
#### Abstract

Cocliques in the Kneser graph on the point-hyperplane flags of a projective space

The point-hyperplane Kneser graph is defined on the point-hyperplane flags $(P, H)$ where the point $P$ is in the hyperplane $H$ of $n$-dimensional vector space $V$ over $F(q)$. Two flags $(P, H)$, and $\left(P^{\prime}, H^{\prime}\right)$ are adjacent if $P$ is not in $H^{\prime}$ and $P^{\prime}$ is not in $H$. The problem is to find the maximal cocliques in this graph, so it is analogous to the Erdös-Ko-Rado theorem describing the maximal cocliques in the classical Kneser graph $K(n, k)$.

This problem is solved in a recent paper with Aart Blokhuis and Andries E. Brouwer. The size of maximal colciques is proved to be $1+2 q+3 q^{2}+\ldots+(n-1) q^{(n-2)}$. The maximal number of points involved in a maximal coclique is proved to be $1+q+q^{2}+\ldots+q^{(n-2)}$, which is the number of points in a hyperplane in an n-dimensional vector space. Since the problem is self dual, this is also the number of hyperplanes invloved in a maximal coclique. For the number of points involved, the characterization of the maximal cocliques where this bound is attained is also done. In this talk, I will describe the proof of the results of this work.


