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@ Input: Ac C"™"withm > n
@ Output: Upper triangular R € C™*™ and the HH vectors

ui,...,Up_y € C™ The unitary factor Q € C™*™ can be
formed from the HH vectors so that A = QR is a full QR
factorization.

fork=1,ndo
V < Ak:mk

Uk < v — ||v]|e

Uk < Uk/| k||

Ak:m.k:n < Ak:mk:n — 2Uk(UgAk:m.k:n)
end for
R+ A
Return R
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The unitary factor Q such that A = QR can be recovered from
the HH vectors wu.

Ik—1 0

Qn--- Q1A= Rwhere Q = 0 lpsi1 — 2Ukl:
- k

equivalently

A=Q:Q%---Q:R= Q1@ Qu R.
Q
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@ A very common use of the QR factorization is the
numerical solution of the least squares problem.

@ For the least squares problem Q does not need to be
formed explicitly.

@ Let b e C™. We will need the product Q*b, which can be
computed by means of the vectors uy, since

arb— | 0 be ck! [ b
k2= 0 /m—k+1 — 2UkU; b e (Cm_k'H o b — 2Uk(U;b) ’

Q: =Q b




QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.




QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.

Pay attention to the order of operation to perform 2uy u; Ax.m k:n-



QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.

Pay attention to the order of operation to perform 2uy u; Ax.m k:n-

@ Inefficient way: 2(uxuy)Ax:m.k:n



QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.

Pay attention to the order of operation to perform 2uy u; Ax.m k:n-

@ Inefficient way: 2(uxuy)Ax:m.k:n
#FLOPS =2(m — k +1)?> x (n—k + 1) + O(mn) + O(n?)



QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.

Pay attention to the order of operation to perform 2uy u; Ax.m k:n-

@ Inefficient way: 2(uxuy)Ax:m.k:n
#FLOPS =2(m — k +1)?> x (n—k + 1) + O(mn) + O(n?)

o Efficient way: 2uy (Ui Ak.m.k:n)



QR Factorization by Householder Reflectors Algorithm
Operation Count

Remarks
The algorithm based on HH reflectors shows the existence of a
QR factorization.

Every matrix A € C™*" with m > n has a QR factorization.

Pay attention to the order of operation to perform 2uy u; Ax.m k:n-

@ Inefficient way: 2(uxuy)Ax:m.k:n
#FLOPS =2(m — k +1)?> x (n—k + 1) + O(mn) + O(n?)

o Efficient way: 2uy (Ui Ak.m.k:n)
#FLOPS =3(m—k+1) x (n— k+1) + O(n)



QR Factorization by Householder Reflectors Algorithm
Operation Count

Outline

@ QR Factorization by Householder Reflectors

@ Operation Count



QR Factorization by Householder Reflectors Algorithm
Operation Count

fork=1,ndo
V < Ak:mk

end for



QR Factorization by Householder Reflectors Algorithm
Operation Count

fork=1,ndo
V < Ak:mk
Uk < v — ||lv] e

O(m) flops

end for



QR Factorization by Householder Reflectors Algorithm
Operation Count

fork=1,ndo
V < Ak:mk
Uk < v — ||lv] e

O(m) flops
Uk < U /|| k|
~—————

O(m) flops

end for



QR Factorization by Householder Reflectors Algorithm
Operation Count

fork=1,ndo
V< Akmk
Uk < v — ||lv] e

O(m) flops
Uk < Uk /Ul
o wops
Ak:mk:n < Ak:mk:n — 2Uk(UgAk:m k:n)

4(m—k+1)x(n—k+1)4+0(n) flops
end for




QR Factorization by Householder Reflectors Algorithm
Operation Count

fork=1,ndo
V < Ak:mk
Uk < v — ||lv] e

O(m) flops
Uk < Uk /Ul
o wops
Ak:mk:n < Ak:mk:n — 2Uk(UgAk:m k:n)

4(m—k+1)x(n—k+1)+0(n) flops
end for
R+ A
Return R
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Total # FLOPS = Y /_,(4(m—k+1)(n—k+1)+ O(m))

=  2mn? - % + O(mP)

(Recall that Gram-Schmidt requires 2mn? flops.)

@ If Ais square (m = n)

4n3 5
Total # FLOPS = —— + O(?)

(Gram-Schmidt would require 2n® 4 O(n?) flops.)
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Let p1 = (t17y1) = (72771)’ P2 = (t27y2) = (37 1)1 P3 = (t37y3) = (453)

Y
LN
(t3,y3)

°
(t2,10)

(ti,y1)
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Let p1 = (t17y1) = (72771)’ P2 = (t27y2) = (37 1)1 P3 = (t37y3) = (453)
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(t3, ((t3))
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Let pi = (t, y1) = (=2, —1), p2 = (2, y2) = (3,1), ps = (s, y3) = (4, 3).

Y

(ts, €(t3)

@ Find the line £(t) = x1t 4+ Xo that best fits the points p1, p2, ps. (The

unknowns are Xo, Xi.)
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@ Find the line £(t) = x4t + Xp so that
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is small as possible.
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@ Find the line £(t) = x4t + Xp so that
\/2,3:1(5(&) -¥i)? = \/(*2X1 +x0 — (=1)2 + (3% + X9 — 1)2 + (4x1 + X9 — 3)2

is small as possible.

Uk) —y 1 -2 —1
L EINt R
E(f3)—y3 1 4 N 3

@ Define

n
r = I
r
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@ Find the line £(t) = x4t + Xp so that
VEL L (Et) = yi2 = \J(=2x +x0 — (=1)2 + @K +x0 — 12 + (41 + %0 — 3)2

is small as possible.

@ Define
r Uk) —y 1 -2 -1
RHRES RGN
r3 E(f3)—y3 1 4 N 3
— Ty

@ The problem can be posed as

find x = { §° } such that ||r||2 = ||Ax — b||2 is as small as possible.
1
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@ More generally given m points in R?

pi=(ty), i=1,....m

@ Suppose you want to find the polynomial of degree
n—1(n < m)inthe form

P(t) = Xp1t" " + Xp_ot" 2+ + xet+ X

minimizing

> (P(t) - yi)?.

i=1
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@ Define

r2

P(ty) = »1
P(t2) — y2
P(tm) — Ym

=2 1
[ 2 n

t [ X Y2
tn—2 tn—1 Xn—1 Ym

m m

A x b
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@ Define s s
n— n—
n P(ty) =y 1 P X 2
r2 P(t) — vz L . A X1 2
m P(tm) — ¥m 1 .. t[’;;z [,’7’7;1 Xn—1 Ym
N———r N————— N——
r " X b

Remark: The matrix A is called the Vandermonde matrix.
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@ Define s s
n— n—
n P(ty) =y 1 P X 2
r2 P(t) — vz L . A X1 2
m P(tm) — ¥m 1 .. t[’;;z [,’7’7;1 Xn—1 Ym
N———r N————— N——
r " X b

Remark: The matrix A is called the Vandermonde matrix.

© Wewanttofindx=|xo X1 -+ Xn1 ]T minimizing

Irll2 = [|Ax — b2
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Problem Definition

Least Squares Problem

Definition
An m x n system Ax = b is called overdetermined if m > n.

@ Overdetermined systems are usually inconsistent. (e.g. It
is unlikely that three lines in R? intersect each other at a
common point.)

Example:

1 -2 —1 1 -2 —1
[Alb]=|1 3 1|~|0 5 2
1 4 2 0 0 3/5

inconsistent
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Justification:
range(A) = span{ay, az, . .

., an} is at most an n-dimen subspace in C™
—
Most b € C™ are not in range(A)
—
Ax = bis inconsistent for most b € C™

R} eg. m=3,n=2

A=

X X X
x X X

/ Col(A)

(2-dimensional)
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Least Squares Problem

Given an overdetermined system Ax = b.

Find x € C" such that | Ax — b||2 is as small as possible.

@ Geometric interpretation: Find the point on the hyperplane
range(A) that is closest to b.

b R3

' Col(A)

(2-dimensional)
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@ US population as a function of time
t y (population)
1900 75.995
1910 91.972
1920 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422
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@ US population as a function of time
t y (population)
1900 75.995
1910 91.972
1920 105.711
1930 123.203
1940 131.669
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633
2000 281.422

@ Fit a cubic model y ~ p(t) = x3t® + X2t + X1t + Xg
approximating the US population by solving the least
squares problem. Use it to estimate population in 2020.
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Needtofindx=[ o xi X x | €C*minimizing

[1 1900 19002 1900° r 75.995 T
1 1910 1910% 1910° 91.972
1 1920 19202 1920° 105.711
1 1930 19302 1930° N 123.203
1 1940 1940% 1940° X° 131.669
1 1950 1950° 1950° X1 — | 150.697

1 1960 19602 1960° X2 179.323

11970 1970 1970° | L0 2 | 203.212

1 1980 1980%> 1980° X 226.505

1 1990 19902 1990° 249.633

1 2000 20002 2000° | 281.422 |

L i

A b
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The optimal cubic polynomial solving the least squares problem

3 2
p(t) = 56.0821 (1=4950)" + 127.3056 (1=030 )" — 80.6311 (=130 ) + 165.3047

400 T T T T T T T

300

100+

-100

-200

-300

—-400

_500 L L L L L L L
1860 1880 1900 1920 1940 1960 1980 2000 2020

Black squares - given pairs of (year,population) data; Blue curve - optimal cubic polynomial
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