Eigenvalues - Basics

Emre Mengi

Department of Mathemtics Koç University Istanbul, Turkey

December 5th, 2011

ヘロト 人間 とくほとくほとう

E 990

Emre Mengi

Definition (Eigenvalues and Eigenvectors)

Let $A \in \mathbb{C}^{n \times n}$. Suppose that

$$Ax = \lambda x$$

for some scalar $\lambda \in \mathbb{C}$ and nonzero vector $x \in \mathbb{C}^n$. Then (i) λ is called an eigenvalue of *A*, and (ii) *x* is called an eigenvector of *A* associated with λ .

イロト イヨト イヨト イ

Example:

 $\lambda_1 = 1$ and $\lambda_2 = 3$ are eigenvalues of *A*.

 $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors assoc with λ_1 , λ_2 .

・ロン・(理)・ ・ ヨン・

Example:

 $\lambda_1 = 1$ and $\lambda_2 = 3$ are eigenvalues of *A*.

 $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors assoc with λ_1, λ_2 .

イロト イポト イヨト イヨト 三日

Emre Mengi

Example:

イロト イポト イヨト イヨト 一臣

 $\lambda_1 = 1$ and $\lambda_2 = 3$ are eigenvalues of *A*.

 $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are eigenvectors assoc with λ_1 , λ_2 .

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial) λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

 $\begin{array}{lll} \frac{Proot:}{\lambda \text{ is an eigenvalue of } A} & \iff & Ax = \lambda x \ \exists x \neq 0 \\ \Leftrightarrow & Ax - \lambda x = (A - \lambda I)x = 0 \ \exists x \neq 0 \\ \Leftrightarrow & A - \lambda I \text{ is singular} \\ \Leftrightarrow & \det(A - \lambda I) = 0 \end{array}$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

 $\begin{array}{ll} \hline 1 & 1 \\ \hline \lambda \text{ is an eigenvalue of } A & \iff & Ax = \lambda x \ \exists x \neq 0 \\ \Leftrightarrow & Ax - \lambda x = (A - \lambda I)x = 0 \ \exists x \neq 0 \\ \Leftrightarrow & A - \lambda I \text{ is singular} \\ \Leftrightarrow & \det(A - \lambda I) = 0 \end{array}$

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Proof:

 $\lambda \text{ is an eigenvalue of } A \iff Ax = \lambda x \exists x \neq 0$ $\iff Ax - \lambda x = (A - \lambda I)x = 0 \exists x \neq 0$ $\iff A - \lambda I \text{ is singular}$ $\iff \det(A - \lambda I) = 0$

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Proof:

 λ is an eigenvalue of $A \iff Ax = \lambda x \exists x \neq 0$

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Proof:

 λ is an eigenvalue of A

 $\begin{array}{ll} \Longleftrightarrow & Ax = \lambda x \ \exists x \neq 0 \\ \Leftrightarrow & Ax - \lambda x = (A - \lambda I)x = 0 \ \exists x \neq 0 \\ \Leftrightarrow & A - \lambda I \text{ is singular} \\ \Leftrightarrow & \det(A - \lambda I) = 0 \end{array}$

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Proof:

 λ is an eigenvalue of A

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Proof:

 λ is an eigenvalue of A

 $\begin{array}{ll} \Longleftrightarrow & Ax = \lambda x \ \exists x \neq 0 \\ \Leftrightarrow & Ax - \lambda x = (A - \lambda I)x = 0 \ \exists x \neq 0 \\ \Leftrightarrow & A - \lambda I \text{ is singular} \\ \Leftrightarrow & \det(A - \lambda I) = 0 \end{array}$

イロト イポト イヨト イヨト 一臣

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det \left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} \right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

Eigenvalues of A det $(A - \lambda I) = \lambda^2 + 2\lambda - 3 = (\lambda + 3)(\lambda - 1),$

so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 1$.

イロト イポト イヨト イヨト

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det\left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\right)$$
$$= det\left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix}\right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

Eigenvalues of A det(A - λI) = λ^2 + 2 λ - 3 = (λ + 3)(λ - 1),

so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 1$.

イロト イポト イヨト イヨト

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det \left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} \right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

<u>Eigenvalues of A</u> det $(A - \lambda I) = \lambda^2 + 2\lambda - 3 = (\lambda + 3)(\lambda - 1),$

so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 1$.

イロト イポト イヨト イヨト

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det \left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} \right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

Eigenvalues of A det $(A - \lambda I) = \lambda^2 + 2\lambda - 3 = (\lambda + 3)(\lambda - 1),$

so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 1$.

イロト イポト イヨト イヨト

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det \left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} \right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

 $\frac{\text{Eigenvalues of } A}{\det(A - \lambda I) = \lambda^2} + 2\lambda - 3 = (\lambda + 3)(\lambda - 1),$

so the eigenvalues are $\lambda_1 = -3$, $\lambda_2 = 1$.

・ロン ・聞と ・ ほと ・ ほとう

ъ

Eigenvalues and Polynomial Root Finding

$$\frac{\text{Example:}}{A = \begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix}}$$

$$det(A - \lambda I)) = det \left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)$$
$$= det \left(\begin{bmatrix} -1 - \lambda & 4 \\ 1 & -1 - \lambda \end{bmatrix} \right)$$
$$= (-1 - \lambda)^2 - 4 = \lambda^2 + 2\lambda - 3$$

Eigenvalues of A $det(A - \lambda I) = \lambda^2 + 2\lambda - 3 = (\lambda + 3)(\lambda - 1),$ so the eigenvalues are $\lambda_1 = -3, \lambda_2 = 1.$

ヘロト ヘアト ヘビト ヘビト

ъ

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

 $p(\lambda) = \det(A - \lambda I)$ is a monic polynomial of λ of degree *n* and called the *characteristic polynomial* of *A*.

e.g. The characteristic polynomial for $A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 + 2\lambda - 3$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

Emre Mengi

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

 $p(\lambda) = \det(A - \lambda I)$ is a monic polynomial of λ of degree *n* and called the *characteristic polynomial* of *A*.

e.g.

The characteristic polynomial for $A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 + 2\lambda - 3$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

Definition (Characteristic Polynomial)

 $p(\lambda) = \det(A - \lambda I)$ is a monic polynomial of λ of degree *n* and called the *characteristic polynomial* of *A*.

e.g.

The characteristic polynomial for $A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$

$$p(\lambda) = \det(A - \lambda I) = \lambda^2 + 2\lambda - 3$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ where $a_n \neq 0$.
- Define the monic polynomial $\tilde{p}(z) = p(z)/a_n$.

$$\tilde{p}(Z) = z^n + \frac{a_{n-1}}{a_n} z^{n-1} + \dots + \frac{a_1}{a_n} z + \frac{a_0}{a_n} = z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$$

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

• Consider any polynomial of degree n $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ where $a_n \neq 0$.

• Define the monic polynomial $\tilde{p}(z) = p(z)/a_n$.

Emre Mengi

$$\tilde{\mathcal{D}}(Z) = Z^{n} + \frac{a_{n-1}}{a_n} Z^{n-1} + \dots + \frac{a_1}{a_n} Z + \frac{a_0}{a_n} \\ = Z^{n} + b_{n-1} Z^{n-1} + \dots + b_1 Z + b_0$$

イロト イポト イヨト イヨト 一日

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

• Consider any polynomial of degree n $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ where $a_n \neq 0$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

- Define the monic polynomial $\tilde{p}(z) = p(z)/a_n$.
 - $\tilde{\rho}(z) = z^n + \frac{a_{n-1}}{a_n} z^{n-1} + \dots + \frac{a_1}{a_n} z + \frac{a_0}{a_n}$ $= z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

• Consider any polynomial of degree n $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ where $a_n \neq 0$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

• Define the monic polynomial $\tilde{p}(z) = p(z)/a_n$.

$$\tilde{p}(z) = z^{n} + \frac{a_{n-1}}{a_{n}} z^{n-1} + \dots + \frac{a_{1}}{a_{n}} z + \frac{a_{0}}{a_{n}} \\ = z^{n} + b_{n-1} z^{n-1} + \dots + b_{1} z + b_{0}$$

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

• Consider any polynomial of degree n $p(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$ where $a_n \neq 0$.

・ロト ・聞 ト ・ ヨト ・ ヨトー

• Define the monic polynomial $\tilde{p}(z) = p(z)/a_n$.

$$\tilde{p}(z) = z^n + \frac{a_{n-1}}{a_n} z^{n-1} + \dots + \frac{a_1}{a_n} z + \frac{a_0}{a_n} = z^n + b_{n-1} z^{n-1} + \dots + b_1 z + b_0$$

Theorem (Roots and Companion Matrices) $\lambda \text{ is a root of } \tilde{p}(z) = z^n + b_{n-1}z^{n-1} + b_{n-2}z^{n-2} + \dots + b_1z + b_0$

 λ is an eigenvalue of the n imes n companion matrix

]	$-b_{n-1}$	$-b_{n-2}$		$-b_1$	$-b_0$
	1	0		0	0
$\mathcal{C} = $	0	1		0	0
	÷		۰.		:
	0	0		1	0

<ロ> <問> <問> < E> < E> < E> < E

Eigenvalues and Polynomial Root Finding

<u>Proof:</u> Suppose $\tilde{p}(\lambda) = 0$. Then

ヘロン ヘアン ヘビン ヘビン

Eigenvalues and Polynomial Root Finding

Proof: Suppose $\tilde{p}(\lambda) = 0$. Then

<ロ> (四) (四) (三) (三) (三) (三)

Eigenvalues and Polynomial Root Finding

Proof: Suppose $\tilde{p}(\lambda) = 0$. Then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eigenvalues and Polynomial Root Finding

Proof: Suppose $\tilde{p}(\lambda) = 0$. Then

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Eigenvalues and Polynomial Root Finding

<u>Proof:</u> Suppose $\tilde{p}(\lambda) = 0$. Then

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \lambda^{n-1} \\ \vdots \\ \lambda \\ 1 \end{bmatrix} = \begin{bmatrix} -b_{n-1}\lambda^{n-1} - b_{n-2}\lambda^{n-2} - \dots - b_0 \\ \lambda^{n-1} \\ \vdots \\ \lambda \end{bmatrix} = \lambda \begin{bmatrix} \lambda^{n-1} \\ \vdots \\ \lambda \\ 1 \end{bmatrix}$$

イロト イヨト イヨト イ

프 🕨 🗆 프

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$v_{k+1} = \lambda v_k \implies v_{k+1} = \lambda^k v_1, \quad k = 1, \dots, n-1$$

$$\begin{array}{l} -b_{n-1}v_n - b_{n-2}v_{n-1}\cdots - b_1v_2 - b_0v_1 = \lambda v_n \\ \Longrightarrow & -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_1 \\ \Longrightarrow & \tilde{\rho}(\lambda)v_1 = 0 \end{array}$$

イロト 不得 とくほ とくほ とう

3

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$\mathbf{v}_{k+1} = \lambda \mathbf{v}_k \implies \mathbf{v}_{k+1} = \lambda^k \mathbf{v}_1, \quad k = 1, \dots, n-1$$

$$\begin{array}{l} -b_{n-1}v_n - b_{n-2}v_{n-1}\cdots - b_1v_2 - b_0v_1 = \lambda v_n \\ \Rightarrow \quad -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_1 \\ \Rightarrow \quad \tilde{p}(\lambda)v_1 = 0 \end{array}$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ ─臣

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$\mathbf{v}_{k+1} = \lambda \mathbf{v}_k \implies \mathbf{v}_{k+1} = \lambda^k \mathbf{v}_1, \quad k = 1, \dots, n-1$$

$$-b_{n-1}v_n - b_{n-2}v_{n-1}\cdots - b_1v_2 - b_0v_1 = \lambda v_n -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_n \tilde{c}(\lambda)v_n = 0$$

<ロ> (四) (四) (三) (三) (三)

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$v_{k+1} = \lambda v_k \implies v_{k+1} = \lambda^k v_1, \quad k = 1, \dots, n-1$$

$$\begin{array}{l} -b_{n-1}v_n - b_{n-2}v_{n-1} \cdots - b_1v_2 - b_0v_1 = \lambda v_n \\ \Longrightarrow & -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_1 \\ \Longrightarrow & \tilde{\rho}(\lambda)v_1 = 0 \end{array}$$

イロト イポト イヨト イヨト

3

implying λ is a root of $\tilde{\rho}(z)$.
Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$v_{k+1} = \lambda v_k \implies v_{k+1} = \lambda^k v_1, \quad k = 1, \dots, n-1$$

$$\begin{array}{l} -b_{n-1}v_n - b_{n-2}v_{n-1}\cdots - b_1v_2 - b_0v_1 = \lambda v_n \\ \Longrightarrow & -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_1 \\ \Longrightarrow & \tilde{p}(\lambda)v_1 = 0 \end{array}$$

э

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$\begin{bmatrix} -b_{n-1} & -b_{n-2} & \dots & -b_1 & -b_0 \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{bmatrix} v = \lambda v$$

for some $v \neq 0$. Then

•
$$v_{k+1} = \lambda v_k \implies v_{k+1} = \lambda^k v_1, \quad k = 1, \dots, n-1$$

$$\begin{array}{l} -b_{n-1}v_n - b_{n-2}v_{n-1}\cdots - b_1v_2 - b_0v_1 = \lambda v_n \\ \Longrightarrow & -(\lambda^{n-1}b_{n-1} + \lambda^{n-2}b_{n-2} + \cdots + \lambda b_1 + b_0)v_1 = \lambda^n v_1 \\ \Longrightarrow & \tilde{p}(\lambda)v_1 = 0 \end{array}$$

イロト 不得 とくほと くほとう

3

implying λ is a root of $\tilde{p}(z)$.

Example: Consider $p(z) = z^2 + 2z - 3$ with the roots $\lambda_1 = -3, \lambda_2 = 1$.

The associated companion matrix is

$$C = \left[\begin{array}{rr} -2 & 3 \\ 1 & 0 \end{array} \right]$$

with the characteristic polynomial

$$\det(\mathcal{C} - \lambda I) = \det\begin{pmatrix} -2 - \lambda & 3\\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 2\lambda - 3$$

・ロト ・聞 と ・ ヨ と ・ ヨ と 。

Example: Consider $p(z) = z^2 + 2z - 3$ with the roots $\lambda_1 = -3, \lambda_2 = 1$.

The associated companion matrix is

$$\mathcal{C} = \left[\begin{array}{rr} -2 & 3 \\ 1 & 0 \end{array} \right]$$

with the characteristic polynomial

$$\det(\mathcal{C} - \lambda I) = \det\begin{pmatrix} -2 - \lambda & 3\\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 2\lambda - 3$$

イロト イポト イヨト イヨト

Example: Consider $p(z) = z^2 + 2z - 3$ with the roots $\lambda_1 = -3, \lambda_2 = 1$.

The associated companion matrix is

$$\mathcal{C} = \left[egin{array}{cc} -2 & 3 \ 1 & 0 \end{array}
ight]$$

with the characteristic polynomial

$$\det(\mathcal{C} - \lambda I) = \det \begin{pmatrix} -2 - \lambda & 3\\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 2\lambda - 3$$

・ロン・西方・ ・ ヨン・ ヨン・

Example: Consider $p(z) = z^2 + 2z - 3$ with the roots $\lambda_1 = -3, \lambda_2 = 1$.

The associated companion matrix is

$$\mathcal{C} = \left[egin{array}{cc} -2 & 3 \ 1 & 0 \end{array}
ight]$$

with the characteristic polynomial

$$\det(\mathcal{C} - \lambda I) = \det \begin{pmatrix} -2 - \lambda & 3\\ 1 & -\lambda \end{pmatrix} = \lambda^2 + 2\lambda - 3$$

・ロン・西方・ ・ ヨン・ ヨン・

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree > 4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
 - If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
 - This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

イロト イポト イヨト イヨ

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree > 4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
 - If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
 - This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

ヘロト ヘアト ヘヨト ヘ

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree > 4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
 - If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
 - This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

ヘロト ヘアト ヘヨト ヘ

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree > 4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
 - If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
 - This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

イロト イポト イヨト イヨト

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree > 4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
 - If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
 - This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).

イロト イポト イヨト イヨト

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Corollary of the Theorem

Since

$$p(\lambda) = \det(A - \lambda I) = a_n \lambda^n + \dots + a_1 \lambda + a_0$$

is a polynomial of degree *n*, *A* has *n* (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as a root of $p(\lambda) = \det(A - \lambda I)$ is called the algebraic multip. of λ .

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Corollary of the Theorem

Since

$$p(\lambda) = \det(A - \lambda I) = a_n \lambda^n + \cdots + a_1 \lambda + a_0$$

is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as a root of $p(\lambda) = \det(A - \lambda I)$ is called the algebraic multip. of λ .

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \iff \det(A - \lambda I) = 0$

Corollary of the Theorem

Since

$$p(\lambda) = \det(A - \lambda I) = a_n \lambda^n + \dots + a_1 \lambda + a_0$$

is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as a root of $p(\lambda) = \det(A - \lambda I)$ is called the algebraic multip. of λ .

Calculation of Eigenvectors

Calculation of Eigenvectors

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Then v is an eigenvector associated with $\lambda \iff (A - \lambda I)v = 0$ and $v \neq 0$.

Example:
The matrix
$$A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$$
 has eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$.

・ロン・西方・ ・ ヨン・ ヨン・

Calculation of Eigenvectors

Calculation of Eigenvectors

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. Then v is an eigenvector associated with $\lambda \iff (A - \lambda I)v = 0$ and $v \neq 0$.

Example: The matrix $A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$ has eigenvalues $\lambda_1 = -3, \lambda_2 = 1$.

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\left(\begin{bmatrix} -1 & 4\\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \right) v_1 = \begin{bmatrix} 2 & 4\\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\implies \boxed{v_1 = c \begin{bmatrix} -2\\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} v_1 = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\implies \boxed{v_1 = c \begin{bmatrix} -2 \\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} v_1 = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\Longrightarrow \boxed{v_1 = c \begin{bmatrix} -2 \\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} v_1 = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\Longrightarrow \boxed{v_1 = c \begin{bmatrix} -2 \\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

・ロト ・四ト ・ヨト ・ヨト

$$\left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} v_1 = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\Longrightarrow \boxed{v_1 = c \begin{bmatrix} -2 \\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

イロト イポト イヨト イヨト

$$\left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$

Calculation of Eigenvectors

Find an eigenvector v_1 associated with $\lambda_1 = -3$ (below $c \neq 0$)

$$\begin{pmatrix} \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - (-3) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} v_1 = \begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix} v_1 = 0$$
$$\Longrightarrow \boxed{v_1 = c \begin{bmatrix} -2 \\ 1 \end{bmatrix}}$$

Finding an eigenvector v_2 associated with $\lambda_2 = 1$ (below $c \neq 0$)

・ロト ・四ト ・ヨト ・ヨト

$$\left(\begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix} - 1 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) v_1 = \begin{bmatrix} -2 & 4 \\ 1 & -2 \end{bmatrix} v_2 = 0$$
$$\implies \boxed{v_2 = c \begin{bmatrix} 2 \\ 1 \end{bmatrix}}$$

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda} = \text{Null}(A - \lambda I)$ is called the eigenspace of A associated with λ .

• E_{λ} = (set of eigenvectors of *A* assoc. with λ) \cup {0}

E_λ is also called an *invariant subspace* of A, since
 x ∈ E_λ ⇒ Ax = λx ∈ E_λ
 that is {Ax : x ∈ E_λ} ⊆ E_λ.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda} = \text{Null}(A - \lambda I)$ is called the eigenspace of A associated with λ .

*E*_λ = (set of eigenvectors of *A* assoc. with λ) ∪ {0}

E_λ is also called an *invariant subspace* of *A*, since
 x ∈ *E_λ* ⇒ *Ax* = λ*x* ∈ *E_λ* that is {*Ax* : *x* ∈ *E_λ*} ⊆ *E_λ*.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda} = \text{Null}(A - \lambda I)$ is called the eigenspace of A associated with λ .

- E_{λ} = (set of eigenvectors of *A* assoc. with λ) \cup {0}
- *E_λ* is also called an *invariant subspace* of *A*, since
 x ∈ *E_λ* ⇒ *Ax* = λ*x* ∈ *E_λ* that is {*Ax* : *x* ∈ *E_λ*} ⊆ *E_λ*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda} = \text{Null}(A - \lambda I)$ is called the eigenspace of A associated with λ .

- *E*_λ = (set of eigenvectors of *A* assoc. with λ) ∪ {0}
- *E_λ* is also called an *invariant subspace* of *A*, since
 x ∈ *E_λ ⇒ Ax* = λx ∈ *E_λ* that is {*Ax* : *x* ∈ *E_λ*} ⊆ *E_λ*.

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda} = \text{Null}(A - \lambda I)$ is called the eigenspace of A associated with λ .

- E_{λ} = (set of eigenvectors of *A* assoc. with λ) \cup {0}
- E_{λ} is also called an *invariant subspace* of A, since $x \in E_{\lambda} \implies Ax = \lambda x \in E_{\lambda}$ that is $\{Ax : x \in E_{\lambda}\} \subseteq E_{\lambda}.$

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

Geometric Multiplicity

e.g.
For
$$A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$$
 with the eigenvalues $\lambda_1 = -3, \lambda_2 = 1$
 $E_{\lambda_1} = \operatorname{span}\left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ and $E_{\lambda_2} = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}.$

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda} = \text{Null}(A - \lambda I)$ associated with λ is called the geometric multiplicity of λ .

イロン イボン イヨン イヨン

Geometric Multiplicity

e.g.
For
$$A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$$
 with the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$
 $E_{\lambda_1} = \operatorname{span}\left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ and $E_{\lambda_2} = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$.

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda} = \text{Null}(A - \lambda I)$ associated with λ is called the geometric multiplicity of λ .

イロン イボン イヨン イヨン

Geometric Multiplicity

e.g.
For
$$A = \begin{bmatrix} -1 & 4 \\ 1 & -1 \end{bmatrix}$$
 with the eigenvalues $\lambda_1 = -3$, $\lambda_2 = 1$
 $E_{\lambda_1} = \operatorname{span}\left\{ \begin{bmatrix} -2 \\ 1 \end{bmatrix} \right\}$ and $E_{\lambda_2} = \operatorname{span}\left\{ \begin{bmatrix} 2 \\ 1 \end{bmatrix} \right\}$.

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda} = \text{Null}(A - \lambda I)$ associated with λ is called the geometric multiplicity of λ .

ヘロト ヘアト ヘビト ヘビト

ъ

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

$$c = 3N.sec/m$$

Friction constant

- By Newton's law of motion
 Net Force —
- The friction and springs apply forces againstadisplacement

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

$$c = 3N.sec/m$$

Friction constant

By Newton's law of motion

Net Force = ma(t)

• The friction and springs apply forces against-displacement

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

$$c = 3N.sec/m$$

Friction constant

By Newton's law of motion

Net Force = ma(t)

The friction and springs apply forces against displacement

Mass Spring Systems

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

Combining the equations for the net force yields ma(t) = -cv(t) - kx(t) \implies mx''(t) = -cx'(t) - kx(t) \implies x''(t) = -3x'(t) - 2x(t) \implies x''(t) + 3x'(t) + 2x(t) = 0

Mass Spring Systems

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

 $a_{1}(t)$

Combining the equations for the net force yields

mo(t)

$$ma(t) = -cv(t) - kx(t)$$

$$\implies$$

$$mx''(t) = -cx'(t) - kx(t)$$

$$\implies$$

$$x''(t) = -3x'(t) - 2x(t)$$

$$\implies$$

$$x''(t) + 3x'(t) + 2x(t) = 0$$

 $L_{1}(+)$

3

Mass Spring Systems

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

Combining the equations for the net force yields

$$ma(t) = -cv(t) - kx(t)$$

$$\implies$$

$$mx''(t) = -cx'(t) - kx(t)$$

$$\implies$$

$$x''(t) = -3x'(t) - 2x(t)$$

$$\implies$$

$$x''(t) + 3x'(t) + 2x(t) = 0$$

2
Basic Definitions Motivation

Mass Spring Systems

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

Combining the equations for the net force yields

$$ma(t) = -cv(t) - kx(t)$$

$$\implies$$

$$mx''(t) = -cx'(t) - kx(t)$$

$$\implies$$

$$x''(t) = -3x'(t) - 2x(t)$$

$$\implies$$

$$x''(t) + 3x'(t) + 2x(t) = 0$$

3

Emre Mengi

Basic Definitions Motivation

Mass Spring Systems

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

Combining the equations for the net force yields

$$ma(t) = -cv(t) - kx(t)$$

$$\implies$$

$$mx''(t) = -cx'(t) - kx(t)$$

$$\implies$$

$$x''(t) = -3x'(t) - 2x(t)$$

$$\implies$$

$$x''(t) + 3x'(t) + 2x(t) = 0$$

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

The equation of motion

$$x''(t) + 3x'(t) + 2x(t) = 0$$

can be expressed in terms of v(t) and x(t).

$$v'(t) + 3v(t) + 2x(t) = 0$$

 $-v(t) + x'(t) = 0$

イロン 不得 とくほ とくほとう

Notation

$$x(t)$$
: displacement $v(t) = x'(t)$: velocity
 $a(t) = x''(t)$: acceleration

The equation of motion

$$x''(t) + 3x'(t) + 2x(t) = 0$$

can be expressed in terms of v(t) and x(t).

$$v'(t) + 3v(t) + 2x(t) = 0$$

 $-v(t) + x'(t) = 0$

イロン 不得 とくほ とくほとう

Basic Definitions Motivation

Mass Spring Systems

$$\underbrace{\left[\begin{array}{c} \mathbf{v}'(t)\\ \mathbf{x}'(t) \end{array}\right]}_{\mathbf{y}'(t)} = \underbrace{\left[\begin{array}{c} -3 & -2\\ 1 & 0 \end{array}\right]}_{\mathbf{A}} \underbrace{\left[\begin{array}{c} \mathbf{v}(t)\\ \mathbf{x}(t) \end{array}\right]}_{\mathbf{y}(t)}$$

$$A = \left[\begin{array}{rr} -3 & -2 \\ 1 & 0 \end{array} \right]$$

has the eigenvalues $\lambda_1 = -2$ and $\lambda_2 = -1$ with the assoc. eigenvectors $v_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

ヘロン 人間 とくほど くほとう

Basic Definitions Motivation

Mass Spring Systems

$$\underbrace{\left[\begin{array}{c} v'(t) \\ x'(t) \end{array}\right]}_{y'(t)} = \underbrace{\left[\begin{array}{c} -3 & -2 \\ 1 & 0 \end{array}\right]}_{A} \underbrace{\left[\begin{array}{c} v(t) \\ x(t) \end{array}\right]}_{y(t)}$$

$$A = \left[\begin{array}{rr} -3 & -2 \\ 1 & 0 \end{array} \right]$$

has the eigenvalues $\lambda_1 = -2$ and $\lambda_2 = -1$ with the assoc. eigenvectors $v_1 = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$ and $v_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

◆□ > ◆□ > ◆豆 > ◆豆 > -

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{array}{lll} \begin{split} \mathbf{y}'(t) &=& \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &=& A \mathbf{v}_1 (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (\mathbf{c}_2 \mathbf{e}^{\lambda_2 t}) \\ &=& A (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &=& A \mathbf{y}(t) \end{split}$$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{array}{lll} \begin{split} \mathbf{y}'(t) &=& \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &=& A \mathbf{v}_1 (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (\mathbf{c}_2 \mathbf{e}^{\lambda_2 t}) \\ &=& A (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &=& A \mathbf{y}(t) \end{split}$$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{aligned} \mathbf{v}'(t) &= \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &= A \mathbf{v}_1 (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (\mathbf{c}_2 \mathbf{e}^{\lambda_2 t}) \\ &= A (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &= A \mathbf{y}(t) \end{aligned}$$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{aligned} \mathbf{y}'(t) &= \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &= A \mathbf{v}_1 (c_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (c_2 \mathbf{e}^{\lambda_2 t}) \\ &= A (c_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + c_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &= A \mathbf{y}(t) \end{aligned}$$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$y'(t) = \lambda_1 v_1 c_1 e^{\lambda_1 t} + \lambda_2 v_2 c_2 e^{\lambda_2 t}$$

= $Av_1(c_1 e^{\lambda_1 t}) + Av_2(c_2 e^{\lambda_2 t})$
= $A(c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2)$
= $Ay(t)$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{aligned} \mathbf{v}'(t) &= \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &= A \mathbf{v}_1 (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (\mathbf{c}_2 \mathbf{e}^{\lambda_2 t}) \\ &= A (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &= A \mathbf{y}(t) \end{aligned}$$

• The solution for the system y'(t) = Ay(t) is of the form

Basic Definitions Motivation

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$$

= $c_1 e^{-2t} \begin{bmatrix} -2 \\ 1 \end{bmatrix} + c_2 e^{-t} \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$

• Verify that $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2$ is a solution

$$\begin{aligned} \mathbf{v}'(t) &= \lambda_1 \mathbf{v}_1 \mathbf{c}_1 \mathbf{e}^{\lambda_1 t} + \lambda_2 \mathbf{v}_2 \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \\ &= A \mathbf{v}_1 (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t}) + A \mathbf{v}_2 (\mathbf{c}_2 \mathbf{e}^{\lambda_2 t}) \\ &= A (\mathbf{c}_1 \mathbf{e}^{\lambda_1 t} \mathbf{v}_1 + \mathbf{c}_2 \mathbf{e}^{\lambda_2 t} \mathbf{v}_2) \\ &= A \mathbf{y}(t) \end{aligned}$$

• Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$y'(t) = Ay(t).$$

• Assume that *A* has *n* distinct eigenvalues.

- Denote the eigenvalues with $\lambda_1, \ldots, \lambda_n$, and
- the associated eigenvectors with v_1, \ldots, v_n .
- The solution $y(t) : \mathbb{R} \to \mathbb{C}^n$ is of the form

 $y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \dots + c_n e^{\lambda_n t} v_n$

ヘロト 人間 とくほとく ほとう

• Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$\mathbf{y}'(t) = \mathbf{A}\mathbf{y}(t).$$

• Assume that A has n distinct eigenvalues.

- Denote the eigenvalues with $\lambda_1, \ldots, \lambda_n$, and
- the associated eigenvectors with v_1, \ldots, v_n .
- The solution $y(t) : \mathbb{R} \to \mathbb{C}^n$ is of the form

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \dots + c_n e^{\lambda_n t} v_n$$

• Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$y'(t) = Ay(t).$$

• Assume that A has n distinct eigenvalues.

- Denote the eigenvalues with $\lambda_1, \ldots, \lambda_n$, and
- the associated eigenvectors with v_1, \ldots, v_n .
- The solution $y(t) : \mathbb{R} \to \mathbb{C}^n$ is of the form

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n$$

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n$$

Consider an eigenvalue $\lambda_k = \Re \lambda_k + i \Im \lambda_k$ where $\Re \lambda_k, \Im \lambda_k \in \mathbb{R}$.

$$C_k e^{\lambda_k t} V_k = C_k \underbrace{\left(e^{t\Re\lambda_k}\right)}_{\text{amplitude}} \underbrace{\left(e^{it\Im\lambda_k}\right)}_{\text{frequency}} V_k$$

The amplitude of the vibrations (*i.e.* ||*y*(*t*)||) depend on e^{t ℜλ_k}, therefore the real part of λ_k.

イロト イヨト イヨト イ

• The frequency of the vibrations depend on $e^{it\Im\lambda_k} = \cos(t\Im\lambda_k) + i\sin(t\Im\lambda_k),$ therefore the imaginary part of λ_k .

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n$$

Consider an eigenvalue $\lambda_k = \Re \lambda_k + i \Im \lambda_k$ where $\Re \lambda_k, \Im \lambda_k \in \mathbb{R}$.

$$c_k e^{\lambda_k t} v_k = c_k \underbrace{\left(e^{t \Re \lambda_k}\right)}_{\text{amplitude}} \underbrace{\left(e^{i t \Im \lambda_k}\right)}_{\text{frequency}} v_k$$

The amplitude of the vibrations (*i.e.* ||*y*(*t*)||) depend on e^{t ℜλk}, therefore the real part of λk.

• • • • • • • • • • • •

• The frequency of the vibrations depend on $e^{it\Im\lambda_k} = \cos(t\Im\lambda_k) + i\sin(t\Im\lambda_k)$

therefore the imaginary part of λ_k

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n$$

Consider an eigenvalue $\lambda_k = \Re \lambda_k + i \Im \lambda_k$ where $\Re \lambda_k, \Im \lambda_k \in \mathbb{R}$.

$$C_k e^{\lambda_k t} v_k = C_k \underbrace{\left(e^{t \Re \lambda_k}\right)}_{\text{amplitude}} \underbrace{\left(e^{it \Im \lambda_k}\right)}_{\text{frequency}} v_k$$

• The amplitude of the vibrations (*i.e.* ||y(t)||) depend on $e^{t\Re\lambda_k}$, therefore the real part of λ_k .

• The frequency of the vibrations depend on $e^{it\Im\lambda_k} = \cos(t\Im\lambda_k) + i\sin(t\Im\lambda_k),$ therefore the imaginary part of $\lambda_k.$

$$y(t) = c_1 e^{\lambda_1 t} v_1 + c_2 e^{\lambda_2 t} v_2 + \cdots + c_n e^{\lambda_n t} v_n$$

Consider an eigenvalue $\lambda_k = \Re \lambda_k + i \Im \lambda_k$ where $\Re \lambda_k, \Im \lambda_k \in \mathbb{R}$.

$$C_k e^{\lambda_k t} v_k = C_k \underbrace{\left(e^{t \Re \lambda_k}\right)}_{\text{amplitude}} \underbrace{\left(e^{it \Im \lambda_k}\right)}_{\text{frequency}} v_k$$

- The amplitude of the vibrations (*i.e.* ||y(t)||) depend on e^{t ℜλk}, therefore the real part of λk.
- The frequency of the vibrations depend on

$$e^{it\Im\lambda_k} = \cos(t\Im\lambda_k) + i\sin(t\Im\lambda_k),$$

イロト イポト イヨト イヨト 三日

therefore the imaginary part of λ_k .

 The system y'(t) = Ay(t) is called asymptotically stable if for all initial conditions y(0) ∈ ℝⁿ

 $y(t) \to 0$ as $t \to \infty$.

◆□ > ◆□ > ◆豆 > ◆豆 > -

• Asymptotic stability is equivalent to $e^{t\Re\lambda_k} \to 0 \text{ as } t \to \infty \iff \Re\lambda_k < 0$ for each k = 1, ..., n

 The system y'(t) = Ay(t) is called asymptotically stable if for all initial conditions y(0) ∈ ℝⁿ

y(t)
ightarrow 0 as $t
ightarrow \infty$.

・ロト ・聞 ト ・ ヨト ・ ヨト … ヨ

• Asymptotic stability is equivalent to $e^{t\Re\lambda_k} \to 0 \text{ as } t \to \infty \iff \Re\lambda_k < 0$ for each k = 1, ..., n

 The system y'(t) = Ay(t) is called asymptotically stable if for all initial conditions y(0) ∈ ℝⁿ

$$y(t)
ightarrow 0$$
 as $t
ightarrow \infty$.

• Asymptotic stability is equivalent to

 $e^{t\Re\lambda_k} o 0$ as $t o \infty \iff \Re\lambda_k < 0$

・ロン・西方・ ・ ヨン・ ヨン・

э.

for each $k = 1, \ldots, n$

Stability

Asymptotic Stability

The system y'(t) = Ay(t) is asymptotically stable \iff All of the eigenvalues of *A* have negative real parts

Example: The system

$$y'(t) = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} y(t)$$

<ロ> (四) (四) (三) (三) (三)

with eigenvalues $\lambda_1 = -2$, $\lambda_2 = -1$ is asymptotically stable.

Stability

Asymptotic Stability

The system y'(t) = Ay(t) is asymptotically stable \iff All of the eigenvalues of *A* have negative real parts

Example: The system

$$y'(t) = \begin{bmatrix} -3 & -2 \\ 1 & 0 \end{bmatrix} y(t)$$

イロト 不得 とくほと くほとう

with eigenvalues $\lambda_1 = -2$, $\lambda_2 = -1$ is asymptotically stable.