(t_{i}\right)-y_{i}\right)^{2}}=\sqrt{\left(-2 x_{1}+x_{0}-(-1)\right)^{2}+\left(3 x_{1}+x_{0}-1\right)^{2}+\left(4 x_{1}+x_{0}-3\right)^{2}}
$$

is small as possible.

- Define

$$
r=\left[\begin{array}{l}
r_{1} \\
r_{2} \\
r_{3}
\end{array}\right]=\left[\begin{array}{l}
\ell\left(t_{1}\right)-y_{1} \\
\ell\left(t_{2}\right)-y_{2} \\
\ell\left(t_{3}\right)-y_{3}
\end{array}\right]=\underbrace{\left[\begin{array}{rr}
1 & -2 \\
1 & 3 \\
1 & 4
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
x_{0} \\
x_{1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{r}
-1 \\
1 \\
3
\end{array}\right]}_{b}
$$

- The problem can be posed as
find $x=\left[\begin{array}{l}x_{0} \\ x_{1}\end{array}\right]$ such that $\|r\|_{2}=\|A x-b\|_{2}$ is as small as possible.
- More generally given m points in \mathbb{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

- Suppose you want to find the polynomial of degree $n-1(n<m)$ in the form

minimizing

- More generally given m points in \mathbb{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

- Suppose you want to find the polynomial of degree $n-1(n<m)$ in the form

$$
P(t)=x_{n-1} t^{n-1}+x_{n-2} t^{n-2}+\cdots+x_{1} t+x_{0}
$$

minimizing

- More generally given m points in \mathbb{R}^{2}

$$
p_{i}=\left(t_{i}, y_{i}\right), \quad i=1, \ldots, m
$$

- Suppose you want to find the polynomial of degree $n-1(n<m)$ in the form

$$
P(t)=x_{n-1} t^{n-1}+x_{n-2} t^{n-2}+\cdots+x_{1} t+x_{0}
$$

minimizing

$$
\sqrt{\sum_{i=1}^{m}\left(P\left(t_{i}\right)-y_{i}\right)^{2}}
$$

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Remark: The matrix A is called the Vandermonde matrix.

- We want to find $x=\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{n-1}\end{array}\right]^{T}$ minimizing

$$
\|r\|_{2}=\|A x-b\|_{2} .
$$

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Remark: The matrix A is called the Vandermonde matrix.

- Define

$$
\underbrace{\left[\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{m}
\end{array}\right]}_{r}=\left[\begin{array}{c}
P\left(t_{1}\right)-y_{1} \\
P\left(t_{2}\right)-y_{2} \\
\vdots \\
P\left(t_{m}\right)-y_{m}
\end{array}\right]=\underbrace{\left[\begin{array}{cccc}
1 & \cdots & t_{1}^{n-2} & t_{1}^{n-1} \\
1 & \cdots & t_{2}^{n-2} & t_{2}^{n-1} \\
& & \vdots & \vdots \\
1 & \cdots & t_{m}^{n-2} & t_{m}^{n-1}
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
x_{0} \\
x_{1} \\
\vdots \\
x_{n-1}
\end{array}\right]}_{x}-\underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right]}_{b}
$$

Remark: The matrix A is called the Vandermonde matrix.

- We want to find $x=\left[\begin{array}{llll}x_{0} & x_{1} & \cdots & x_{n-1}\end{array}\right]^{T}$ minimizing

$$
\|r\|_{2}=\|A x-b\|_{2}
$$

Definition

An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

- Overdetermined systems are usually inconsistent. (e.g. It is unlikely that three lines in \mathbf{R}^{2} intersect each other at a common point.)

Example:

Definition

An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

- Overdetermined systems are usually inconsistent. (e.g. It is unlikely that three lines in \mathbf{R}^{2} intersect each other at a common point.)

Example:

inconsistent

Definition

An $m \times n$ system $A x=b$ is called overdetermined if $m>n$.

- Overdetermined systems are usually inconsistent. (e.g. It is unlikely that three lines in \mathbf{R}^{2} intersect each other at a common point.)

Example:

$$
[A \mid b]=\left[\begin{array}{rrr}
1 & -2 & -1 \\
1 & 3 & 1 \\
1 & 4 & 2
\end{array}\right] \rightsquigarrow \underbrace{\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 5 & 2 \\
0 & 0 & 3 / 5
\end{array}\right]}_{\text {inconsistent }}
$$

Justification:

range $(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}
Most $b \in \mathbb{C}^{m}$ are not in range (A)
$A x=b$ is inconsistent for most $b \in \mathbb{C}^{m}$

e.g. $m=3, n=2$

$$
A=\left[\begin{array}{ll}
x & x \\
x & x \\
x & x
\end{array}\right]
$$

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}
Most $b \in \mathbb{C}^{m}$ are not in range (A) $A x=b$ is inconsistent for most $b \in \mathbb{C}^{m}$

$$
\text { e.g. } m=3, n=2
$$

$$
A=\left[\begin{array}{ll}
x & x \\
x & x \\
x & x
\end{array}\right]
$$

Justification:

$\operatorname{range}(A)=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is at most an n-dimen subspace in \mathbb{C}^{m}
Most $b \in \mathbb{C}^{m}$ are not in range (A)
$A x=b$ is inconsistent for most $b \in \mathbb{C}^{m}$

$$
\text { e.g. } m=3, n=2
$$

$$
A=\left[\begin{array}{ll}
x & x \\
x & x \\
x & x
\end{array}\right]
$$

Least Squares Problem

Given an overdetermined system $A x=b$.
Find $x \in \mathbb{C}^{n}$ such that $\|A x-b\|_{2}$ is as small as possible.

- Geometric interpretation: Find the point on the hyperplane range (A) that is closest to b.

- US population as a function of time
t y (population)
$1900 \quad 75.995$
$1910 \quad 91.972$
$1920 \quad 105.711$
$1930 \quad 123.203$
$1940 \quad 131.669$
$1950 \quad 150.697$
$1960 \quad 179.323$
$1970 \quad 203.212$
1980226.505
1990249.633
$2000 \quad 281.422$
- Fit a cubic model $y \approx p(t)=x_{3} t^{3}+x_{2} t^{2}+x_{1} t+x_{0}$
approximating the US population by solving the least
squares problem. Use it to estimate population in 2020.
- US population as a function of time t y (population)
190075.995
$1910 \quad 91.972$
$1920 \quad 105.711$
$1930 \quad 123.203$
$1940 \quad 131.669$
$1950 \quad 150.697$
$1960 \quad 179.323$
$1970 \quad 203.212$
$1980 \quad 226.505$
$1990 \quad 249.633$
2000281.422
- Fit a cubic model $y \approx p(t)=x_{3} t^{3}+x_{2} t^{2}+x_{1} t+x_{0}$ approximating the US population by solving the least squares problem. Use it to estimate population in 2020.

Need to find $x=\left[\begin{array}{llll}x_{0} & x_{1} & x_{2} & x_{3}\end{array}\right]^{T} \in \mathbb{C}^{4}$ minimizing

The optimal cubic polynomial solving the least squares problem

$$
p(t)=56.0821\left(\frac{t-1950}{50}\right)^{3}+127.3056\left(\frac{t-1950}{50}\right)^{2}-80.6311\left(\frac{t-1950}{50}\right)+165.3947
$$

Black squares - given pairs of (year,population) data; Blue curve - optimal cubic polynomial

