Math 504: Numerical Methods - I

Midterm2 - Fall 2011
Duration : 90 minutes

NAME

Student ID

$\# 1$	20	
$\# 2$	20	
$\# 3$	20	
$\# 4$	20	
$\# 5$	20	
Σ	100	

Signature

- Put your name and student ID in the boxes above.
- No calculators or any other electronic devices are allowed.
- This is a closed-book and closed-notes exam.
- Show all of your work; full credit will not be given for unsupported answers.

Question 1. Let

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
1 & 1
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{rr}
1 & 1 \\
1 & 0 \\
1 & -1
\end{array}\right]
$$

(a) Find a left inverse A^{L} of A.
(b) Find the projector onto Range (A) along $\operatorname{Null}\left(A^{L}\right)$.
(c) Find the pseudoinverse B^{+}of B.
(d) Find the orthogonal projector onto Range (B).

Question 2. Suppose that the product $y=A x$ is performed in the IEEE floating point arithmetic where $x \in \mathbb{C}^{n}$ and $A \in \mathbb{C}^{n \times n}$

Find a tight upper bound for the relative forward error

$$
\frac{\|\tilde{y}-y\|_{1}}{\|y\|_{1}}
$$

where \tilde{y} is the computed value of y.
(Note: Tight means for some matrices the upper bound becomes an exact equality.)

Question 3. Every matrix $A \in \mathbb{C}^{m \times n}$ has a factorization of the form

$$
A=Q L
$$

where $Q \in \mathbb{C}^{m \times m}$ is unitary and $L \in \mathbb{C}^{m \times n}$ is lower triangular.
Devise an algorithm to calculate the QL factorization of $A \in \mathbb{C}^{m \times n}$ based on Householder reflectors. Write down a pseudocode for your algorithm and calculate the total number of flops required.

Question 4. The life expectancy in Canada is listed at various years in the table below.

t (year)	$s=(t-1950) / 5$	y (life expectancy at birth)
1965	$s_{1}=3$	$y_{1}=72$
1970	$s_{2}=4$	$y_{2}=73$
2010	$s_{3}=12$	$y_{3}=82$

(a) Pose the problem of finding the line $\ell(s)=x_{1} s+x_{0}$ minimizing

$$
\sqrt{\sum_{i=1}^{3}\left(\ell\left(s_{i}\right)-y_{i}\right)^{2}}
$$

with respect to the unknows $x_{0}, x_{1} \in \mathbb{R}$ as a least-squares problem of the form

$$
\operatorname{minimize}_{x \in \mathbb{R}^{2}}\|A x-b\|_{2}
$$

(b) Solve the least squares problem in (a), consequently determine the line that best represents the life expectancy in Canade in the least-squares sense, by using the normal equations. Is the solution to the least squares problem unique?

Question 5. This question concerns the LU factorization for tridiagonal matrices. A matrix is $T \in \mathbb{C}^{n \times n}$ is tridiagonal if $t_{i j}=0$ for all i, j such that $|i-j|>1$.
(a) Calculate an LU factorization for the tridiagonal matrix

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
2 & 1 & -1 \\
0 & 2 & 1
\end{array}\right] .
$$

(b) Suppose that a tridiagonal matrix T is row-reducible to an upper triangular matrix by only applying row-replace operations. Show that $T=L U$ for some lower triangular matrix L and upper triangular matrix U with the property that $\ell_{i j}=u_{i j}=0$ for all i, j such that $|i-j|>1$.

