Math 504 (Fall 2010) - Lecture 21

Eigenvalues, Basics

Emre Mengi
Department of Mathematics
Koç University
emengi@ku.edu.tr

Outline

- Eigenvalues, basic definitions and facts (Trefethen\&Bau, Lecture 24)
- Eigenvalues, motivation

Eigenvalues, basic definitions and facts

Definition (Eigenvalues and Eigenvectors):
Let $A \in \mathbb{C}^{n \times n}$. Suppose that

$$
A x=\lambda x
$$

for some scalar $\lambda \in \mathbb{C}$ and nonzero vector $x \in \mathbb{C}^{n}$. Then
(i) λ is called an eigenvalue of A, and
(ii) x is called an eigenvector of A associated with λ.

Eigenvalues, basic definitions and facts

Example:

$$
\underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
1 \\
0
\end{array}\right]}_{x_{1}}=\underbrace{1}_{\lambda_{1}} \underbrace{\left[\begin{array}{c}
1 \\
0
\end{array}\right]}_{x_{1}} \text { and } \underbrace{\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
0 \\
1
\end{array}\right]}_{x_{2}}=\underbrace{3}_{\lambda_{2}} \underbrace{\left[\begin{array}{c}
0 \\
1
\end{array}\right]}_{x_{2}}
$$

Eigenvalues, basic definitions and facts

Example:

$\lambda_{1}=1$ and $\lambda_{2}=3$ are eigenvalues of A.

Eigenvalues, basic definitions and facts

Example:

$\lambda_{1}=1$ and $\lambda_{2}=3$ are eigenvalues of A.
$x_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are eigenvectors associated with λ_{1} and λ_{2}.

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

```
Theorem (Eigenvalues and Characteristic Polynomial)
\lambda \mp@code { i s ~ a n ~ e i g e n v a l u e ~ o f ~ } A \Longleftrightarrow \operatorname { d e t } ( A - \lambda I ) = 0
```


Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
Proof:

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x$ for $x \neq 0$

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x$ for $x \neq 0$

$$
\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0 \text { for } x \neq 0
$$

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$
Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x$ for $x \neq 0$
$\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0$ for $x \neq 0$
$\Longleftrightarrow \quad A-\lambda I$ is singular

Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Proof:

λ is an eigenvalue of $A \quad \Longleftrightarrow A x=\lambda x$ for $x \neq 0$
$\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0$ for $x \neq 0$
$\Longleftrightarrow A-\lambda I$ is singular
$\Longleftrightarrow \quad \operatorname{det}(A-\lambda I)=0$

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{cc}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right)
\end{aligned}
$$

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
$$

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
$$

Eigenvalues of A

$$
\overline{\operatorname{det}(A-\lambda I)=\lambda^{2}}+2 \lambda-3=(\lambda+3)(\lambda-1),
$$

Eigenvalues, basic definitions and facts

Example: Consider $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
$$

Eigenvalues of A
$\overline{\operatorname{det}(A-\lambda I)=\lambda^{2}}+2 \lambda-3=(\lambda+3)(\lambda-1)$,
so the eigenvalues (the roots of $\operatorname{det}(A-\lambda I)$) are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues, basic definitions and facts

Characteristic Polynomial
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.

Eigenvalues, basic definitions and facts

Characteristic Polynomial
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.
e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ the characteristic polynomial is given by

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3
$$

Eigenvalues, basic definitions and facts

Characteristic Polynomial
$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.
e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ the characteristic polynomial is given by

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3
$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

$$
\tilde{p}(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}
$$

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

$$
\begin{aligned}
\tilde{p}(z) & =z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}} \\
& =z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0}
\end{aligned}
$$

Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

$$
\begin{array}{r}
\tilde{p}(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}} \\
=\quad z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0} \\
p(z)=0 \Longleftrightarrow \tilde{p}(z)=0
\end{array}
$$

Eigenvalues, basic definitions and facts

Theorem 2:

λ is a root of $\tilde{p}(z)=z^{n}+b_{n-1} z^{n-1}+b_{n-2} z^{n-2}+\cdots+b_{1} z+b_{0}$
λ is an eigenvalue of the $n \times n$ companion matrix

$$
\mathcal{C}=\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]
$$

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.
Conversely if $\mathcal{C} v=\lambda v$ for some $v \neq 0$. Then $v_{k+1}=\lambda v_{k}$ for $k=1, \ldots, n-1$ and

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.
Conversely if $\mathcal{C} v=\lambda v$ for some $v \neq 0$. Then $v_{k+1}=\lambda v_{k}$ for $k=1, \ldots, n-1$ and

$$
-b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n}
$$

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.
Conversely if $\mathcal{C} v=\lambda v$ for some $v \neq 0$. Then $v_{k+1}=\lambda v_{k}$ for $k=1, \ldots, n-1$ and

$$
\begin{array}{ll}
& -b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n} \\
\Longrightarrow \quad & -\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1}
\end{array}
$$

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.
Conversely if $\mathcal{C} v=\lambda v$ for some $v \neq 0$. Then $v_{k+1}=\lambda v_{k}$ for $k=1, \ldots, n-1$ and

$$
-b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n}
$$

$\Longrightarrow \quad-\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1}$
$\Longrightarrow \quad \tilde{p}(\lambda) v_{1}=0$

Eigenvalues, basic definitions and facts

Proof: Suppose $\tilde{p}(\lambda)=0$. Then

$$
\mathcal{C}\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]
$$

Therefore λ is an eigenvalue of \mathcal{C}.
Conversely if $\mathcal{C} v=\lambda v$ for some $v \neq 0$. Then $v_{k+1}=\lambda v_{k}$ for $k=1, \ldots, n-1$ and

$$
-b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n}
$$

$$
\Longrightarrow \quad-\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1}
$$

$$
\Longrightarrow \quad \tilde{p}(\lambda) v_{1}=0
$$

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues, basic definitions and facts

Example: Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues, basic definitions and facts

Example: Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

Eigenvalues, basic definitions and facts

Example: Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

$$
\operatorname{det}(\mathcal{C}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 3 \\
1 & -\lambda
\end{array}\right)
$$

Eigenvalues, basic definitions and facts

Example: Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

$$
\operatorname{det}(\mathcal{C}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 3 \\
1 & -\lambda
\end{array}\right)=(-2-\lambda)(-\lambda)-3
$$

Eigenvalues, basic definitions and facts

Example: Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

$$
\operatorname{det}(\mathcal{C}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 3 \\
1 & -\lambda
\end{array}\right)=(-2-\lambda)(-\lambda)-3=\lambda^{2}+2 \lambda-3
$$

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Eigenvalues, basic definitions and facts

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation
- Only in the limit as the number of iterations go to ∞ the estimates approach eigenvalues.

Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)

Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)

- Since $p(\lambda)$ is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)

- Since $p(\lambda)$ is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)
Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as a root of $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the algebraic multiplicity of λ.

Eigenvalues, basic definitions and facts

Theorem (Calculation of Eigenvectors)
Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Then v is an eigenvector associated with $\lambda \Longleftrightarrow(A-\lambda I) v=0$ and $v \neq 0$.

Eigenvalues, basic definitions and facts

Theorem (Calculation of Eigenvectors)
Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Then v is an eigenvector associated with $\lambda \Longleftrightarrow(A-\lambda I) v=0$ and $v \neq 0$.

Example:

The matrix $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ has eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=0
$$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0
$$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $\left.c \neq 0\right)$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
2 & -1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{2}=0
$$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{2}=\left[\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right] v_{2}=0
$$

Eigenvalues, basic definitions and facts

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $\left.c \neq 0\right)$

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{2}=\left[\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right] v_{2}=0 \\
\Longrightarrow v_{2}=c\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{gathered}
$$

Eigenvalues, basic definitions and facts

Definition (Eigenspace):
Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

Eigenvalues, basic definitions and facts

Definition (Eigenspace):
Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=$ (the set of eigenvectors of A assoc. with an eigenvalue $\left.\lambda\right) \cup\{0\}$

Eigenvalues, basic definitions and facts

Definition (Eigenspace):
Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ the set of eigenvectors of A assoc. with an eigenvalue $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

Eigenvalues, basic definitions and facts

Definition (Eigenspace):
Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ the set of eigenvectors of A assoc. with an eigenvalue $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

$$
x \in E_{\lambda} \Longrightarrow A x=\lambda x \in E_{\lambda}
$$

Eigenvalues, basic definitions and facts

Definition (Eigenspace):
Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ the set of eigenvectors of A assoc. with an eigenvalue $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

$$
x \in E_{\lambda} \Longrightarrow A x=\lambda x \in E_{\lambda}
$$

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$.

Eigenvalues, basic definitions and facts

e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ with the eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$

Eigenvalues, basic definitions and facts

> e.g.

$$
\text { For } \begin{aligned}
A= & {\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \text { with the eigenvalues } \lambda_{1}=-3, \lambda_{2}=1 } \\
& E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} \text { and } E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{c}
2 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Eigenvalues, basic definitions and facts

e.g.

$$
\text { For } \begin{aligned}
A= & {\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \text { with the eigenvalues } \lambda_{1}=-3, \lambda_{2}=1 } \\
& E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} \text { and } E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} .
\end{aligned}
$$

Definition (Geometric Multiplicity)
Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ associated with λ is called the geometric multiplicity of λ.

Eigenvalues, motivation

The motion of vibrating structures is governed by eigenvalues.
$c=3 N . s e c / m$
Friction constant
Friction constant

Eigenvalues, motivation

The motion of vibrating structures is governed by eigenvalues.

- By Newton's law of motion

$$
\text { Net Force }=m a(t)
$$

Eigenvalues, motivation

The motion of vibrating structures is governed by eigenvalues.

- By Newton's law of motion

$$
\text { Net Force }=m a(t)
$$

- The friction and springs apply forces against displacement

$$
\text { Net Force }=-c v(t)-k x(t)
$$

Eigenvalues, motivation

$$
x(t) \text { : displacement }, \quad v(t)=x^{\prime}(t) \text { : velocity, } \quad a(t)=x^{\prime \prime}(t): \text { acceleration }
$$

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

Combining the equations for the net force yields

$$
m a(t)=-c v(t)-k x(t)
$$

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

Combining the equations for the net force yields

$$
\begin{gathered}
m a(t)=-c v(t)-k x(t) \\
\Longrightarrow \\
m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t)
\end{gathered}
$$

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

Combining the equations for the net force yields

$$
\begin{gathered}
m a(t)=-c v(t)-k x(t) \\
\Longrightarrow \\
m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t) \\
\Longrightarrow \\
x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t)
\end{gathered}
$$

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

Combining the equations for the net force yields

$$
\begin{gathered}
m a(t)=-c v(t)-k x(t) \\
\Longrightarrow \\
m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t) \\
\Longrightarrow \\
x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t) \\
\Longrightarrow \\
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
\end{gathered}
$$

Eigenvalues, motivation

$$
x(t) \text { : displacement }, \quad v(t)=x^{\prime}(t) \text { : velocity, } \quad a(t)=x^{\prime \prime}(t): \text { acceleration }
$$

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

The equation of motion

$$
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
$$

can be expressed in terms of $v(t)$ and $x(t)$.

Eigenvalues, motivation

$x(t)$: displacement, $\quad v(t)=x^{\prime}(t)$: velocity, $\quad a(t)=x^{\prime \prime}(t)$: acceleration

The equation of motion

$$
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
$$

can be expressed in terms of $v(t)$ and $x(t)$.

$$
\begin{aligned}
v^{\prime}(t)+3 v(t)+2 x(t) & =0 \\
-v(t)+x^{\prime}(t) & =0
\end{aligned}
$$

Eigenvalues, motivation

$$
\underbrace{\left[\begin{array}{c}
v^{\prime}(t) \\
x^{\prime}(t)
\end{array}\right]}_{y^{\prime}(t)}=\underbrace{\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}
v(t) \\
x(t)
\end{array}\right]}_{y(t)}
$$

Eigenvalues, motivation

$$
\begin{aligned}
{\left[\begin{array}{c}
v^{\prime}(t) \\
x^{\prime}(t)
\end{array}\right] } & =\underbrace{\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]}_{y^{\prime}(t)} \underbrace{\left[\begin{array}{l}
v(t) \\
x(t)
\end{array}\right]}_{y(t)} \\
A & =\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

has the eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=-1$
with the associated eigenvectors $v_{1}=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
y^{\prime}(t)=\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t}
$$

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right)
\end{aligned}
$$

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right) \\
& =A\left(c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}\right)
\end{aligned}
$$

Eigenvalues, motivation

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right) \\
& =A\left(c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}\right) \\
& =A y(t)
\end{aligned}
$$

Eigenvalues, motivation

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t) .
$$

Eigenvalues, motivation

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t) .
$$

- Assume that A has n distinct eigenvalues.
- Denote the eigenvalues with $\lambda_{1}, \ldots, \lambda_{n}$, and
- the associated eigenvectors with v_{1}, \ldots, v_{n}.

Eigenvalues, motivation

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t) .
$$

- Assume that A has n distinct eigenvalues.
- Denote the eigenvalues with $\lambda_{1}, \ldots, \lambda_{n}$, and
- the associated eigenvectors with v_{1}, \ldots, v_{n}.
- The solution $y(t): \mathbb{R} \rightarrow \mathbb{C}^{n}$ is of the form

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Eigenvalues, motivation

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Eigenvalues, motivation

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude frequency }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)} v_{k}
$$

Eigenvalues, motivation

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude frequency }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)} v_{k}
$$

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.

Eigenvalues, motivation

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)}_{\text {frequency }} v_{k}
$$

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.
- The frequency of the vibrations depend on

$$
e^{i t \Im \lambda_{k}}=\cos \left(t \Im \lambda_{k}\right)+i \sin \left(t \Im \lambda_{k}\right)
$$

therefore the imaginary part of λ_{k}.

Eigenvalues, motivation

Stability

Eigenvalues, motivation

Stability

- The system $y^{\prime}(t)=A y(t)$ is called asymptotically stable if for all initial conditions $y(0) \in \mathbb{R}^{n}$

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

Eigenvalues, motivation

Stability

- The system $y^{\prime}(t)=A y(t)$ is called asymptotically stable if for all initial conditions $y(0) \in \mathbb{R}^{n}$

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

- Asymptotic stability is equivalent to

$$
e^{t \Re \lambda_{k}} \rightarrow 0 \text { as } t \rightarrow \infty \quad \Longleftrightarrow \quad \Re \lambda_{k}<0
$$

for each $k=1, \ldots, n$

Eigenvalues, motivation

The system $y^{\prime}(t)=A y(t)$ is asymptotically stable

All of the eigenvalues of A have negative real parts

Eigenvalues, motivation

The system $y^{\prime}(t)=A y(t)$ is asymptotically stable

All of the eigenvalues of A have negative real parts

Example:

The system

$$
y^{\prime}(t)=\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right] y(t)
$$

with eigenvalues $\lambda_{1}=-2, \lambda_{2}=-1$ is asymptotically stable.

Eigenvalues, motivation

Resonance

Eigenvalues, motivation

Resonance

- The eigenvalue with the smallest frequency is of great significance in practical applications.

Eigenvalues, motivation

Resonance

- The eigenvalue with the smallest frequency is of great significance in practical applications.
- The frequency of this eigenvalue is called the natural frequency of the system.

Eigenvalues, motivation

Resonance

- The eigenvalue with the smallest frequency is of great significance in practical applications.
- The frequency of this eigenvalue is called the natural frequency of the system.
- When a periodic external force is applied to the system closely matching the natural frequency of the system, the system can exhibit extreme vibrations (i.e. $\|y(t)\|$ is very large) even at small t.

Eigenvalues, motivation

Resonance

- The eigenvalue with the smallest frequency is of great significance in practical applications.
- The frequency of this eigenvalue is called the natural frequency of the system.
- When a periodic external force is applied to the system closely matching the natural frequency of the system, the system can exhibit extreme vibrations (i.e. $\|y(t)\|$ is very large) even at small t.
- This phenomenon is known as resonance.

