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a b s t r a c t 

Interface-resolved direct numerical simulations are performed to examine the combined effects of solu- 

ble surfactant and viscoelasticity on the structure of a bubbly turbulent channel flow. The incompressible 

flow equations are solved fully coupled with the FENE-P viscoelastic model and the equations govern- 

ing interfacial and bulk surfactant concentrations. The latter coupling is achieved through a non-linear 

equation of state which relates the surface tension to the surfactant concentration at the interface. The 

two-fluid Navier-Stokes equations are solved using a front-tracking method, augmented with a very ef- 

ficient FFT-based pressure projection method that allows for massively parallel simulations of turbulent 

flows. It is found that, for the surfactant-free case, bubbles move toward the wall due to inertial lift force, 

resulting in formation of wall layers and a significant decrease in the flow rate. Conversely, a high-enough 

concentration of surfactant changes the direction of lateral migration of bubbles, i.e., the contaminated 

bubbles move toward the core region and spread out across the channel. When viscoelasticity is consid- 

ered, viscoelastic stresses counteract the Marangoni stresses, promoting formation of bubbly wall-layers 

and consequently strong decrease in the flow rate. The formation of bubble wall-layers for combined case 

depends on the interplay of the inertial and elastic, and Marangoni forces. 

© 2020 Elsevier Ltd. All rights reserved. 

1

 

b  

fl  

p  

u  

I  

m  

p  

b  

a  

fl  

t  

u  

i  

p  

s  

c  

i  

f

 

d  

N  

O  

h  

m  

r  

e  

g  

t  

o  

f  

m  

i  

u  

h

0

. Introduction 

Complex fluids containing polymer additives exhibit viscoelastic

ehavior and surfactant is often added to manipulate multiphase

ows. The viscoelasticity and surfactant coexist in many multi-

hase flow systems of practical interest such as household prod-

cts, the oil and gas industry, and heating and cooling processes.

n many cases the flow can be turbulent, exhibiting chaotic and

ulti-scale dynamics, and thus making the flow extremely com-

lex. Polymer additives exhibit various exotic behaviors that can

e exploited to perform useful functions. For instance, addition of

 very small volume fraction of polymer particles in a suspending

uid can lead up to 80% drag reduction in turbulent wall-bounded

ransport [45] . This phenomenon is very sophisticated and its full

nderstanding remains elusive, see e.g. [45] . Even the flow instabil-

ties leading to the onset of turbulence are greatly modified by the

resence of polymers [2] . Introducing a second gaseous phase with

urfactant contamination into this problem results in even more
∗ Corresponding author. 
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omplex and exciting dynamics, as the two-fluid interface dynam-

cs is tightly coupled with the elastic turbulence and the local sur-

actant concentration. 

Numerous studies have analysed the effect of solid particles and

rops or bubbles under gravity in an otherwise quiescent non-

ewtonian fluid, see e.g., Zenit and Feng [47] for a recent review.

ther studies have focused on the rheology of such suspensions in

ighly laminar low Reynolds number shear flows [7] . Cross-stream

igration of particles is of particular interest as it plays a critical

ole in many engineering and biological flows [21] . Studies on the

ffect of viscoelasticity on the lateral migration of a droplet sug-

est various opposing scenarios of migration towards wall or cen-

er of a channel. Chan and Leal [4] performed an analysis based

n the small perturbations using a second order fluid model and

ound that the viscoelasticity contained in either phase promotes

igration away from the wall. Mukherjee and Sarkar [30] exam-

ned the motion of a Newtonian droplet in a viscoelastic medium

sing a front-tracking method at a low Reynolds number and pro-

osed a semi-analytic theory to explain the observed behavior

ased on the numerical simulations. In contrast with findings of

han and Leal [4] , they found that there is a net viscoelastic lift

orce acting on the droplet stemming from the normal stress dif-

https://doi.org/10.1016/j.compfluid.2020.104717
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104717&domain=pdf
mailto:mmuradoglu@ku.edu.tr
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Fig. 1. Schematic representation of the computational setup considered in the 

present work. The contours on the plane represent streamwise velocity with the 

scale ranging from 0 . 15 W 

∗
b 

(blue) to 1 . 1 W 

∗
b 

(red) where W 

∗
b 

is the average bulk ve- 

locity in the single-phase case. The contours on the bubble surface represent in- 

terfacial surfactant concentration ( �) with the scale ranging from 0 (blue) to 0.15 

(red). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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ferences, which drives a droplet towards the wall. More recently,

Hazra et al. [14] experimentally examined the cross-stream mo-

tion of a viscoelastic drop in a viscoelastic medium in the Stokes

flow regime. They proposed a presence of a viscoelasticity-induced

lift force in the droplet-phase driving a droplet towards center of

a channel. D’Avino et al. [6] and Yuan et al. [46] have provided

detailed reviews on the migration of a particle in a viscoelastic

fluid. The detailed numerical simulations by Mukherjee and Sarkar

[30] provide an explanation for the conflicting results about the

cross-stream migration of a droplet in a viscoelastic continuous

phase. They pointed out the importance of drop inclination (i.e.,

its alignment with the flow) as well as drop deformation. They

showed that viscoelasticity reduces drop inclination and deforma-

tion varies non-monotonically, and the subtle competition between

these two effects determines the net effect of matrix viscoelasticity

on cross-stream migration of droplet. Their careful numerical and

theoretical analysis reveals that the matrix viscoelasticity acts to

drive the droplet towards the channel wall due to larger effect of

non-Newtonian contribution to the difference of first and second

normal non-Newtonian stresses. Their study clearly demonstrates

importance of detailed numerical simulations for understanding of

subtle effects of viscoelasticity on multiphase flows even in the ab-

sence of inertial at very low Reynolds numbers. Strong non-linear

interactions of viscoelasticity and inertia make the problem much

harder and severely limit predictive capability of perturbative anal-

ysis, and thus require detailed direct numerical simulations. 

Direct numerical simulations (DNS) have been performed to ex-

amine behavior of bubbly channel flows for both cases of nearly

spherical and deformable bubbles in the absence of viscoelastic-

ity and surfactant. In the case of nearly spherical bubbles, Lu et al.

[24] found that the clean (i.e., surfactant-free) bubbles tend to form

a layer at the wall for upflow, while bubble-free wall layers are

formed for downflow in vertical laminar flows. Lu and Tryggvason

[28] have also examined the bubbly flows in the turbulent regime

using a similar computational setup. They showed that, for nearly

spherical bubbles, the formation of wall layers results in a reduc-

tion of the liquid flow rate, and the layered bubbles form horizon-

tal clusters, whereas more deformable bubbles, instead, move to-

ward the channel center. Later, Lu and Tryggvason [29] performed

simulations for a larger system containing over hundred bubbles at

a larger Reynolds number. The overall structure of the bubbly flow

has been found to be similar to that of the smaller system. They

also observed the formation of bubble clusters similar to the exper-

imental observations of Takagi et al. [40] for weakly-contaminated

bubbly flows. Numerous other studies of DNS of turbulent bubbly

flows can be found in the recent review by Elghobashi [10] . 

Surfactant has a drastic effect on the behavior of bubbly flows

[33,40,41] . Takagi et al. [40] performed experiments to investigate

the effects of different surfactants on the structure of upward tur-

bulent bubbly flows in a vertical channel. In the surfactant-free

case, they found that nearly spherical bubbles tend to form lay-

ers at the wall, where they merge during the rising process, and

subsequently become deformable and move toward the channel

center. When a small amount of surfactant, just enough to pre-

vent coalescence, is added to the bulk fluid, the bubbles remain

spherical, tend to move toward the wall and form bubble clus-

ters. Conversely, with a significant surfactant concentration, the

bubbles do not tend to move toward the channel wall but spread

out across the channel. Motivated by this experimental study, Mu-

radoglu and Tryggvason [32] and Ahmed et al. [1] studied the ef-

fects of soluble surfactants on lateral migration of a single bubble

in a pressure-driven channel flow. They both found that surfactant-

induced Marangoni stresses act to move the bubble away from the

wall and bubble stabilizes at the channel centerline in the presence

of sufficiently strong surfactant contamination. Lu et al. [26] ex-

amined the effect of insoluble surfactants on the structure of tur-
 q  
ulent bubbly upflow in a vertical channel by DNS. They showed

hat surfactant contamination prevents the formation of bubble-

ich wall layers and bubbles are uniformly distributed across the

hannel cross-section. Pesci et al. [35] computationally examined

he dynamics of single rising bubbles influenced by soluble surfac-

ant. They observed that the quasi steady state of the rise velocity

s reached without ad- and desorption being necessarily in equilib-

ium. Soligo et al. [36,37] developed a modified phase field method

PFM) for simulations of turbulent flows with large and deformable

urfactant-laden droplets. They have used this method to exam-

ne breakage/coalescence rates and size distribution of surfactant-

aden droplets in turbulent flow. 

Even though effects of polymers and surfactant have been stud-

ed separately, their interactions and combined effects on pressure-

riven turbulent bubbly channel flows remain a challenging prob-

em that has not been explored experimentally or computation-

lly. Only a few numerical studies [18,34,42] have been recently

one to examine the effect of surfactant and viscoelasticity on

he deformation and shape of a buoyancy-driven droplet. In this

egard, the three-dimensional interface-resolved numerical simu-

ations can provide significant insight about this highly complex

henomenon. In the present study, we report the results of the

rst direct numerical simulations where the combined effects of

iscoelasticity and surfactant on turbulent bubbly flows are inves-

igated. 

. Computational setup and numerical method 

We consider vertical turbulent channel flow as shown in Fig. 1 .

he flow is periodic in the spanwise ( x ) and streamwise ( z ) di-

ections, while no-slip/no-penetration boundary conditions are ap-

lied at the walls ( y direction). The flow is driven upward by an

mposed constant pressure gradient d p ∗
d z ∗ . Note that dimensional

uantities are denoted by the superscript ∗ in the present study,
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Table 1 

Physical and computational parameters governing the flow. 

Friction Reynolds number Re τ 127.3 

Domain size L x × L y × L z π /2 × 2 × π

Resolution N x × N y × N z 128 × 192 × 256 

Inner-scaled resolution �x + = �z + 1.56 

Inner-scaled resolution �y + min/max 0.76/1.72 

Channel half-width h ∗ 1.0 

Bubble diameter d ∗
b 

0.3 

Void fraction � 3.44% 

Density and viscosity ratio ρ∗
i 
/ρ∗

o , μ
∗
i 
/μ∗

o 0.05, 0.1 

Total pressure gradient B ∗ = 

dp ∗

dz ∗ + ρ∗
a v g 

∗ -0.0018 

Surface tension σ ∗
s 0.01 

Gravitational acceleration g ∗ 0.05 

Single-phase average bulk velocity W 

∗
b 

0.63 

E ̈o tv ̈o s Number Eo = ρ∗
o g 

∗d ∗2 
b 

/σ ∗
s 0.45 

Morton Number M = g ∗μ∗
o 

4 /ρ∗
o σ

∗
s 

3 6.17 ×10 −10 

Peclet number P e c = P e s = 2 h ∗W 

∗
b 
/D ∗c 1680 

Biot Number Bi = 2 h ∗k ∗
d 
/W 

∗
b 

6.33 

Damkohler Number Da = �∗
max / 2 h 

∗C ∗
ref 

0.5 

Langmuir number La = k ∗a C 
∗
ref 

/k ∗
d 

0.25 

Elasticity Number βs = R ∗T ∗�∗
∞ /σ

∗
s 0.5 

Weissenberg Number W i = λ∗W 

∗
b 
/ 2 h ∗ 0/5/10 

Solvent viscosity ratio β = μ∗
s /μ

∗
o 0.9 

Extensibility parameter L 60 
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.g., p ∗ and p represent the dimensional and non-dimensional pres-

ure, respectively. At a statistically steady state, the average wall

hear stress τ ∗
w 

is related to the pressure gradient and the weight

f the bubble/liquid mixture by a streamwise momentum balance:

∗
w 

= −
(

d p ∗

d z ∗
+ ρ∗

a v g 
∗
)

h 

∗ = −B 

∗h 

∗, (1)

here ρ∗
a v is the average density in the mixture and h ∗ is the chan-

el half-width. Note that the value of B 

∗ dictates the bulk flow

irection, i.e., upflow ( B 

∗ < 0 ) and downflow ( B 

∗ > 0 ). In all the

ases, spherical bubbles are placed randomly in a vertical channel

n an initially single-phase fully developed turbulent flow, with a

riction Reynolds number of Re τ = w τ h/νo = 127 . 3 . Here, the fric-

ion velocity is w 

∗
τ = 

√ 

τ ∗
w 

/ρ∗
o , where ρ∗

o and ν∗
o are the density and

inematic viscosity of the liquid, respectively. Before the addition

f the bubbles, the channel Reynolds number, based on the aver-

ge bulk velocity and full channel width, is about Re bulk ≈ 3786.

he single-phase turbulent channel flow is generated by initializing

he flow field with a streamwise-aligned vortex pair [15] , which

ffectively triggers transition to turbulence. The physical parame-

ers governing the flow are listed in Table 1 where subscripts “i ”

nd “o ” denote the properties of the inner (dispersed) and the

uter (continuous) fluids, respectively, and λ∗ is the polymer re-

axation time. The Morton number ( M = g ∗μ∗
o 

4 /ρ∗
o σ

∗
s 

3 ) used here

s M = 6 . 17 × 10 −10 which is higher than the Morton number of

 = 2 . 52 × 10 −11 for an air bubble in water at 20 ◦C but could be

atched by using an aqueous solution of sugar [38] . 

The incompressible flow equations for a viscoelastic fluid are

iscretized using a second-order finite-difference/front-tracking

FD/FT) method [43] . Following [16,32,43] , a single set of governing

quations can be written for the entire computational domain pro-

ided the jumps in the material properties are taken into account

nd the effects of the interfacial surface tension are treated ap-

ropriately. The governing equations are non-dimensionalized us-

ng a length scale L 

∗, a velocity scale U ∗ and a time scale T ∗ = 

L ∗
U ∗ .

he length and velocity scales are taken as L 

∗ = 2 h ∗ and U ∗ = W 

∗
b 

here W 

∗
b 

is the average axial velocity of the corresponding single

hase flow. The density and viscosity are non-dimensionalized us-

ng the density ρ∗
o and total viscosity μ∗

o of the continuous phase

hile the surface tension is normalized by the surface tension of

he surfactant-free gas-liquid interface σ ∗
s . The non-dimensional
omentum equation, accounting for interphase coupling, is than

iven by 

∂ρu 

∂t 
+ ∇ · (ρuu ) 

= −∇p + 

(ρ − ρa v ) g 

F r 2 
+ ∇ · τ + 

1 

Re 
∇ · μs (∇u + ∇ u 

T ) 

+ 

1 

W e 

∫ 
A 

[
σ (�) κn + ∇ s σ (�) 

]
δ(x − x f ) dA, (2) 

here ρ , u , p , τττ , μs and σ are the non-dimensional density, the

elocity vector, the pressure, the polymer stress tensor, the solvent

iscosity and the surface tension coefficient, respectively. The unit

ector g points in the direction of the gravitational acceleration. In

q. (2) , the last term on the right hand side represents the surface

ension where A is the surface area, κ is twice the mean curvature,

 is the unit normal vector and ∇ s is the gradient operator along

he interface defined as 

 s = ∇ − n (n · ∇) . (3) 

e emphasize that the surface tension is a function of the in-

erfacial surfactant concentration � and ∇ s σ ( �) represents the

urfactant-induced Marangoni stress. The non-dimensional num- 

ers in Eq. (2) are Reynolds number (Re = ρ∗
o U ∗L 

∗/μ∗
o ) , Froude

umber (F r = 

U ∗√ 

g ∗L ∗ ) , with g ∗ being the magnitude of the gravi-

ational acceleration and the Weber number (W e = 

ρ∗
o U ∗2 L ∗

σ ∗
s 

) . 

The fluid properties remain constant along material lines, i.e., 

Dρ

Dt 
= 0 , 

Dμs 

Dt 
= 0 , 

Dμp 

Dt 
= 0 , 

Dλ

Dt 
= 0 , (4)

here D 
Dt = 

∂ 
∂t 

+ u · ∇ is the material derivative. The indicator

unction is used to set the material properties in each phase and

s defined as 

(x , t) = 

{
1 in bulk fluid, 
0 in bubble domain. 

(5) 

hen a material property, φ, is specified as 

= φo I(x , t) + φi ( 1 − I(x , t) ) , (6) 

here the subscripts “i ” and “o ” denote the properties of the bub-

le and bulk fluid, respectively. 
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The present soluble surfactant methodology is same as that de-

veloped by Muradoglu and Tryggvason [31,32] , and is described be-

low for completeness. The quantity C ∞ 

(= 

C ∗∞ 

C ∗
re f 

) represents the non-

dimensional initial bulk surfactant concentration and � (= 

�∗
�∗

max 
)

represents the non-dimensional interfacial surfactant concentra-

tion, where C ∗
re f 

and �∗
max denote the reference bulk surfactant

concentration taken as the critical micelle concentration (CMC) and

the maximum packing concentration, respectively. The local value

of the surface tension coefficient is related to the local surfactant

concentration through the Langmuir equation of state [23] 

σ = 1 + βs ln ( 1 − �) , (7)

where βs is the elasticity number. Eq. (8) is bounded to prevent

nonphysical (negative) values of the surface tension: 

σ = max ( εσ , 1 + βs ln ( 1 − �) ) , (8)

where εσ is taken as 0.05 in the present study. Note that εσ is typ-

ically larger than this value in the common physical systems (e.g.,

εσ ∼ 0 . 2 − 0 . 3 ) but it does not have any influence on the present

results since the interfacial surfactant concentration remains much

lower than the maximum packing concentration in all the cases

considered here. The evolution equation for the interfacial surfac-

tant concentration was derived by Stone [39] and can be expressed

in the non-dimensional form as 

1 

A 

D �A 

Dt 
= 

1 

P e s 
∇ 

2 
s � + Bi ̇ S �, (9)

where A is the surface area of an element of the interface and

Pe s = 

U ∗L ∗
D ∗s 

is the interfacial Peclet number with D 

∗
s being the dif-

fusion coefficient along the interface. The Biot number is defined

as Bi = 

k ∗
d 
L ∗

U ∗ , where k ∗
d 

is the desorption coefficient. The non-

dimensional source term 

˙ S � is given by 

˙ S � = LaC s (1 − �) − �, (10)

where C s is the bulk surfactant concentration near the interface

and La is the Langmiur number defined as La = 

k ∗a C ∗re f 

k ∗
d 

with k ∗a be-

ing the adsorption coefficient. The bulk surfactant concentration is

governed by an advection-diffusion equation of the form 

∂C 

∂t 
+ ∇ · (Cu ) = 

1 

P e c 
∇ · (D co ∇C) , (11)

where Pe c = 

U ∗L ∗
D ∗c 

is the Peclet number based on bulk surfactant

diffusivity. The coefficient D 

∗
co is related to the molecular diffusion

coefficient D 

∗
c and the phase indicator function I as 

D 

∗
co = D 

∗
c I(x , t) . (12)

The source term in Eq. (10) is related to the bulk concentration

by 

˙ S � = − 1 

P e c Da 
(n · ∇C interface ) . (13)

where Da = 

�∗
max 

L ∗C ∗
re f 

is the Damköhler number. Following Muradoglu

and Tryggvason [32] , the boundary condition at the interface given

by Eq. (13) is first converted into a source term for the bulk surfac-

tant evolution equation. In this approach it is assumed that all the

mass transfer between the interface and bulk takes place in a thin

adsorption layer adjacent to the interface. Thus, the total amount

of mass adsorbed on the interface is distributed over the adsorp-

tion layer, and added to the bulk concentration evolution equation

as a negative source term. Eq. (11) thus takes the following form: 

∂C 

∂t 
+ ∇ · (Cu ) = 

1 

P e 
∇ · (D co ∇C) + 

˙ S c , (14)

c b
here ˙ S c is the source term evaluated at the interface and dis-

ributed onto the adsorption layer in a conservative manner. The

etails of this treatment can be found in [32] . 

The FENE-P model is adopted as the constitutive equation for

he polymeric stress tensor τττ . This constitutive equation and its

umerical solution are described in details in [16,17] . The model

an be written as 

∂ B 

∂t 
+ ∇ · ( u B ) − (∇ u ) T · B − B · ∇ u = − 1 

W i 
( F B − I ) , 

 = 

L 2 

L 2 − trace ( B ) 
, (15)

here B , Wi, L , and I are the conformation tensor, the Weissenberg

umber defined as W i = 

λ∗U ∗
L ∗ with λ∗ being the polymer relax-

tion time, the maximum polymer extensibility, and the identity

ensor, respectively. Once the conformation tensor is obtained from

q. (15) , the polymeric stress tensor is computed as 

= 

1 

ReW i 
(1 − β) ( F B − I ) , (16)

here β = μ∗
s /μ

∗
o is the solvent viscosity ratio. 

The viscoelastic constitutive equations are highly non-linear

nd become extremely stiff at high Weissenberg numbers. Thus,

heir numerical solution is generally a formidable task and is no-

oriously difficult especially at high Weissenberg numbers [16,17] .

o overcome the so-called high Weissenberg number problem, the

og-conformation method is employed [13] in the present simula-

ions. In this approach, Eq. (15) is rewritten in terms of the loga-

ithm of the conformation tensor through eigendecomposition, i.e.,

= log B , which ensures the positive definiteness of the confor-

ation tensor. The core feature of the formulation is the decom-

osition of the gradient of the divergence free velocity field ∇ u 

T 

nto two anti-symmetric tensors denoted by ��� (pure rotation) and

 , and a symmetric tensor denoted by D which commutes with

he conformation tensor [13] , i.e., 

 u 

T = ��� + D + NB 

−1 
. (17)

nserting Eq. (17) into Eq. (15) and replacing the conformation ten-

or with the new variable ���, the transformed constitutive equa-

ions can be written as 

∂ ���

∂t 
+ ∇ · ( u ���) − ( ������ −������) − 2 D = 

F 

W i 
(e −��� − I ) . (18)

nce Eq. (18) is solved for ���, the conformation tensor is then ob-

ained using the inverse transformation as B = e ��� . 

.1. Flow solver 

The flow equations ( Eq. (2) ) are solved fully coupled with the

ENE-P model ( Eq. (18) ) and the interfacial and bulk surfactant

oncentration evolution equations ( Eqs. (9) and (14) ) using a front-

racking/finite-difference (FD/FT) method [16,32,43] . All the field

quations are solved on a fixed Eulerian grid with a staggered ar-

angement where the velocity nodes are located at the cell faces

hile the material properties, the pressure, the bulk surfactant

oncentration and the extra stresses are all located at the cell cen-

ers [16] . The interfacial surfactant concentration evolution equation

s solved on a separate Lagrangian grid [32] . The spatial deriva-

ives are discretized with second-order central differences for the

iffusive terms, while the convective terms are discretized using a

UICK scheme [22] in the momentum equation, and a fifth-order

ENO-Z [3] scheme in the viscoelastic and the bulk surfactant

oncentration equations. The equations are integrated in time with

 second-order predictor-corrector method in which the first-order

olution (Euler method) serves as a predictor that is then corrected

y the trapezoidal rule [43] . 
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Table 2 

Wall clock time per time step in seconds, and cor- 

responding speedup of the DNS solver when a FFT- 

based Poisson solver is used instead of the iterative 

solver of HYPRE (PFMG). 

Multigrid tolerance HYPRE FFT Speedup 

|∇ h · u | max < 10 −5 4.7 2.1 2.2 

|∇ h · u | max < 10 −10 16.3 2.1 7.8 
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The details of the front-tracking method can be found in the

eview paper by Tryggvason et al. [43] and in the recent book by

ryggvason et al. [44] . The numerical methods for the treatment

f soluble surfactant and viscoelasticity have been fully discussed

y Muradoglu and Tryggvason [32] and Izbassarov and Muradoglu

16] , respectively. The new ingredient of the numerical method

n the present study is the FFT-based pressure solver which is

riefly described here. Since the projection method requires solu-

ion of a variable-density Poisson equation in the multiphase flows,

FT-based solvers cannot be used directly. To overcome this diffi-

ulty, the pressure-splitting technique presented in [9] and [8] is

dopted, allowing for a direct and fast solution of a constant-

oefficients Poisson equation using the same FFT-based solver. Re-

arding the FFT-based pressure solver, the overall procedure to ad-

ance time from time step n to the first-order predicted solution

t time step n + 1 is provided below: 

ρn +1 u 

t − ρn u 

n 

�t 
= 

[ 
−∇ h · (ρuu ) + 

1 

Re 
∇ h · (μs (∇ h u + ∇ 

T 
h u )) 

+ 

(ρ − ρa v ) g 

F r 2 
+ ∇ · τττ

+ 

1 

W e 

∫ 
A 

[
σ (�) κn + ∇ s σ (�) 

]
δ(x − x f ) dA 

] n 
, 

(19) 

 

2 p n +1 = ∇ ·
[ (

1 − ρ0 

ρn +1 

)
∇ 

(
2 p n − p n −1 

)] 
+ 

ρ0 

�t 
∇ · u 

t , (20)

 

n +1 = u 

t − �t 

[ 
1 

ρ0 

∇p n +1 + 

(
1 

ρn +1 
− 1 

ρ0 

)
∇ 

(
2 p n − p n −1 

)] 
, (21)

n +1 = ���n + �t 

(
−∇ · ( u ���) + ( ������−������) + 2 D + 

F 

W i 
(e −��� − I ) 

)n 

, 

(22) 

here ∇ h is the discrete version of the nabla operator, ρ0 =
in (ρi , ρo ) and u 

t is the unprojected (temporary) velocity. The so-

ution at this stage provides an estimate at the new time level and

s used to compute the solution at the time level n + 2 . Then so-

utions at time levels n and n + 2 are averaged to obtain a second

rder solution at the new time level n + 1 as described by Tryg-

vason et al. [43] . Note that the overall time-integration scheme is

quivalent to the trapezoidal rule for the linear problem. 

.2. Parallelization 

The parallelization method developed by Farooqi et al. [12] is

lightly modified for the FFT-based pressure solver in the present

tudy. First, the previous iterative multigrid Poisson solver in the

YPRE library [11] , the most demanding part of the numerical

ethod, has been replaced with a versatile and efficient FFT-based

irect solver for a constant-coefficients Poisson equation of the

NS code CaNS ; see [5] for more details. The extension of the

olver for the phase indicator function with this approach is triv-

al. To determine the overall speed up of the numerical algorithm,

imulations are performed for a fully developed laminar flow using

he domain size of 2 × 2 × 2 discretized by 512 3 and 64 randomly

istributed bubbles. Number of cores for the domain and fronts are

56 and 64, respectively. The results are summarized in Table 2 .

he FFT solver satisfies the divergence-free constraint on the ve-

ocity field to near the machine precision at every grid point (i.e.,

∇ h · u | max < 10 −14 ) whereas, the HYPRE (PFMG) reduces the resid-

als below a prespecified tolerance value i.e., |∇ h · u | max < E tol . As

an be seen, the present numerical algorithm with the FFT solver

ets 2 and 8 times speed up for the error tolerances E = 10 −5 

tol 
nd E tol = 10 −10 , respectively. Note that E tol = 10 −5 is sufficient to

chieve a desired overall numerical accuracy for the kind of simu-

ations presented here. 

Next, the new parallelization strategy for the Lagrangian grid

s implemented for the present computational setup, namely

articles-Per-Front (PPF), where Fronts denote to the processes

omputing on the Lagrangian grid. The PPF is compared with

ur previous strategy, namely Redundantly-All-Compute (RAC) [12] .

he Redundantly-All-Compute algorithm is based on domain de-

omposition method similar to the Eulerian grid parallelization,

here each subdomain can be assigned to one MPI-process and

ubbles are distributed among the parallel Fronts . The Front con-

aining the center of a bubble becomes the owner of that bubble.

n example where 16 randomly distributed bubbles are assigned

o 2 Fronts is shown in the left panel of Fig. 2 . As can be seen,

he load on 2 Fronts is different due to the location of bubbles in

he physical domain and this can continuously happen as bubbles

ove in the physical domain. To prevent this scenario, we paral-

elize the Lagrangian grid in a way that bubbles are assigned di-

ectly to the Fronts independent of their location in the physical

omain. In this approach, the load on each Front will remain con-

tant throughout the simulation. A typical example of this strategy

here 16 randomly distributed bubbles are assigned to 2 Fronts (8

er Front ) is shown in the right panel of Fig. 2 . 

The parallelization of the 3D front-tracking method leads to

hree types of communication, namely: (1) Domain to Domain , (2)

ront to Front and (3) Front to Domain . The Particles-Per-Front (PPF)

arallelization strategy does not affect the Domain to Domain com-

unication, and therefore remains the same as described by Fa-

ooqi et al. [12] . The Front to Front communication is completely

liminated for the PPF strategy as the ownership of the bubbles

oes not change with location of bubbles in the physical domain.

he total message size between a Front and all its Domains in a

ingle time-step is 

 f 2 d = M send + M recv (23)

 send = 9 ×
np ∑ 

i =1 

P i + 5 ×
ne ∑ 

i =1 

E i , M recv = 3 ×
np ∑ 

i =1 

P i + 

ne ∑ 

i =1 

E i (24)

here P i and E i are the total number of points and the total num-

er of elements for the i th bubble, respectively. M send is the data

ent and M recv is the data received by the Front . For each point

here are point coordinates in the x, y , and z directions and ev-

ry point coordinate has a corresponding surface tension force and

ormal vector to the edge of the element. For each element there

re center coordinates of element, corresponding value of � and

he element area. A total of 14 double precision data should be

ent to a Domain while only updated point coordinates and 

˙ S � are

eceived from a Domain . Let d x , d y , and d z be the dimensions of

he MPI partitions for the Domains . The number of messages sent

nd received by the Front in a single time-step would be 2 d 3 (As-

uming d = d x = d y = d z ) because all point coordinates destined to

 single Domain could be packed in a single message. If there are

 Fronts and an approximately equal number of Domains are as-

igned to each Front , then for the RAC strategy, the number of mes-
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Fig. 2. (Left) Computational load distribution under Redundantly-All-Compute (RAC) scheme, in contrast to that of the Particle-Per-Front (PPF) scheme (right) where the load 

distribution is decoupled from the domain decomposition. Blue and red colors denote load on Rank 1 and Rank 2, respectively. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. The turbulent multiphase flow: (left) The evolution of the flow rate and (right) the turbulent kinetic energy at Re τ = 127 . 3 . The solid lines represent the current 

results and the symbols are the DNS data by Lu et al. [26] . The turbulent kinetic energy is scaled by w 

∗
τ

2 . 
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sages and message size per Front are reduced by a factor of f ; each

Front exchanges 2 d 3 / f messages with size of M f 2 d / f . However, the

actual message size per Front can vary based on how bubbles are

distributed in the physical domain. For the PPF strategy the num-

ber of messages and message size per Front will remain the same.

Thus, the PPF strategy works better for the modest domain and

grid size, and RAC works better for large scale simulations. 

3. Results and discussion 

The numerical method was first validated against the DNS re-

sults of turbulent bubbly channel flow in the absence of viscoelas-

ticity and surfactant by Lu et al. [26] . Fig. 3 shows the time history

of the liquid flow rate (panel (a)) and the profile of the mean tur-

bulent kinetic energy (panel (b)) for the turbulent multiphase flow

in a statistically steady state, compared to the DNS results by Lu

et al. [26] . The present results are in excellent agreement with the

results of Lu et al. [26] showing the accuracy of the present sim-

ulations. The size of the computational domain is π /2 × 2 × π
and it is resolved by 128 × 192 × 256 grid points in the span-

wise ( x ), wall-normal ( y ) and streamwise ( z ) directions, respec-

tively. This configuration has also been used in various previous

turbulent bubbly flow studies [25–28] using the same numeri-
al method, i.e., finite-difference/front-tracking (FD/FT) method and

ssentially the same code. This is the so-called “minimal flow unit”

rst studied numerically in detail by Jimenez and Moin [20] and

y many others since then. The number of bubbles, 24, used in

he present setup is relatively a modest number. Lu and Tryggva-

on [29] studied the behavior of turbulent bubbly flows at much

igher Reynolds number (Re τ = 250) and used 140 bubbles. They

ave also used the same domain size π /2 × 2 × π resolved by a

56 × 384 × 512 grid. Thus the grid resolution used in the present

imulations ensures the grid convergence. 

The objective of the present study is to investigate the sole

nd combined effects of soluble surfactant and viscoelasticity on

he turbulent bubbly flows. The deformation of the bubbles has a

ignificant effect on the structure and dynamics of bubbly flows

28] . To minimize the effects of deformability of the bubbles, ini-

ially, spherical bubbles are included/added to the turbulent flow.

he deformation of the bubbles can be characterized by two non-

imensional numbers for the present setup, i.e., the Capillary ( Ca =
∗
o W 

∗
b 
/σ ∗

s ) and E ̈o tv ̈o s ( Eo = ρ∗
o g 

∗d ∗
b 

2 
/σ ∗

s ) numbers. Both of these

on-dimensional numbers are kept constant at low values, so that

he bubbles remain nearly spherical for all the cases considered

n this study. The governing parameters related to the surfactant

ther than C ∞ 

are also kept constant. Our previous study about
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Fig. 4. Newtonian flow (First row): (a) time evolution of the liquid flow rate for varying surfactant concentration, and (b) the averaged liquid velocity versus the wall-normal 

coordinate, after the flow reaches an approximate steady state. Non-Newtonian flow (second row): (c) time evolution of the liquid flow rate for a clean fluid and varying 

Weissenberg number, and for a fixed Weissenberg number and varying surfactant concentration (d) the averaged liquid velocity versus the wall-normal coordinate, after the 

flow reaches an approximate steady state. ( w = w 

∗/W 

∗
b 
) . 
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he effects of surfactant [1] on the dynamics of single bubble has

emonstrated that the elasticity number ( βs = R ∗T ∗�∗∞ 

/σ ∗
s ) that

ignifies the strength of surfactant and the bulk surfactant concen-

ration have very similar effects. In addition, other parameters re-

ated to surfactant such as bulk and interfacial Peclet numbers, the

iot number and the Damköhler number have only secondary ef-

ect on bubbly flows in statistically stationary sate [1] . Therefore,

t is deemed to be sufficient to only vary C ∞ 

to show the effects

f surfactant in the present study. We also note that it is easy to

ary C ∞ 

by simply adding more surfactant into the bulk fluid in an

xperimental study. The surfactant parameters used here are based

n our previous studies [1,32] . For the non-Newtonian flow cases,

he Weissenberg number ( Wi ) quantifies the dynamic significance

f the viscoelasticity. The other parameter related to the viscoelas-

icity is the solvent viscosity ratio ( β) that essentially controls the

agnitude of viscoelastic stresses as can be seen in Eq. (16) . Thus

nly Wi is varied to characterize the effects of viscoelasticity. 

First, extensive simulations are performed to investigate the ef-

ects of surfactant and viscoelasticity separately. Then their com-

ined effects are investigated. For this purpose, first computations

re carried out for a range of bulk surfactant concentrations C ∞ 

o examine the effects of surfactant on bubbly flows without vis-

oelasticity in Section 3.1 . Then the simulations are repeated for

hree different Weissenberg numbers, quantifying the dynamic sig-

ificance of the viscoelasticity, i.e., W i = 0 , 5 and 10, in the ab-

ence of surfactant to determine the sole effects of viscoelasticity

n Section 3.2 . Finally, the combined effects of surfactants and vis-

oelasticity are investigated in Section 3.3 . 
.1. Effects of soluble surfactant 

Simulations are first performed to examine the sole effects of

oluble surfactant on the bubbly channel flow. For this purpose,

he both phases are set to be Newtonian and the bulk surfactant

oncentration is varied in the range of C ∞ 

= 0 (clean) and C ∞ 

= 1

highly contaminated). Fig. 4 a & b presents the evolution of the

iquid flow rate and the liquid velocity profiles at approximately

tatistically steady state for the clean and contaminated cases, re-

pectively. It can be seen that the presence of surfactant has a

rastic effect on the dynamics of the turbulent bubbly flow. The

ddition of spherical bubbles to a statistically steady state turbu-

ent single phase flow causes a significant increase in the drag and

hus the flow rate decreases in comparison to the corresponding

ingle phase flow. The addition of surfactant in the bubbly flows

revents this reduction of the flow rate. The maximum prevention

ccurs for the C ∞ 

= 0 . 5 case, for which the flow rate approaches

hat of the single phase flow rate in the fully developed regime. 

Fig. 5 shows the vortical structure of the bubbly flow for the

ulk surfactant concentrations of C ∞ 

= 0 , 0.25 and 0.5. The vorti-

al structures are identified using the Q -criterion [19] (see also the

gure caption). Clearly, the presence of contamination exhibits a

rastic effect on the flow. For a clean suspending phase, the dis-

ersed bubbles migrate toward the wall and seem to relaminarize

he flow – the only regions of high vorticity are associated with

he footprint of the bubble wakes. With an increasing surfactant

oncentration, the bubbles appear to be more homogeneously dis-

ributed, and the flow is clearly in a turbulent state. The constant
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Fig. 5. Sole effects of surfactant on the vortical structures in the fully-developed regime. The vortical structures are visualized using Q -criterion, i.e., the isocontours of the 

normalized second invariant of the velocity-gradient tensor, Q ∗/ (W 

∗
b 
/ (2 h ∗)) 2 = 1 , are plotted. The contours on the plane represent instantaneous streamwise velocity with 

the scale ranging from 0 . 15 W 

∗
b 

(blue) to 1 . 1 W 

∗
b 

(red). The contours on the bubble surface represent interfacial surfactant concentration ( �) with the scale ranging from 0 

(blue) to 0.15 (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Sole effects of surfactant on the structure of Newtonian turbulent bubbly flow: bubble distribution on the streamwise-wall-normal plane (first row) and on the 

streamwise-spanwise plane (second row) when the flow has reached a statistically steady state. The contours on the plane represent instantaneous streamwise velocity with 

the scale ranging from 0 . 15 W 

∗
b 

(blue) to 1 . 1 W 

∗
b 

(red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 7. Sole effects of surfactant. The first and second columns show the transient and statistically stationary results, respectively. In the left column, the evolution of the 

number of bubbles in the wall layer (top), the average distance of the bubbles from the wall ( y b = y ∗
b 
/d ∗

b 
) (middle) and the average void fraction at various times for 

C ∞ = 0 . 25 (bottom). In the right column, statistically steady state results of the void fraction (top), the Reynolds stresses scaled by w 

∗
τ

2 (middle) and the turbulent kinetic 

energy scaled by w 

∗
τ

2 (bottom). 
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ontours of the interfacial surfactant concentration and distribu-

ion of bubbles in the streamwise-wall-normal and streamwise-

panwise plane are shown in Fig. 6 . For the clean case, the bubbles

igrate toward the channel wall mainly due to the hydrodynamic

ift force [24] . When surfactant is added, the Marangoni stresses

ounteract this lift force and eventually reverse the direction of

he lateral migration of the bubbles when C ∞ 

exceeds a critical

alue. As C ∞ 

is increased from 0 to 0.25, the number of bubbles in

he core region is increased, though we still can see the wall-layer.

n this case, the amount of surfactant adsorbed on the surface of

he bubbles is significant, but not large enough to completely over-

ome the hydrodynamic lift that is responsible for the bubble wall

ayering. With a further increase of C ∞ 

, a larger portion of the area

f the bubbles is contaminated. As a result, all bubbles detach from

he wall, migrate toward the core region and spread out the chan-

el cross-section, drastically changing the dynamics and the entire

tructure of the bubbly flows, as seen in Figs. 4 a and 6 . 
To quantify the effects of surfactants on the flow, the tran-

ient and time-averaged quantities are shown in Fig. 7 . The time-

veraged quantities are obtained by averaging over a period of

00 computational time units once the flow reaches a statistically

teady state. Note that the time unit is defined as h ∗/W 

∗
b 

. The re-

ults show that the bubbly wall layer formation in the clean case

as thickness of a bubble diameter as seen in the evolution of the

umber of bubbles in the wall layer (i.e., the number of bubbles

ith a centroid position lower than one bubble diameter). It is in-

eresting to note that, for the clean bubbly flows, the formation of

ubble-rich wall-layer with a thickness of about a bubble diameter

s also observed in the laminar [24] , weakly turbulent [26] and also

or highly turbulent flows [29] . For the contaminated cases, as C ∞ 

ncreases, the bubbles move toward the core region. The void frac-

ion peaks are less pronounced and located further away from the

alls. For the highest concentration of C ∞ 

= 1 , wall-layers again

merge similar to the case with C ∞ 

= 0 . 25 . This interesting behav-
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Fig. 8. Effects of surfactant and viscoelasticity on the structure of turbulent bubbly flow. The first row shows the bubble distribution on streamwise-wall-normal plane, and 

the second row shows streamwise-spanwise plane. The plane contours represent normalized first normal stress difference defined as (N 1 = 

τ ∗
zz −τ ∗

yy 

τ ∗
wall 

) . The contours on the 

bubble surface represent the interfacial surfactant concentration ( �) with the scale ranging from 0 (blue) to 0.15 (red). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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ior is attributed to the fact that the bubble surface is nearly uni-

formly covered by the surfactant at the equilibrium concentration,

resulting in a nearly uniform reduction in surface tension without

much Marangoni stresses in the case of excessive surfactant con-

centrations. As regards the Reynolds stresses, they increase from

almost zero in the bulk of the channel for the clean case to the al-

most linear profile resembling the characteristic of a single-phase

turbulent flow for the contaminated cases. As C ∞ 

increases, the

Reynolds stress profile becomes closer and eventually matches that

of the single-phase turbulent flow. It can be seen that, for the clean

case, the turbulent kinetic energy level is low, which is consistent

with the observation that the flow relaminarizes for the clean case.

But the values of the kinetic energy are increased with C ∞ 

, except

for the case of C ∞ 

= 1 . Lu et al. [26] proposed that increase in the

kinetic energy could be due to enhanced vorticity generation cre-

ated by surfactant-induced rigidification of interfaces. The decrease

in the Reynolds stress and turbulent kinetic energy are related to

the increase in the bubble clustering near the wall. 

3.2. Effects of viscoelasticity 

We next examine the effects of viscoelasticity on the turbu-

lent bubbly channel flows. For this purpose, simulations are first
erformed for the Weissenberg numbers of W i = 0 (Newtonian),

 i = 5 (moderately viscoelastic) and W i = 10 (highly viscoelastic)

n the absence of surfactant to demonstrate the sole effects of the

isscoelasticity. Simulations are then performed to examine the

ombined effects of surfactant and viscoelasticity for W i = 5 in the

resence of surfactant with the bulk concentrations of C ∞ 

= 0.25,

.5 and 1.0. The results are shown in Fig. 4 c & d. As can be seen, for

he clean viscoelastic case, the effect of polymers on the structure

f the bubbly channel flow is opposite to that of surfactant. In-

reasing the Weissenberg number ( Wi ) promotes the formation of

ubbly wall-layers and consequently reduction in the flow rate as

hown in Fig. 8 and Fig. 4 c, respectively. This interesting result is in

act consistent with the detailed numerical simulations of Mukher-

ee and Sarkar [30] who showed that the matrix viscoelasticity in-

uces a net force on the droplet pushing it towards the channel

all. As can be seen, at the initial stage ( t < 30 ≈ 2 λWi =5 ), the vis-

oelastic cases follow the Newtonian case. This can be attributed to

he fact that polymers react to the flow at a finite timescale ( ~ λ).

nitially, the polymer stresses are low, since there is not enough

ime for them to stretch. Eventually, the polymers fully stretch

nd the polymer stresses become significant. At about t = 60 ≈
 λWi =10 , the time evolution of the flow rate starts to diverge from

he Newtonian one, but still follows its trend, i.e., decreases mono-
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Fig. 9. Effects of surfactant and viscoelasticity: First column (transient results): (top) Evolution of the number of bubbles in the wall layer, (middle) the average distance 

of the bubbles from the wall ( y b = y ∗
b 
/d ∗

b 
) and (bottom) the average void fraction for C ∞ = 0 . 5 . Second column (statistically stead state results): (top) average void fraction 

(middle) Reynolds stresses scaled by w 

∗
τ

2 (bottom) turbulent kinetic energy scaled by w 

∗
τ

2 . 
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onically. For time t > 60, two viscoelastic curves also separate due

o different polymer stretching. It is well known that an addition of

olymers results in drag reduction in single-phase flow [45] , how-

ver its effects are more complex in multiphase flows. The drag is

etermined by the interplay between the viscoelastic effects (drag

eduction) and the formation of bubbly wall-layers (drag promo-

ion). In viscoelastic multiphase flows, the elastic lift is induced

ue to non-uniform normal stress difference [30] . This elastic lift

orce move the bubbles toward the channel wall. Fig. 8 shows the

ubble distribution and normalized first normal stress difference

 N 1 ) for W i = 5 . As can be seen, the normal stress difference is

arger on the wall side supporting the idea that the bubbles are

orced to move towards the wall by the viscoelastic stresses. It is

lso seen that, for the clean case, the bubbles are accumulated at

he walls forming horizontal bubble clusters. Bubble wall-layers are

ormed for all the Weissenberg numbers considered in this study.

he formation of these wall-layers significantly diminishes the
 d  
rag reduction effect of viscoelasticity observed for single-phase

ows. 

.3. Combined effects of viscoelasticity and surfactant 

To examine the dynamics of turbulent bubbly flow in pres-

nce of polymers and surfactant, the simulations are performed for

ange of bulk surfactant concentration ( C ∞ 

= 0 . 25 , 0 . 5 , 1 . 0 ) while

eeping the Weissenberg number ( W i = 5 ) constant. The results

re shown in Fig. 4 c & d. As can be seen, the presence of sur-

actant does not show as dramatic effect as that in the case of

ewtonian flow. The flow rate decreases for all combined cases

ompared to the corresponding single phase flow. The amount of

urfactant does not seem to be sufficient to prevent this reduc-

ion in the flow rate. The minimum reduction in the flow rate oc-

urs for C ∞ 

= 0 . 5 case, similar to the Newtonian flow, but the re-

uction in the flow rate is much higher for the combined case.
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To gain more insights on bubbly flow dynamics, bubble distribu-

tion is shown on streamwise-wall-normal ( z − y ) and streamwise-

spanwise ( z − x ) planes in Fig. 8 . As can be seen, for all the three

combined cases, that is, clean and contaminated, bubbles accumu-

late at the channel walls forming bubble clusters which results in

reduction of liquid flow rate. Although the surfactant concentration

does not seem to be sufficient to alter the direction of migration

of the bubbles, it has clearly affected the wall-layer structure. The

bubbles in the horizontal clusters for the contaminated cases are

not as tightly packed as observed for the clean case. Instead, they

are more randomly distributed in the streamwise-spanwise ( z − x )

plane. The contours of the first normal stress ( N 1 ) are also shown

in Fig. 8 . As can be seen, the elastic force increases with C ∞ 

mainly

due to the increase in the bulk velocity of the liquid. 

The combined effects of surfactant and viscoelasticity on the

flow quantities are shown in Fig. 9 . The transient results show that

the surfactant effect is prominent during the initial times until the

polymers fully stretch. Thus, initially bubbles move away from the

wall as the Marangoni force overcome inertial lift force. Later, the

inertial and elastic lift force overcome the Marangoni forces and

change the direction of migration of the bubbles towards the chan-

nel wall. Thus, wall-layers are formed for all the C ∞ 

values unlike

to the Newtonian case. The interaction between the wall-layer and

core region for the C ∞ 

= 0 is marginal but as C ∞ 

increases, it can

be seen that a few bubbles are moving in/out of the wall-layer con-

tinuously. As regards the Reynolds stresses, clear footprints of the

bubble wall-layer can be seen near the wall. It can be also seen

that the presence of surfactant has slightly improved the turbulent

kinetic energy but overall it is low for all the cases due to the for-

mation of bubble wall-layers. 

4. Conclusions 

An efficient fully parallelized finite-difference/front-tracking

method has been used to examine the effects of soluble surfactant

and viscoelasticity on turbulent bubbly channel flows. For the clean

case, the earlier findings are verified: The clean bubbles move to-

wards the wall due to hydrodynamic lift force and form a bubble-

rich wall layer. It is found that addition of surfactant has significant

influence on the overall flow structure of turbulent bubbly chan-

nel flow. Surfactant-induced Marangoni stresses counteract the hy-

drodynamic lift force and push the bubbles away from the wall

region. At a high enough surfactant concentration C ∞ 

= 0 . 5 , the

formation of bubble wall layer is completely prevented resulting

in a uniform void fraction distribution across the channel cross-

section. The present results are in agreement with the earlier ex-

perimental [40] and the numerical [26,32] studies, i.e., the addition

of surfactant prevents the formation of the wall-layers. For C ∞ 

= 1 ,

the trend reversal is also observed i.e., reforming of bubble clus-

ters due to a more uniform interfacial surfactant concentration.

For the clean viscoelastic case, bubbles move toward the channel

wall, similarly to the Newtonian case. The elastic force promotes

the formation of the bubble wall-layer resulting in the reduction

of the flow rate, which is consistent with the computational re-

sults of Mukherjee and Sarkar [30] . Thus, the drag reduction effect

of viscoelasticity observed for the single-phase flows diminishes

due to the formation of bubble wall-layers. Finally, in the presence

of combined effects of surfactant and viscoelasticity, similar wall-

layer formation is observed, but the bubbles in the horizontal clus-

ters show a more sparse distribution compared to the clean case. 
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