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Koç University

emengi@ku.edu.tr

Lecture 21 – p.1/27



Outline

Eigenvalues, basic definitions and facts
(Trefethen&Bau, Lecture 24)

Eigenvalues, motivation
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Eigenvalues, basic definitions and facts

Definition (Eigenvalues and Eigenvectors):
Let A ∈ C

n×n. Suppose that

Ax = λx

for some scalar λ ∈ C and nonzero vector x ∈ Cn. Then

(i) λ is called an eigenvalue of A, and

(ii) x is called an eigenvector of A associated with λ.

Lecture 21 – p.3/27



Eigenvalues, basic definitions and facts

Example:
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λ1 = 1 and λ2 = 3 are eigenvalues of A.
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Eigenvalues, basic definitions and facts

Example:
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λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =




1

0



 and x2 =




0

1



 are eigenvectors associated with λ1 and λ2.
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof:
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof:

λ is an eigenvalue of A ⇐⇒ Ax = λx for x 6= 0
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof:

λ is an eigenvalue of A ⇐⇒ Ax = λx for x 6= 0

⇐⇒ Ax − λx = (A − λI)x = 0 for x 6= 0
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof:

λ is an eigenvalue of A ⇐⇒ Ax = λx for x 6= 0

⇐⇒ Ax − λx = (A − λI)x = 0 for x 6= 0

⇐⇒ A − λI is singular
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Eigenvalues, basic definitions and facts

Given any eigenvalue problem. There is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

Proof:

λ is an eigenvalue of A ⇐⇒ Ax = λx for x 6= 0

⇐⇒ Ax − λx = (A − λI)x = 0 for x 6= 0

⇐⇒ A − λI is singular

⇐⇒ det(A − λI) = 0
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Eigenvalues, basic definitions and facts

Example: Consider A =




−1 4

1 −1



.
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det(A − λI) = det
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Eigenvalues, basic definitions and facts

Example: Consider A =
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1 −1
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Eigenvalues, basic definitions and facts

Example: Consider A =




−1 4

1 −1



.

det(A − λI)) = det








−1 4

1 −1



 − λ




1 0

0 1









= det








−1 − λ 4

1 −1 − λ









= (−1 − λ)2 − 4 = λ2 + 2λ − 3
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Eigenvalues, basic definitions and facts

Example: Consider A =




−1 4

1 −1



.

det(A − λI)) = det








−1 4

1 −1



 − λ




1 0

0 1









= det








−1 − λ 4

1 −1 − λ









= (−1 − λ)2 − 4 = λ2 + 2λ − 3

Eigenvalues of A

det(A − λI) = λ2 + 2λ − 3 = (λ + 3)(λ − 1),
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Eigenvalues, basic definitions and facts

Example: Consider A =




−1 4

1 −1



.

det(A − λI)) = det








−1 4

1 −1



 − λ




1 0

0 1









= det








−1 − λ 4

1 −1 − λ









= (−1 − λ)2 − 4 = λ2 + 2λ − 3

Eigenvalues of A

det(A − λI) = λ2 + 2λ − 3 = (λ + 3)(λ − 1),

so the eigenvalues (the roots of det(A − λI)) are λ1 = −3, λ2 = 1.
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Eigenvalues, basic definitions and facts

Characteristic Polynomial
p(λ) = det(A − λI) is a monic polynomial of λ of degree n and called the
characteristic polynomial of A.
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Eigenvalues, basic definitions and facts

Characteristic Polynomial
p(λ) = det(A − λI) is a monic polynomial of λ of degree n and called the
characteristic polynomial of A.

e.g.

For A =




−1 4

1 −1



 the characteristic polynomial is given by

p(λ) = det(A − λI) = λ2 + 2λ − 3
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Eigenvalues, basic definitions and facts

Characteristic Polynomial
p(λ) = det(A − λI) is a monic polynomial of λ of degree n and called the
characteristic polynomial of A.

e.g.

For A =




−1 4

1 −1



 the characteristic polynomial is given by

p(λ) = det(A − λI) = λ2 + 2λ − 3

The eigenvalues of A ∈ C
n×n are the roots of its characteristic polynomial.
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 where an 6= 0.
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn + an−1

an

zn−1 + · · · + a1

an

z + a0

an
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.
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Eigenvalues, basic definitions and facts

Conversely given any polynomial. There is an equivalent eigenvalue
problem whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn + an−1

an

zn−1 + · · · + a1

an

z + a0

an

= zn + bn−1z
n−1 + · · · + b1z + b0

p(z) = 0 ⇐⇒ p̃(z) = 0
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Eigenvalues, basic definitions and facts

Theorem 2:

λ is a root of p̃(z) = zn + bn−1z
n−1 + bn−2z

n−2 + · · · + b1z + b0

⇐⇒

λ is an eigenvalue of the n × n companion matrix

C =













−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 0

0 1 0 0
...

. . .
...

0 0 1 0
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Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then

C











λn−1

...

λ

1











= λ











λn−1

...

λ

1











Therefore λ is an eigenvalue of C.
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Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then
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...
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Therefore λ is an eigenvalue of C.

Conversely if Cv = λv for some v 6= 0. Then vk+1 = λvk for
k = 1, . . . , n − 1 and
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Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then

C
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1











= λ











λn−1

...

λ

1











Therefore λ is an eigenvalue of C.

Conversely if Cv = λv for some v 6= 0. Then vk+1 = λvk for
k = 1, . . . , n − 1 and

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn
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Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then

C
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1
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Therefore λ is an eigenvalue of C.

Conversely if Cv = λv for some v 6= 0. Then vk+1 = λvk for
k = 1, . . . , n − 1 and

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn

=⇒ −(λn−1bn−1 + λn−2bn−2 + · · · + λb1 + b0)v1 = λnv1

Lecture 21 – p.10/27



Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then

C











λn−1

...
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1











= λ











λn−1

...

λ

1











Therefore λ is an eigenvalue of C.

Conversely if Cv = λv for some v 6= 0. Then vk+1 = λvk for
k = 1, . . . , n − 1 and

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn

=⇒ −(λn−1bn−1 + λn−2bn−2 + · · · + λb1 + b0)v1 = λnv1

=⇒ p̃(λ)v1 = 0
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Eigenvalues, basic definitions and facts

Proof: Suppose p̃(λ) = 0. Then

C











λn−1

...

λ

1











= λ











λn−1

...

λ

1











Therefore λ is an eigenvalue of C.

Conversely if Cv = λv for some v 6= 0. Then vk+1 = λvk for
k = 1, . . . , n − 1 and

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn

=⇒ −(λn−1bn−1 + λn−2bn−2 + · · · + λb1 + b0)v1 = λnv1

=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).
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Eigenvalues, basic definitions and facts

Example: Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.
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Eigenvalues, basic definitions and facts

Example: Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =




−2 3

1 0
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Eigenvalues, basic definitions and facts

Example: Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =




−2 3

1 0





with the characteristic polynomial

det(C − λI) = det




−2 − λ 3

1 −λ
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Eigenvalues, basic definitions and facts

Example: Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =




−2 3

1 0





with the characteristic polynomial

det(C − λI) = det




−2 − λ 3

1 −λ



 = (−2 − λ)(−λ) − 3
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Eigenvalues, basic definitions and facts

Example: Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =




−2 3

1 0





with the characteristic polynomial

det(C − λI) = det




−2 − λ 3

1 −λ



 = (−2 − λ)(−λ) − 3 = λ2 + 2λ − 3
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Eigenvalues, basic definitions and facts

It was shown by N.H. Abel (in the 19th century) that there is no
algebraic formula for the roots of a polynomial of degree > 4.
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Eigenvalues, basic definitions and facts

It was shown by N.H. Abel (in the 19th century) that there is no
algebraic formula for the roots of a polynomial of degree > 4.

Consequently there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.
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algebraic formula for the roots of a polynomial of degree > 4.

Consequently there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.
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Eigenvalues, basic definitions and facts

It was shown by N.H. Abel (in the 19th century) that there is no
algebraic formula for the roots of a polynomial of degree > 4.

Consequently there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.

This would imply the existence of an algebraic formula for the roots of a
polynomial (Contradicts with N. H. Abel’s result).
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Eigenvalues, basic definitions and facts

It was shown by N.H. Abel (in the 19th century) that there is no
algebraic formula for the roots of a polynomial of degree > 4.

Consequently there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.

This would imply the existence of an algebraic formula for the roots of a
polynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation
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Eigenvalues, basic definitions and facts

It was shown by N.H. Abel (in the 19th century) that there is no
algebraic formula for the roots of a polynomial of degree > 4.

Consequently there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.

This would imply the existence of an algebraic formula for the roots of a
polynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation
Only in the limit as the number of iterations go to ∞ the estimates approach
eigenvalues.
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Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

p(λ) = det(A − λI) = anλn + · · · + a1λ + a0
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Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

p(λ) = det(A − λI) = anλn + · · · + a1λ + a0

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)
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Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

p(λ) = det(A − λI) = anλn + · · · + a1λ + a0

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)

Since p(λ) is a polynomial of degree n, A has n (possibly complex)
eigenvalues (counting the multiplicities).
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Eigenvalues, basic definitions and facts

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of A ⇐⇒ det(A − λI) = 0

p(λ) = det(A − λI) = anλn + · · · + a1λ + a0

Corollary of Theorem (Eigenvalues and Characteristic Polynomial)

Since p(λ) is a polynomial of degree n, A has n (possibly complex)
eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)
Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The multiplicity of λ as a
root of p(λ) = det(A − λI) is called the algebraic multiplicity of λ.
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Eigenvalues, basic definitions and facts

Theorem (Calculation of Eigenvectors)
Let λ ∈ C be an eigenvalue of A ∈ C

n×n. Then v is an eigenvector
associated with λ ⇐⇒ (A − λI)v = 0 and v 6= 0.
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Eigenvalues, basic definitions and facts

Theorem (Calculation of Eigenvectors)
Let λ ∈ C be an eigenvalue of A ∈ C

n×n. Then v is an eigenvector
associated with λ ⇐⇒ (A − λI)v = 0 and v 6= 0.

Example:

The matrix A =




−1 4

1 −1



 has eigenvalues λ1 = −3, λ2 = 1.
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 = 0
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0

=⇒ v1 = c




−2

1
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0

=⇒ v1 = c




−2

1





Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0

=⇒ v1 = c




−2

1





Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)







−1 4

2 −1



 − 1




1 0

0 1







 v2 = 0
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0

=⇒ v1 = c




−2

1





Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)







−1 4

1 −1



 − 1




1 0

0 1







 v2 =




−2 4

1 −2



 v2 = 0
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Eigenvalues, basic definitions and facts

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)







−1 4

1 −1



 − (−3)




1 0

0 1







 v1 =




2 4

1 2



 v1 = 0

=⇒ v1 = c




−2

1





Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)







−1 4

1 −1



 − 1




1 0

0 1







 v2 =




−2 4

1 −2



 v2 = 0

=⇒ v2 = c




2

1
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Eigenvalues, basic definitions and facts

Definition (Eigenspace):

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A − λI) is
called the eigenspace of A associated with λ.
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Eigenvalues, basic definitions and facts

Definition (Eigenspace):

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A − λI) is
called the eigenspace of A associated with λ.

Eλ = (the set of eigenvectors of A assoc. with an eigenvalue λ)∪{0}
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Eigenvalues, basic definitions and facts

Definition (Eigenspace):

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A − λI) is
called the eigenspace of A associated with λ.

Eλ = (the set of eigenvectors of A assoc. with an eigenvalue λ)∪{0}

Eλ is also called an invariant subspace of A, since
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Eigenvalues, basic definitions and facts

Definition (Eigenspace):

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A − λI) is
called the eigenspace of A associated with λ.

Eλ = (the set of eigenvectors of A assoc. with an eigenvalue λ)∪{0}

Eλ is also called an invariant subspace of A, since

x ∈ Eλ =⇒ Ax = λx ∈ Eλ

Lecture 21 – p.16/27



Eigenvalues, basic definitions and facts

Definition (Eigenspace):

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A − λI) is
called the eigenspace of A associated with λ.

Eλ = (the set of eigenvectors of A assoc. with an eigenvalue λ)∪{0}

Eλ is also called an invariant subspace of A, since

x ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.
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Eigenvalues, basic definitions and facts

e.g.

For A =




−1 4

1 −1



 with the eigenvalues λ1 = −3, λ2 = 1
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Eigenvalues, basic definitions and facts

e.g.

For A =




−1 4

1 −1



 with the eigenvalues λ1 = −3, λ2 = 1

Eλ1
= span










−2

1










and Eλ2

= span










2

1










.
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e.g.

For A =




−1 4

1 −1



 with the eigenvalues λ1 = −3, λ2 = 1

Eλ1
= span










−2

1










and Eλ2

= span










2

1










.

Definition (Geometric Multiplicity)
Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of the
eigenspace Eλ = Null(A − λI) associated with λ is called the geo-
metric multiplicity of λ.
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Eigenvalues, motivation

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m The motion of vibrating structures is
governed by eigenvalues.
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Eigenvalues, motivation

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m The motion of vibrating structures is
governed by eigenvalues.

By Newton’s law of motion

Net Force = ma(t)

The friction and springs apply forces against displacement

Net Force = −c v(t) − k x(t)
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Eigenvalues, motivation

x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration
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ma(t) = −cv(t) − kx(t)
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x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t) − kx(t)

=⇒

mx′′(t) = −cx′(t) − kx(t)

=⇒

x′′(t) = −3x′(t) − 2x(t)
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Eigenvalues, motivation

x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t) − kx(t)

=⇒

mx′′(t) = −cx′(t) − kx(t)

=⇒

x′′(t) = −3x′(t) − 2x(t)

=⇒

x′′(t) + 3x′(t) + 2x(t) = 0
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Eigenvalues, motivation

x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration
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Eigenvalues, motivation

x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration

The equation of motion

x′′(t) + 3x′(t) + 2x(t) = 0

can be expressed in terms of v(t) and x(t).
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Eigenvalues, motivation

x(t) : displacement , v(t) = x′(t) : velocity, a(t) = x′′(t) : acceleration

The equation of motion

x′′(t) + 3x′(t) + 2x(t) = 0

can be expressed in terms of v(t) and x(t).

v′(t) + 3v(t) + 2x(t) = 0

−v(t) + x′(t) = 0
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Eigenvalues, motivation




v′(t)

x′(t)





︸ ︷︷ ︸

y′(t)

=




−3 −2

1 0





︸ ︷︷ ︸

A




v(t)

x(t)





︸ ︷︷ ︸

y(t)
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Eigenvalues, motivation




v′(t)

x′(t)





︸ ︷︷ ︸

y′(t)

=




−3 −2

1 0





︸ ︷︷ ︸

A




v(t)

x(t)





︸ ︷︷ ︸

y(t)

A =




−3 −2

1 0





has the eigenvalues λ1 = −2 and λ2 = −1

with the associated eigenvectors v1 =




−2

1



 and v2 =




−1

1



.
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Eigenvalues, motivation

The solution for the system y′(t) = Ay(t) is of the form
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Eigenvalues, motivation

The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2.
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Eigenvalues, motivation

The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .
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The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .

Verify that y(t) = c1e
λ1tv1 + c2e

λ2tv2 is a solution
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The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .

Verify that y(t) = c1e
λ1tv1 + c2e

λ2tv2 is a solution

y′(t) = λ1v1c1e
λ1t + λ2v2c2e

λ2t
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The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .

Verify that y(t) = c1e
λ1tv1 + c2e

λ2tv2 is a solution

y′(t) = λ1v1c1e
λ1t + λ2v2c2e

λ2t

= Av1(c1e
λ1t) + Av2(c2e

λ2t)
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Eigenvalues, motivation

The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .

Verify that y(t) = c1e
λ1tv1 + c2e

λ2tv2 is a solution

y′(t) = λ1v1c1e
λ1t + λ2v2c2e

λ2t

= Av1(c1e
λ1t) + Av2(c2e

λ2t)

= A(c1e
λ1tv1 + c2e

λ2tv2)
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Eigenvalues, motivation

The solution for the system y′(t) = Ay(t) is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2

= c1e
−2t




−2

1



 + c2e
−t




−1

1



 .

Verify that y(t) = c1e
λ1tv1 + c2e

λ2tv2 is a solution

y′(t) = λ1v1c1e
λ1t + λ2v2c2e

λ2t

= Av1(c1e
λ1t) + Av2(c2e

λ2t)

= A(c1e
λ1tv1 + c2e

λ2tv2)

= Ay(t)
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Eigenvalues, motivation

Suppose A ∈ R
n×n. Consider the differential equation

y′(t) = Ay(t).
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Suppose A ∈ R
n×n. Consider the differential equation

y′(t) = Ay(t).

Assume that A has n distinct eigenvalues.

Denote the eigenvalues with λ1, . . . , λn, and

the associated eigenvectors with v1, . . . , vn.
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Eigenvalues, motivation

Suppose A ∈ R
n×n. Consider the differential equation

y′(t) = Ay(t).

Assume that A has n distinct eigenvalues.

Denote the eigenvalues with λ1, . . . , λn, and

the associated eigenvectors with v1, . . . , vn.

The solution y(t) : R → Cn is of the form

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn
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Eigenvalues, motivation

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn
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Eigenvalues, motivation

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn

Consider an eigenvalue λk = ℜλk + iℑλk where ℜλk,ℑλk ∈ R.

ckeλktvk = ck

(
etℜλk

)

︸ ︷︷ ︸

amplitude

(
eitℑλk

)

︸ ︷︷ ︸

frequency

vk
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Eigenvalues, motivation

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn

Consider an eigenvalue λk = ℜλk + iℑλk where ℜλk,ℑλk ∈ R.

ckeλktvk = ck

(
etℜλk

)

︸ ︷︷ ︸

amplitude

(
eitℑλk

)

︸ ︷︷ ︸

frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend on etℜλk ,
therefore the real part of λk.
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Eigenvalues, motivation

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · · + cneλntvn

Consider an eigenvalue λk = ℜλk + iℑλk where ℜλk,ℑλk ∈ R.

ckeλktvk = ck

(
etℜλk

)

︸ ︷︷ ︸

amplitude

(
eitℑλk

)

︸ ︷︷ ︸

frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend on etℜλk ,
therefore the real part of λk.

The frequency of the vibrations depend on

eitℑλk = cos(tℑλk) + i sin(tℑλk),

therefore the imaginary part of λk.
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Eigenvalues, motivation

Stability
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Eigenvalues, motivation

Stability

The system y′(t) = Ay(t) is called asymptotically stable if for all initial
conditions y(0) ∈ Rn

y(t) → 0 as t → ∞.
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Eigenvalues, motivation

Stability

The system y′(t) = Ay(t) is called asymptotically stable if for all initial
conditions y(0) ∈ Rn

y(t) → 0 as t → ∞.

Asymptotic stability is equivalent to

etℜλk → 0 as t → ∞ ⇐⇒ ℜλk < 0

for each k = 1, . . . , n
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Eigenvalues, motivation

The system y′(t) = Ay(t) is asymptotically stable

⇐⇒

All of the eigenvalues of A have negative real parts
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Eigenvalues, motivation

The system y′(t) = Ay(t) is asymptotically stable

⇐⇒

All of the eigenvalues of A have negative real parts

Example:
The system

y′(t) =




−3 −2

1 0



 y(t)

with eigenvalues λ1 = −2, λ2 = −1 is asymptotically stable.
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Eigenvalues, motivation

Resonance
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Eigenvalues, motivation

Resonance

The eigenvalue with the smallest frequency is of great significance in
practical applications.
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Eigenvalues, motivation

Resonance

The eigenvalue with the smallest frequency is of great significance in
practical applications.

The frequency of this eigenvalue is called the natural frequency of
the system.

When a periodic external force is applied to the system closely
matching the natural frequency of the system, the system can exhibit
extreme vibrations (i.e. ‖y(t)‖ is very large) even at small t.
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Eigenvalues, motivation

Resonance

The eigenvalue with the smallest frequency is of great significance in
practical applications.

The frequency of this eigenvalue is called the natural frequency of
the system.

When a periodic external force is applied to the system closely
matching the natural frequency of the system, the system can exhibit
extreme vibrations (i.e. ‖y(t)‖ is very large) even at small t.

This phenomenon is known as resonance.

Lecture 21 – p.27/27


	Outline
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, basic definitions and facts
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation
	Eigenvalues, motivation

