KOÇ UNIVERSITY
 MATH 106 - CALCULUS I
 Final Exam January 6, 2014
 Duration of Exam: 120 minutes

INSTRUCTIONS: CALCULATORS ARE NOT ALLOWED FOR THIS EXAM. No books, no notes, no questions and no talking allowed. You must always explain your answers and show your work to receive full credit. Use the back of these pages if necessary. Print (use CAPITAL LETTERS) and sign your name, and indicate your section below.

Surname, Name:

Signature: \qquad

Section (Check One):
Lecture 1 (Haluk Oral

- MW 14:00-15:15)

Lecture 2 (Selda Küçükçifçi

- MW 11:00-12:15)

Lecture 3 (Selda Küçükçifçi

- MW 12:30-13:45)

Lecture 4 (Haluk Oral

- MW 15:30-16:45)
$: \quad-$
$: \quad-\quad$

PROBLEM	POINTS	
1	35	
2	7	
3	10	
4	7	
5	21	
6	7	
7	7	
8	12	
TOTAL	$\mathbf{1 0 6}$	

1. Evaluate the integrals in (a)-(e).
(a) $\left(7\right.$ points) $\int \frac{5+2 x}{(1+x)^{2}} d x$
(b) (8 points) $\int_{1}^{e^{2}} \frac{5+2 \ln x}{x(1+\ln x)^{2}} d x$
(c) (6 points) $\int \arcsin x d x$
(d) (6 points) $\int \cos ^{3} x d x$
(e) $(8$ points $) \int_{1}^{\sqrt{2}} \frac{d x}{x^{2} \sqrt{4-x^{2}}}$
2. (7 points) Use a linear approximation to estimate $(2.001)^{5}$.
3. (10 points) Find absolute maximum and absolute minimum points of the function

$$
f(t)=t\left(4-t^{2}\right)^{3 / 2} \quad \text { in } \quad[-1,2]
$$

4. (7 points) Suppose f is an odd function and is differentiable everywhere. Prove that for every positive number b, there exists a number c in $(-b, b)$ such that $f^{\prime}(c)=f(b) / b$.
5. Determine whether the following improper integrals are convergent or divergent.
(a) (7 points) $\int_{0}^{\infty} \frac{d x}{2 x+1}$
(b) (7 points) $\int_{0}^{\infty} \frac{e^{x}}{2 x+1} d x$
(c) (7 points) $\int_{1}^{4} \frac{1}{x-3} d x$
6. (7 points) Find a function f and a number a such that $6+\int_{a}^{x} \frac{f(t)}{t^{2}} d t=2 \sqrt{x}$ for all $x>0$.
7. (7 points) Find the area of the region bounded by $y=x+1$ and $y=(x-1)^{2}$.
8. (12 points) Let R be the region enclosed by $y=\sin x, y=1, x=0$ and $x=\pi$. Calculate the volume of the solid obtained by rotating R around $y=1$.
