MATH 504: Numerical Methods - I

 $\begin{array}{c} Midterm\ -\ Fall\ 2011\\ Duration\ :\ 90\ minutes \end{array}$

	#1	20	
	#2	20	
NAME	#3	20	
	 #4	20	
Student ID	#5	20	
	Σ	100	
SIGNATURE			

- Put your name and student ID in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book, but an open-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Consider the matrix

$$A = \left[\begin{array}{cc} 2 & -3 \\ 3 & 2 \end{array} \right]$$

(a) Find the 2-norm of A.

(b) Calculate a singular value decomposition for A.

Question 2. Let

$$A = \left[\begin{array}{rrr} 1 & 1 \\ 0 & 1 \\ -1 & 1 \end{array} \right],$$

 $S_1 = \operatorname{Range}(A)$, and $S_2 = S_1^{\perp}$. (Here S_1^{\perp} denotes the orthogonal complement of S_1 , that is $S_1 \perp S_1^{\perp}$ and $S_1 \oplus S_1^{\perp} = \mathbb{R}^3$.)

(a) Find the orthogonal projector onto S_1 .

(b) Find the orthogonal projector onto S_2 .

Question 3. A scalar $\lambda \in \mathbb{C}$ is called an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $v \in \mathbb{C}^n$ such that

$$Av = \lambda v.$$

Derive an expression for the matrix closest to A with respect to the 2-norm with λ as an eigenvalue. Formally determine $A + \Delta A_*$ where ΔA_* is a global minimizer for the problem

minimize {
$$\|\Delta A\|_2 \mid \Delta A \in \mathbb{C}^{n \times n}$$
 such that $(A + \Delta A)x = \lambda x \exists x \neq 0$ }

Your expression must be in terms of singular values and singular vectors.

Question 4. Two matrices $A, B \in \mathbb{C}^{m \times n}$ are said to be unitarily equivalent if there exist unitary transformations $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that A = UBV.

Show that A and B are unitarily equivalent if and only if they have precisely the same set of singular values.

Question 5. Every matrix $A \in \mathbb{C}^{2n \times 2n}$ has a factorization of the form

$$A = \tilde{Q}R \tag{1}$$

where $R \in \mathbb{C}^{2n \times 2n}$ is upper triangular, and $\tilde{Q} \in \mathbb{C}^{2n \times 2n}$ is such that

- (i) $\{\tilde{q}_{2j-1} \mid j = 1, ..., n\}$ is orthonormal,
- (ii) $\{\tilde{q}_{2j} \mid j = 1, \ldots, n\}$ is orthonormal,

Midterm

- (iii) span{ $\tilde{q}_{2j-1} \mid j = 1, ..., n$ } = span{ $a_{2j-1} \mid j = 1, ..., n$ }, and
- (iv) $\operatorname{span}\{\tilde{q}_{2j} \mid j = 1, \dots, n\} = \operatorname{span}\{a_{2j} \mid j = 1, \dots, n\}$

where $\tilde{q}_j, a_j \in \mathbb{C}^{2n}$ denote the *j*th columns of \tilde{Q} and A, respectively.

Write down a pseudocode to compute a factorization of the form (1) for $A \in \mathbb{C}^{2n \times 2n}$. Also perform a flop count for your pseudocode.