Eigenvalues - Basics

Emre Mengi

Department of Mathemtics
Koç University
Istanbul, Turkey

December 5th, 2011

Definition (Eigenvalues and Eigenvectors)

Let $A \in \mathbb{C}^{n \times n}$. Suppose that

$$
A x=\lambda x
$$

for some scalar $\lambda \in \mathbb{C}$ and nonzero vector $x \in \mathbb{C}^{n}$. Then
(i) λ is called an eigenvalue of A, and
(ii) x is called an eigenvector of A associated with λ.

Example:
$\underbrace{\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{x_{1}}=\underbrace{1}_{\lambda_{1}} \underbrace{\left[\begin{array}{l}1 \\ 0\end{array}\right]}_{x_{1}}$ and $\underbrace{\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]}_{A} \underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{x_{2}}=\underbrace{3}_{\lambda_{2}} \underbrace{\left[\begin{array}{l}0 \\ 1\end{array}\right]}_{x_{2}}$
$\lambda_{1}=1$ and $\lambda_{2}=3$ are eigenvalues of A.
$x_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are eigenvectors assoc with λ_{1}, λ_{2}.

Example:

$\lambda_{1}=1$ and $\lambda_{2}=3$ are eigenvalues of A.

Example:

$\lambda_{1}=1$ and $\lambda_{2}=3$ are eigenvalues of A.
$x_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], x_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are eigenvectors assoc with λ_{1}, λ_{2}.

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eiaenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$Proof:
λ is an eigenvalue of A

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$Proof:
λ is an eigenvalue of A

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial) λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Proof:
λ is an eigenvalue of A

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial) λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x \quad \exists x \neq 0$

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial) λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x \quad \exists x \neq 0$
$\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0 \quad \exists x \neq 0$

\Longleftrightarrow
$\operatorname{det}(A-\lambda I)=0$

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x \quad \exists x \neq 0$
$\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0 \quad \exists x \neq 0$
$\Longleftrightarrow \quad A-\lambda I$ is singular

Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

 λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$Proof:
λ is an eigenvalue of $A \quad \Longleftrightarrow \quad A x=\lambda x \exists x \neq 0$
$\Longleftrightarrow \quad A x-\lambda x=(A-\lambda I) x=0 \quad \exists x \neq 0$
$\Longleftrightarrow \quad A-\lambda l$ is singular
$\Longleftrightarrow \quad \operatorname{det}(A-\lambda I)=0$

Eigenvalues and Polynomial Root Finding

Example:
$A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$

Eigenvalues of A
$\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)$.
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Example:
$A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$
$\operatorname{det}(A-\lambda /))=\operatorname{det}\left(\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]-\lambda\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right)$

Eigenvalues of A
$\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)$.
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Example:

$$
\begin{aligned}
A=\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \\
\begin{aligned}
\operatorname{det}(A-\lambda I)) & = \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& \operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right)
\end{aligned}
\end{aligned}
$$

Eigenvalues of A
\square
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
\end{aligned}
$$

Eigenvalues of A
$\operatorname{det}(A-\lambda /)=\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)$,
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
\end{aligned}
$$

Eigenvalues of A
$\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3=(\lambda+3)(\lambda-1)$,
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right] \\
& \begin{aligned}
\operatorname{det}(A-\lambda I)) & =\operatorname{det}\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-\lambda\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) \\
& =\operatorname{det}\left(\left[\begin{array}{rr}
-1-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right]\right) \\
& =(-1-\lambda)^{2}-4=\lambda^{2}+2 \lambda-3
\end{aligned}
\end{aligned}
$$

Eigenvalues of A
$\overline{\operatorname{det}(A-\lambda I)=\lambda^{2}}+2 \lambda-3=(\lambda+3)(\lambda-1)$,
so the eigenvalues are $\lambda_{1}=-3, \lambda_{2}=1$.

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.
e.g.

The characteristic polynomial for $A=$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic
polynomial.

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.
e.g.

The characteristic polynomial for $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3
$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

$p(\lambda)=\operatorname{det}(A-\lambda I)$ is a monic polynomial of λ of degree n and called the characteristic polynomial of A.
e.g.

The characteristic polynomial for $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=\lambda^{2}+2 \lambda-3
$$

The eigenvalues of $A \in \mathbb{C}^{n \times n}$ are the roots of its characteristic polynomial.

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

$$
\tilde{p}(z)=z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}}
$$

Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem whose eigenvalues are same as the roots of the polynomial.

- Consider any polynomial of degree n

$$
p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0} \quad \text { where } a_{n} \neq 0 .
$$

- Define the monic polynomial $\tilde{p}(z)=p(z) / a_{n}$.

$$
\begin{aligned}
\tilde{p}(z) & =z^{n}+\frac{a_{n-1}}{a_{n}} z^{n-1}+\cdots+\frac{a_{1}}{a_{n}} z+\frac{a_{0}}{a_{n}} \\
& =z^{n}+b_{n-1} z^{n-1}+\cdots+b_{1} z+b_{0}
\end{aligned}
$$

Eigenvalues and Polynomial Root Finding

Theorem (Roots and Companion Matrices)

λ is a root of $\tilde{p}(z)=z^{n}+b_{n-1} z^{n-1}+b_{n-2} z^{n-2}+\cdots+b_{1} z+b_{0}$ \Longleftrightarrow
λ is an eigenvalue of the $n \times n$ companion matrix

$$
\mathcal{C}=\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]
$$

Eigenvalues and Polynomial Root Finding

Proof:

Suppose $\tilde{p}(\lambda)=0$. Then

Consequently, λ is an eigenvalue of \mathcal{C}.

Eigenvalues and Polynomial Root Finding

Proof:
Suppose $\tilde{p}(\lambda)=0$. Then

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=
$$

Eigenvalues and Polynomial Root Finding

Proof:
Suppose $\tilde{p}(\lambda)=0$. Then

$$
\left[\begin{array}{ccccc}
{\left[\begin{array}{cccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1}
\end{array}-b_{0}\right.} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=
$$

Consequently, λ is an eigenvalue of \mathcal{C}.

Eigenvalues and Polynomial Root Finding

Proof:
Suppose $\tilde{p}(\lambda)=0$. Then

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right] } & = \\
& {\left[\begin{array}{c}
-b_{n-1} \lambda^{n-1}-b_{n-2} \lambda^{n-2}-\cdots-b_{0} \\
\\
\end{array} \quad \begin{array}{l}
\lambda^{n-1} \\
\vdots \\
\\
\end{array} \quad=\quad \lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]\right.}
\end{aligned}
$$

Consequently, λ is an eigenvalue of \mathcal{C}.

Eigenvalues and Polynomial Root Finding

Proof:
Suppose $\tilde{p}(\lambda)=0$. Then

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right]\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]=} \\
& {\left[\begin{array}{c}
-b_{n-1} \lambda^{n-1}-b_{n-2} \lambda^{n-2}-\cdots-b_{0} \\
\lambda^{n-1} \\
\vdots \\
\lambda
\end{array}\right]=\lambda\left[\begin{array}{c}
\lambda^{n-1} \\
\vdots \\
\lambda \\
1
\end{array}\right]}
\end{aligned}
$$

Consequently, λ is an eigenvalue of \mathcal{C}.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

$$
\text { - } v_{k+1}=\lambda v_{k} \Longrightarrow v_{k+1}=\lambda^{k} v_{1}, \quad k=1, \ldots, n-1
$$

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

$$
\text { - } v_{k+1}=\lambda v_{k} \Longrightarrow v_{k+1}=\lambda^{k} v_{1}, \quad k=1, \ldots, n-1
$$

-

$$
-b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n}
$$

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

$$
\text { - } v_{k+1}=\lambda v_{k} \Longrightarrow v_{k+1}=\lambda^{k} v_{1}, \quad k=1, \ldots, n-1
$$

$$
\begin{array}{ll}
& -b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n} \\
\Longrightarrow \quad & -\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1}
\end{array}
$$

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

$$
\text { - } v_{k+1}=\lambda v_{k} \Longrightarrow v_{k+1}=\lambda^{k} v_{1}, \quad k=1, \ldots, n-1
$$

$$
\begin{array}{ll}
& -b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n} \\
\Longrightarrow & -\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1} \\
\Longrightarrow \quad & \tilde{p}(\lambda) v_{1}=0
\end{array}
$$

Eigenvalues and Polynomial Root Finding

Conversely, suppose

$$
\left[\begin{array}{ccccc}
-b_{n-1} & -b_{n-2} & \cdots & -b_{1} & -b_{0} \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & & 0 & 0 \\
\vdots & & \ddots & & \vdots \\
0 & 0 & & 1 & 0
\end{array}\right] v=\lambda v
$$

for some $v \neq 0$. Then

$$
\text { - } v_{k+1}=\lambda v_{k} \Longrightarrow v_{k+1}=\lambda^{k} v_{1}, \quad k=1, \ldots, n-1
$$

$$
\begin{array}{ll}
& -b_{n-1} v_{n}-b_{n-2} v_{n-1} \cdots-b_{1} v_{2}-b_{0} v_{1}=\lambda v_{n} \\
\Longrightarrow & -\left(\lambda^{n-1} b_{n-1}+\lambda^{n-2} b_{n-2}+\cdots+\lambda b_{1}+b_{0}\right) v_{1}=\lambda^{n} v_{1} \\
\Longrightarrow & \tilde{p}(\lambda) v_{1}=0
\end{array}
$$

implying λ is a root of $\tilde{p}(z)$.

Eigenvalues and Polynomial Root Finding

Example:
Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is
with the characteristic polynomial

Eigenvalues and Polynomial Root Finding

Example:
Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

Eigenvalues and Polynomial Root Finding

Example:
Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

$$
\operatorname{det}(\mathcal{C}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 3 \\
1 & -\lambda
\end{array}\right)
$$

Eigenvalues and Polynomial Root Finding

Example:
Consider $p(z)=z^{2}+2 z-3$ with the roots $\lambda_{1}=-3, \lambda_{2}=1$.

The associated companion matrix is

$$
\mathcal{C}=\left[\begin{array}{rr}
-2 & 3 \\
1 & 0
\end{array}\right]
$$

with the characteristic polynomial

$$
\operatorname{det}(\mathcal{C}-\lambda I)=\operatorname{det}\left(\begin{array}{cc}
-2-\lambda & 3 \\
1 & -\lambda
\end{array}\right)=\lambda^{2}+2 \lambda-3
$$

Eigenvalues and Polynomial Root Finding

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Eigenvalues and Polynomial Root Finding

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Eigenvalues and Polynomial Root Finding

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Eigenvalues and Polynomial Root Finding

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Eigenvalues and Polynomial Root Finding

- It was shown by N.H. Abel (in the 19th century) that there is no algebraic formula for the roots of a polynomial of degree >4.
- Consequently, there can be no algorithm that can compute eigenvalues exactly in finitely many iterations.
- If there was such an algorithm, then the roots of any polynomial could be computed by means of the companion matrix.
- This would imply the existence of an algebraic formula for the roots of a polynomial (Contradicts with N. H. Abel's result).
- Need for iterative algorithms for eigenvalue computation

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Corollary of the Theorem
Since

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)
Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as
a root of $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the algebraic multip. of λ.

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Corollary of the Theorem

Since

$$
p(\lambda)=\operatorname{det}(A-\lambda /)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)
λ is an eigenvalue of $A \Longleftrightarrow \operatorname{det}(A-\lambda I)=0$

Corollary of the Theorem

Since

$$
p(\lambda)=\operatorname{det}(A-\lambda I)=a_{n} \lambda^{n}+\cdots+a_{1} \lambda+a_{0}
$$

is a polynomial of degree n, A has n (possibly complex) eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The multiplicity of λ as a root of $p(\lambda)=\operatorname{det}(A-\lambda I)$ is called the algebraic multip. of λ.

Calculation of Eigenvectors

Calculation of Eigenvectors

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$.
Then v is an eigenvector associated with $\lambda \Longleftrightarrow(A-\lambda I) v=0$ and $v \neq 0$.

Example: The matrix $A=$ has eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$

Calculation of Eigenvectors

Calculation of Eigenvectors

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$.
Then v is an eigenvector associated with $\lambda \Longleftrightarrow(A-\lambda I) v=0$ and $v \neq 0$.

Example:
The matrix $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ has eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$.

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

$$
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right] v_{2}=0
$$

Calculation of Eigenvectors

Find an eigenvector v_{1} associated with $\lambda_{1}=-3$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-(-3)\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{ll}
2 & 4 \\
1 & 2
\end{array}\right] v_{1}=0 \\
\Longrightarrow v_{1}=c\left[\begin{array}{r}
-2 \\
1
\end{array}\right]
\end{gathered}
$$

Finding an eigenvector v_{2} associated with $\lambda_{2}=1$ (below $c \neq 0$)

$$
\begin{gathered}
\left(\left[\begin{array}{rr}
-1 & 4 \\
1 & -1
\end{array}\right]-1\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right) v_{1}=\left[\begin{array}{rr}
-2 & 4 \\
1 & -2
\end{array}\right] v_{2}=0 \\
\Longrightarrow v_{2}=c\left[\begin{array}{l}
2 \\
1
\end{array}\right]
\end{gathered}
$$

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ set of eigenvectors of A assoc. with $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ set of eigenvectors of A assoc. with $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ set of eigenvectors of A assoc. with $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=($ set of eigenvectors of A assoc. with $\lambda) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

$$
x \in E_{\lambda} \quad \Longrightarrow A x=\lambda x \in E_{\lambda}
$$

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$

Eigenspace

Definition (Eigenspace)

Let λ be an eigenvalue of $A \in \mathbf{C}^{n \times n}$. The set $E_{\lambda}=\operatorname{Null}(A-\lambda /)$ is called the eigenspace of A associated with λ.

- $E_{\lambda}=$ (set of eigenvectors of A assoc. with $\left.\lambda\right) \cup\{0\}$
- E_{λ} is also called an invariant subspace of A, since

$$
x \in E_{\lambda} \Longrightarrow A x=\lambda x \in E_{\lambda}
$$

that is $\quad\left\{A x: x \in E_{\lambda}\right\} \subseteq E_{\lambda}$.

Geometric Multiplicity

e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ with the eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}{ }^{n \times n}$. The dimension of the eigenspace $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ associated with λ is called the geometric multiplicity of λ.

Geometric Multiplicity

e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ with the eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$

$$
E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} \text { and } E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\}
$$

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ associated with λ is called the geometric multiplicity of λ.

Geometric Multiplicity

e.g.

For $A=\left[\begin{array}{rr}-1 & 4 \\ 1 & -1\end{array}\right]$ with the eigenvalues $\lambda_{1}=-3, \lambda_{2}=1$

$$
E_{\lambda_{1}}=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} \text { and } E_{\lambda_{2}}=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right\} .
$$

Definition (Geometric Multiplicity)

Let $\lambda \in \mathbb{C}$ be an eigenvalue of $A \in \mathbb{C}^{n \times n}$. The dimension of the eigenspace $E_{\lambda}=\operatorname{Null}(A-\lambda I)$ associated with λ is called the geometric multiplicity of λ.

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

- By Newton's law of motion Net Force $=m a(t)$
- The friction and springs apply forces againstadispłacement

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

- By Newton's law of motion

$$
\text { Net Force }=m a(t)
$$

- The friction and springs apply forces againstadispłacement

Emre Mengi

Mass-Spring Systems

Motion of vibrating structures is governed by eigenvalues.

- By Newton's law of motion

$$
\text { Net Force }=m a(t)
$$

- The friction and springs apply forces against displacement

Mass Spring Systems

Notation

$$
\begin{gathered}
x(t): \text { displacement } \quad v(t)=x^{\prime}(t): \text { velocity } \\
a(t)=x^{\prime \prime}(t): \text { acceleration }
\end{gathered}
$$

Combining the equations for the net force yields

$m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t)$

$x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t)$

Mass Spring Systems

Notation

$$
\begin{gathered}
x(t): \text { displacement } \quad v(t)=x^{\prime}(t): \text { velocity } \\
a(t)=x^{\prime \prime}(t): \text { acceleration }
\end{gathered}
$$

Combining the equations for the net force yields

$$
m a(t)=-c v(t)-k x(t)
$$

$m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t)$

Mass Spring Systems

Notation

$$
\begin{gathered}
x(t): \text { displacement } \quad v(t)=x^{\prime}(t): \text { velocity } \\
a(t)=x^{\prime \prime}(t): \text { acceleration }
\end{gathered}
$$

Combining the equations for the net force yields

$$
\begin{aligned}
m a(t) & =-c v(t)-k x(t) \\
& \Longrightarrow \\
m x^{\prime \prime}(t) & =-c x^{\prime}(t)-k x(t)
\end{aligned}
$$

$$
x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t)
$$

Mass Spring Systems

Notation

$$
\begin{gathered}
x(t): \text { displacement } \quad v(t)=x^{\prime}(t): \text { velocity } \\
a(t)=x^{\prime \prime}(t): \text { acceleration }
\end{gathered}
$$

Combining the equations for the net force yields

$$
\begin{gathered}
m a(t)=-c v(t)-k x(t) \\
\Longrightarrow \\
m x^{\prime \prime}(t)=-c x^{\prime}(t)-k x(t) \\
\Longrightarrow \\
x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t)
\end{gathered}
$$

Mass Spring Systems

Notation

$$
\begin{gathered}
x(t): \text { displacement } \quad v(t)=x^{\prime}(t): \text { velocity } \\
a(t)=x^{\prime \prime}(t): \text { acceleration }
\end{gathered}
$$

Combining the equations for the net force yields

$$
\begin{gathered}
m a(t)=-c v(t)-k x(t) \\
\quad \begin{array}{c}
\Longrightarrow \\
m x^{\prime \prime}(t)
\end{array}=-c x^{\prime}(t)-k x(t) \\
\not x^{\prime \prime}(t)=-3 x^{\prime}(t)-2 x(t) \\
\Longrightarrow \\
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
\end{gathered}
$$

Mass Spring Systems

Notation

$x(t)$: displacement $\quad v(t)=x^{\prime}(t)$: velocity $a(t)=x^{\prime \prime}(t):$ acceleration

The equation of motion

$$
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
$$

can be expressed in terms of $v(t)$ and $x(t)$.

Mass Spring Systems

Notation

$x(t)$: displacement $\quad v(t)=x^{\prime}(t)$: velocity $a(t)=x^{\prime \prime}(t):$ acceleration

The equation of motion

$$
x^{\prime \prime}(t)+3 x^{\prime}(t)+2 x(t)=0
$$

can be expressed in terms of $v(t)$ and $x(t)$.

$$
\begin{aligned}
v^{\prime}(t)+3 v(t)+2 x(t) & =0 \\
-v(t)+x^{\prime}(t) & =0
\end{aligned}
$$

Mass Spring Systems

$$
\underbrace{\left[\begin{array}{c}
v^{\prime}(t) \\
x^{\prime}(t)
\end{array}\right]}_{y^{\prime}(t)}=\underbrace{\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
v(t) \\
x(t)
\end{array}\right]}_{y(t)}
$$

has the eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=-1$
with the assoc. eigenvectors $1 / 4=\left|\begin{array}{r|}-2 \\ 1\end{array}\right|$ and $v_{2}=$

Mass Spring Systems

$$
\underbrace{\left[\begin{array}{c}
v^{\prime}(t) \\
x^{\prime}(t)
\end{array}\right]}_{y^{\prime}(t)}=\underbrace{\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]}_{A} \underbrace{\left[\begin{array}{c}
v(t) \\
x(t)
\end{array}\right]}_{y(t)}
$$

$$
A=\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right]
$$

has the eigenvalues $\lambda_{1}=-2$ and $\lambda_{2}=-1$
with the assoc. eigenvectors $v_{1}=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
y^{\prime}(t)=\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t}
$$

$=A y(t)$

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right)
\end{aligned}
$$

$=A\left(c_{1} e^{\lambda_{1} t} V_{1}+c_{2} e^{\lambda_{2} t} V_{2}\right)$
$=A y(t)$

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right) \\
& =A\left(c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}\right)
\end{aligned}
$$

Mass Spring Systems

- The solution for the system $y^{\prime}(t)=A y(t)$ is of the form

$$
\begin{aligned}
y(t) & =c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2} \\
& =c_{1} e^{-2 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right] .
\end{aligned}
$$

- Verify that $y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}$ is a solution

$$
\begin{aligned}
y^{\prime}(t) & =\lambda_{1} v_{1} c_{1} e^{\lambda_{1} t}+\lambda_{2} v_{2} c_{2} e^{\lambda_{2} t} \\
& =A v_{1}\left(c_{1} e^{\lambda_{1} t}\right)+A v_{2}\left(c_{2} e^{\lambda_{2} t}\right) \\
& =A\left(c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}\right) \\
& =A y(t)
\end{aligned}
$$

Differential Equations

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t)
$$

- Assume that A has n distinct eigenvalues. - Denote the eigenvalues with $\lambda_{1}, \ldots, \lambda_{n}$, and - the associated eigenvectors with v_{1}, \ldots, v_{n}.
- The solution $y(t): \mathbb{R} \rightarrow \mathbb{C}^{n}$ is of the form

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Differential Equations

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t) .
$$

- Assume that A has n distinct eigenvalues.
- Denote the eigenvalues with $\lambda_{1}, \ldots, \lambda_{n}$, and
- the associated eigenvectors with v_{1}, \ldots, v_{n}.
- The solution $y(t): \mathbb{R} \rightarrow \mathbb{C}^{n}$ is of the form

Differential Equations

- Suppose $A \in \mathbb{R}^{n \times n}$. Consider the differential equation

$$
y^{\prime}(t)=A y(t) .
$$

- Assume that A has n distinct eigenvalues.
- Denote the eigenvalues with $\lambda_{1}, \ldots, \lambda_{n}$, and
- the associated eigenvectors with v_{1}, \ldots, v_{n}.
- The solution $y(t): \mathbb{R} \rightarrow \mathbb{C}^{n}$ is of the form

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Differential Equations

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.
- The frequency of the vibrations depend on

$$
e^{i t \Im \lambda_{k}}=\cos \left(t \Im \lambda_{k}\right)+i \sin \left(t \Im \lambda_{k}\right),
$$

Differential Equations

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)}_{\text {frequency }} v_{k}
$$

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.
- The frequency of the vibrations depend on

therefore the imaginary part of λ_{k}.

Differential Equations

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)}_{\text {frequency }} v_{k}
$$

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.
- The frequency of the vibrations depend on
therefore the imaginary part of λ_{k}.

Differential Equations

$$
y(t)=c_{1} e^{\lambda_{1} t} v_{1}+c_{2} e^{\lambda_{2} t} v_{2}+\cdots+c_{n} e^{\lambda_{n} t} v_{n}
$$

Consider an eigenvalue $\lambda_{k}=\Re \lambda_{k}+i \Im \lambda_{k}$ where $\Re \lambda_{k}, \Im \lambda_{k} \in \mathbb{R}$.

$$
c_{k} e^{\lambda_{k} t} v_{k}=c_{k} \underbrace{\left(e^{t \Re \lambda_{k}}\right)}_{\text {amplitude }} \underbrace{\left(e^{i t \Im \lambda_{k}}\right)}_{\text {frequency }} v_{k}
$$

- The amplitude of the vibrations (i.e. $\|y(t)\|)$ depend on $e^{t \Re \lambda_{k}}$, therefore the real part of λ_{k}.
- The frequency of the vibrations depend on

$$
e^{i t \Im \lambda_{k}}=\cos \left(t \Im \lambda_{k}\right)+i \sin \left(t \Im \lambda_{k}\right)
$$

therefore the imaginary part of λ_{k}.

Stability

- The system $y^{\prime}(t)=A y(t)$ is called asymptotically stable if for all initial conditions $y(0) \in \mathbb{R}^{n}$

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

- Asymptotic stability is equivalent to

for each $k=1, \ldots, n$

Stability

- The system $y^{\prime}(t)=A y(t)$ is called asymptotically stable if for all initial conditions $y(0) \in \mathbb{R}^{n}$

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

- Asymptotic stability is equivalent to

Stability

- The system $y^{\prime}(t)=A y(t)$ is called asymptotically stable if for all initial conditions $y(0) \in \mathbb{R}^{n}$

$$
y(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty
$$

- Asymptotic stability is equivalent to

$$
e^{t \Re \lambda_{k}} \rightarrow 0 \text { as } t \rightarrow \infty \quad \Longleftrightarrow \quad \Re \lambda_{k}<0
$$

for each $k=1, \ldots, n$

Stability

Asymptotic Stability

The system $y^{\prime}(t)=A y(t)$ is asymptotically stable
All of the eigenvalues of A have negative real parts

Example:
 The system

with eigenvalues $\lambda_{1}=-2, \lambda_{2}=-1$ is asymptotically stable.

Stability

Asymptotic Stability

The system $y^{\prime}(t)=A y(t)$ is asymptotically stable

All of the eigenvalues of A have negative real parts

Example:
The system

$$
y^{\prime}(t)=\left[\begin{array}{rr}
-3 & -2 \\
1 & 0
\end{array}\right] y(t)
$$

with eigenvalues $\lambda_{1}=-2, \lambda_{2}=-1$ is asymptotically stable.

