# Math 504: Numerical Methods - I 

Midterm - Fall 2011
Duration : 90 minutes

NAME

Student ID

| $\# 1$ | 20 |  |
| :--- | ---: | :--- |
| $\# 2$ | 20 |  |
| $\# 3$ | 20 |  |
| $\# 4$ | 20 |  |
| $\# 5$ | 20 |  |
| $\Sigma$ | 100 |  |

Signature

- Put your name and student ID in the space provided above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book, but an open-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Consider the matrix

$$
A=\left[\begin{array}{rr}
2 & -3 \\
3 & 2
\end{array}\right]
$$

(a) Find the 2-norm of $A$.
(b) Calculate a singular value decomposition for $A$.

Question 2. Let

$$
A=\left[\begin{array}{rr}
1 & 1 \\
0 & 1 \\
-1 & 1
\end{array}\right]
$$

$\mathcal{S}_{1}=\operatorname{Range}(A)$, and $\mathcal{S}_{2}=\mathcal{S}_{1}^{\perp}$. (Here $\mathcal{S}_{1}^{\perp}$ denotes the orthogonal complement of $\mathcal{S}_{1}$, that is $\mathcal{S}_{1} \perp \mathcal{S}_{1}^{\perp}$ and $\mathcal{S}_{1} \oplus \mathcal{S}_{1}^{\perp}=\mathbb{R}^{3}$.)
(a) Find the orthogonal projector onto $\mathcal{S}_{1}$.
(b) Find the orthogonal projector onto $\mathcal{S}_{2}$.

Question 3. A scalar $\lambda \in \mathbb{C}$ is called an eigenvalue of $A \in \mathbb{C}^{n \times n}$ if there exists a nonzero vector $v \in \mathbb{C}^{n}$ such that

$$
A v=\lambda v
$$

Derive an expression for the matrix closest to $A$ with respect to the 2 -norm with $\lambda$ as an eigenvalue. Formally determine $A+\Delta A_{*}$ where $\Delta A_{*}$ is a global minimizer for the problem

$$
\operatorname{minimize}\left\{\|\Delta A\|_{2} \mid \Delta A \in \mathbb{C}^{n \times n} \text { such that }(A+\Delta A) x=\lambda x \exists x \neq 0\right\}
$$

Your expression must be in terms of singular values and singular vectors.
Question 4. Two matrices $A, B \in \mathbb{C}^{m \times n}$ are said to be unitarily equivalent if there exist unitary transformations $U \in \mathbb{C}^{m \times m}$ and $V \in \mathbb{C}^{n \times n}$ such that $A=U B V$.

Show that $A$ and $B$ are unitarily equivalent if and only if they have precisely the same set of singular values.

Question 5. Every matrix $A \in \mathbb{C}^{2 n \times 2 n}$ has a factorization of the form

$$
\begin{equation*}
A=\tilde{Q} R \tag{1}
\end{equation*}
$$

where $R \in \mathbb{C}^{2 n \times 2 n}$ is upper triangular, and $\tilde{Q} \in \mathbb{C}^{2 n \times 2 n}$ is such that
(i) $\left\{\tilde{q}_{2 j-1} \mid j=1, \ldots, n\right\}$ is orthonormal,
(ii) $\left\{\tilde{q}_{2 j} \mid j=1, \ldots, n\right\}$ is orthonormal,
(iii) $\operatorname{span}\left\{\tilde{q}_{2 j-1} \mid j=1, \ldots, n\right\}=\operatorname{span}\left\{a_{2 j-1} \mid j=1, \ldots, n\right\}$, and (iv) $\operatorname{span}\left\{\tilde{q}_{2 j} \mid j=1, \ldots, n\right\}=\operatorname{span}\left\{a_{2 j} \mid j=1, \ldots, n\right\}$
where $\tilde{q}_{j}, a_{j} \in \mathbb{C}^{2 n}$ denote the $j$ th columns of $\tilde{Q}$ and $A$, respectively.
Write down a pseudocode to compute a factorization of the form (1) for $A \in \mathbb{C}^{2 n \times 2 n}$. Also perform a flop count for your pseudocode.

