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Basic Definitions
Motivation

Definition (Eigenvalues and Eigenvectors)

Let A ∈ Cn×n. Suppose that

Ax = λx

for some scalar λ ∈ C and nonzero vector x ∈ Cn. Then
(i) λ is called an eigenvalue of A, and

(ii) x is called an eigenvector of A associated with λ.
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Example:[
1 0
0 3

]
︸ ︷︷ ︸

A

[
1
0

]
︸ ︷︷ ︸

x1

= 1︸︷︷︸
λ1

[
1
0

]
︸ ︷︷ ︸

x1

and
[

1 0
0 3

]
︸ ︷︷ ︸

A

[
0
1

]
︸ ︷︷ ︸

x2

= 3︸︷︷︸
λ2

[
0
1

]
︸ ︷︷ ︸

x2

λ1 = 1 and λ2 = 3 are eigenvalues of A.

x1 =

[
1
0

]
, x2 =

[
0
1

]
are eigenvectors assoc with λ1, λ2.
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Eigenvalues and Polynomial Root Finding

For any eigenvalue problem there is an equivalent polynomial
root-finding problem.

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Proof:
λ is an eigenvalue of A ⇐⇒ Ax = λx ∃x 6= 0

⇐⇒ Ax − λx = (A− λI)x = 0 ∃x 6= 0
⇐⇒ A− λI is singular
⇐⇒ det(A− λI) = 0
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Eigenvalues and Polynomial Root Finding

Example:

A =

[
−1 4

1 −1

]

det(A− λI)) = det
([
−1 4

1 −1

]
− λ

[
1 0
0 1

])
= det

([
−1− λ 4

1 −1− λ

])
= (−1− λ)2 − 4 = λ2 + 2λ− 3

Eigenvalues of A
det(A− λI) = λ2 + 2λ− 3 = (λ+ 3)(λ− 1),

so the eigenvalues are λ1 = −3, λ2 = 1.
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Eigenvalues and Polynomial Root Finding

Definition (Characteristic Polynomial)

p(λ) = det(A− λI) is a monic polynomial of λ of degree n and
called the characteristic polynomial of A.

e.g.

The characteristic polynomial for A =

[
−1 4

1 −1

]
p(λ) = det(A− λI) = λ2 + 2λ− 3

The eigenvalues of A ∈ Cn×n are the roots of its characteristic
polynomial.
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Eigenvalues and Polynomial Root Finding

For any polynomial there is an equivalent eigenvalue problem
whose eigenvalues are same as the roots of the polynomial.

Consider any polynomial of degree n
p(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 where an 6= 0.

Define the monic polynomial p̃(z) = p(z)/an.

p̃(z) = zn +
an−1

an
zn−1 + · · ·+ a1

an
z + a0

an

= zn + bn−1zn−1 + · · ·+ b1z + b0
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Eigenvalues and Polynomial Root Finding

Theorem (Roots and Companion Matrices)

λ is a root of p̃(z) = zn + bn−1zn−1 + bn−2zn−2 + · · ·+ b1z + b0
⇐⇒

λ is an eigenvalue of the n × n companion matrix

C =


−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0
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Eigenvalues and Polynomial Root Finding

Proof:
Suppose p̃(λ) = 0. Then
−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0



λn−1

...
λ
1

 =


−bn−1λ

n−1 − bn−2λ
n−2 − · · · − b0

λn−1

...
λ

 = λ


λn−1

...
λ
1

 .
Consequently, λ is an eigenvalue of C.
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Eigenvalues and Polynomial Root Finding

Conversely, suppose
−bn−1 −bn−2 . . . −b1 −b0

1 0 . . . 0 0
0 1 0 0
...

. . .
...

0 0 1 0

 v = λv

for some v 6= 0. Then
vk+1 = λvk =⇒ vk+1 = λkv1, k = 1, . . . ,n − 1

−bn−1vn − bn−2vn−1 · · · − b1v2 − b0v1 = λvn
=⇒ −(λn−1bn−1 + λn−2bn−2 + · · ·+ λb1 + b0)v1 = λnv1
=⇒ p̃(λ)v1 = 0

implying λ is a root of p̃(z).
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Eigenvalues and Polynomial Root Finding

Example:
Consider p(z) = z2 + 2z − 3 with the roots λ1 = −3, λ2 = 1.

The associated companion matrix is

C =
[
−2 3

1 0

]
with the characteristic polynomial

det(C − λI) = det
(
−2− λ 3

1 −λ

)
= λ2 + 2λ− 3
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Eigenvalues and Polynomial Root Finding

It was shown by N.H. Abel (in the 19th century) that there
is no algebraic formula for the roots of a polynomial of
degree > 4.

Consequently, there can be no algorithm that can compute
eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.
This would imply the existence of an algebraic formula for the roots of a
polynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation
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eigenvalues exactly in finitely many iterations.

If there was such an algorithm, then the roots of any polynomial could be
computed by means of the companion matrix.
This would imply the existence of an algebraic formula for the roots of a
polynomial (Contradicts with N. H. Abel’s result).

Need for iterative algorithms for eigenvalue computation
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Algebraic Multiplicity

Theorem (Eigenvalues and Characteristic Polynomial)

λ is an eigenvalue of A⇐⇒ det(A− λI) = 0

Corollary of the Theorem
Since

p(λ) = det(A− λI) = anλ
n + · · ·+ a1λ+ a0

is a polynomial of degree n, A has n (possibly complex)
eigenvalues (counting the multiplicities).

Definition (Algebraic Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The multiplicity of λ as
a root of p(λ) = det(A− λI) is called the algebraic multip. of λ.
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Calculation of Eigenvectors

Let λ ∈ C be an eigenvalue of A ∈ Cn×n.
Then v is an eigenvector associated with λ⇐⇒ (A− λI)v = 0
and v 6= 0.

Example:

The matrix A =

[
−1 4

1 −1

]
has eigenvalues λ1 = −3, λ2 = 1.
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Calculation of Eigenvectors

Find an eigenvector v1 associated with λ1 = −3 (below c 6= 0)([
−1 4

1 −1

]
− (−3)

[
1 0
0 1

])
v1 =

[
2 4
1 2

]
v1 = 0

=⇒ v1 = c
[
−2

1

]

Finding an eigenvector v2 associated with λ2 = 1 (below c 6= 0)([
−1 4

1 −1

]
− 1

[
1 0
0 1

])
v1 =

[
−2 4

1 −2

]
v2 = 0

=⇒ v2 = c
[

2
1

]
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Definition (Eigenspace)

Let λ be an eigenvalue of A ∈ Cn×n. The set Eλ = Null(A− λI)
is called the eigenspace of A associated with λ.

Eλ = (set of eigenvectors of A assoc. with λ) ∪ {0}

Eλ is also called an invariant subspace of A, since
x ∈ Eλ =⇒ Ax = λx ∈ Eλ

that is {Ax : x ∈ Eλ} ⊆ Eλ.
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Geometric Multiplicity

e.g.

For A =

[
−1 4

1 −1

]
with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span
{[
−2

1

]}
and Eλ2 = span

{[
2
1

]}
.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of the
eigenspace Eλ = Null(A− λI) associated with λ is called the
geometric multiplicity of λ.

Emre Mengi



Basic Definitions
Motivation

Geometric Multiplicity

e.g.

For A =

[
−1 4

1 −1

]
with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span
{[
−2

1

]}
and Eλ2 = span

{[
2
1

]}
.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of the
eigenspace Eλ = Null(A− λI) associated with λ is called the
geometric multiplicity of λ.

Emre Mengi



Basic Definitions
Motivation

Geometric Multiplicity

e.g.

For A =

[
−1 4

1 −1

]
with the eigenvalues λ1 = −3, λ2 = 1

Eλ1 = span
{[
−2

1

]}
and Eλ2 = span

{[
2
1

]}
.

Definition (Geometric Multiplicity)

Let λ ∈ C be an eigenvalue of A ∈ Cn×n. The dimension of the
eigenspace Eλ = Null(A− λI) associated with λ is called the
geometric multiplicity of λ.

Emre Mengi



Basic Definitions
Motivation

Mass-Spring Systems

c = 3N.sec/m

Spring constant

Friction constant

m = 1kg

k = 2N/m Motion of vibrating structures is
governed by eigenvalues.

By Newton’s law of motion
Net Force = ma(t)

The friction and springs apply forces against displacement
Net Force = −c v(t)− k x(t)Emre Mengi
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Mass Spring Systems

Notation
x(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

Combining the equations for the net force yields

ma(t) = −cv(t)− kx(t)
=⇒

mx ′′(t) = −cx ′(t)− kx(t)
=⇒

x ′′(t) = −3x ′(t)− 2x(t)
=⇒

x ′′(t) + 3x ′(t) + 2x(t) = 0
Emre Mengi
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Mass Spring Systems

Notation
x(t) : displacement v(t) = x ′(t) : velocity

a(t) = x ′′(t) : acceleration

The equation of motion

x ′′(t) + 3x ′(t) + 2x(t) = 0

can be expressed in terms of v(t) and x(t).

v ′(t) + 3v(t) + 2x(t) = 0
−v(t) + x ′(t) = 0
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Mass Spring Systems

[
v ′(t)
x ′(t)

]
︸ ︷︷ ︸

y ′(t)

=

[
−3 −2

1 0

]
︸ ︷︷ ︸

A

[
v(t)
x(t)

]
︸ ︷︷ ︸

y(t)

A =

[
−3 −2

1 0

]

has the eigenvalues λ1 = −2 and λ2 = −1

with the assoc. eigenvectors v1 =

[
−2

1

]
and v2 =

[
−1

1

]
.
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Mass Spring Systems

The solution for the system y ′(t) = Ay(t) is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2

= c1e−2t
[
−2

1

]
+ c2e−t

[
−1

1

]
.

Verify that y(t) = c1eλ1tv1 + c2eλ2tv2 is a solution

y ′(t) = λ1v1c1eλ1t + λ2v2c2eλ2t

= Av1(c1eλ1t) + Av2(c2eλ2t)
= A(c1eλ1tv1 + c2eλ2tv2)
= Ay(t)
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Differential Equations

Suppose A ∈ Rn×n. Consider the differential equation

y ′(t) = Ay(t).

Assume that A has n distinct eigenvalues.
Denote the eigenvalues with λ1, . . . , λn, and
the associated eigenvectors with v1, . . . , vn.

The solution y(t) : R→ Cn is of the form

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn
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Differential Equations

y(t) = c1eλ1tv1 + c2eλ2tv2 + · · ·+ cneλntvn

Consider an eigenvalue λk = <λk + i=λk where <λk ,=λk ∈ R.

ckeλk tvk = ck

(
et<λk

)
︸ ︷︷ ︸
amplitude

(
eit=λk

)
︸ ︷︷ ︸
frequency

vk

The amplitude of the vibrations (i.e. ‖y(t)‖) depend on
et<λk , therefore the real part of λk .
The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),
therefore the imaginary part of λk .
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The frequency of the vibrations depend on

eit=λk = cos(t=λk ) + i sin(t=λk ),
therefore the imaginary part of λk .
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Stability

The system y ′(t) = Ay(t) is called asymptotically stable if
for all initial conditions y(0) ∈ Rn

y(t)→ 0 as t →∞.

Asymptotic stability is equivalent to
et<λk → 0 as t →∞ ⇐⇒ <λk < 0

for each k = 1, . . . ,n
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Asymptotic Stability

The system y ′(t) = Ay(t) is asymptotically stable
⇐⇒

All of the eigenvalues of A have negative real parts

Example:
The system

y ′(t) =
[
−3 −2

1 0

]
y(t)

with eigenvalues λ1 = −2, λ2 = −1 is asymptotically stable.
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