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Abstract
This paper presents a scalable parallelization of an Eulerian–Lagrangian method, namely the three-dimensional front
tracking method, for simulating multiphase flows. Operating on Eulerian–Lagrangian grids makes the front tracking
method challenging to parallelize and optimize because different types of communication (Lagrangian–Eulerian, Eulerian–
Eulerian, and Lagrangian–Lagrangian) should be managed. In this work, we optimize the data movement in both the
Eulerian and Lagrangian grids and propose two different strategies for handling the Lagrangian grid shared by multiple
subdomains. Moreover, we model three different types of communication emerged as a result of parallelization and
implement various latency-hiding optimizations to reduce the communication overhead. Good scalability of the paralleli-
zation strategies is demonstrated on two supercomputers. A strong scaling study using 256 cores simulating 1728 inter-
faces or bubbles achieves 32.5x speedup. We also conduct weak scaling study on 4096 cores simulating 27,648 bubbles
on a 1024 3 1024 3 2048 Eulerian grid resolution.
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1 Introduction

Computational simulation of multiphase flows is cru-
cial for understanding many industrial processes and
natural phenomena (Deckwer, 1992; Furusaki et al.,
2001). In the simulation of multiphase flows an inter-
face, called a front separates different fluids. The treat-
ment of the front poses great difficulty because it
continuously evolves, deforms, and even undergoes
topological changes. Various discretization techniques
have been developed for treating a front (see
Tryggvason et al. (2011) for an overview). Two of the
most popular techniques discussed in Tryggvason et al.
(2011) are front tracking, where the front is explicitly
tracked using a Lagrangian grid (Eulerian–Lagrangian
approach) and the front capturing method, where the
front is implicitly represented in an Eulerian grid
(Eulerian–Eulerian approach). For accurate as well as
stable simulations both the front capturing and front
tracking methods need a high spatial and temporal res-
olution, which in turn demands high computational
power. To keep computational time within practical
limits simulations are needed to be done in parallel.

The literature presents many studies on the paralleli-
zation of single-phase flow simulations (Aggarwal

et al., 2013; Alfonsi et al., 2014). Most of the existing
parallel implementations (Li, 1993; George and
Warren, 2002; Wang et al., 2006; Reddy and Banerjee,
2015) have focused on the front capturing methods
such as the volume-of-fluid (VOF), level-set, and
phase-field methods because they are similar to the
common single-phase flow solvers that use Eulerian
methods.

The front tracking method is advantageous as it pre-
serves mass very well, virtually eliminates numerical dif-
fusion of interface (i.e. the interface thickness remains
the same), and calculates the interfacial physics accu-
rately. However, the Eulerian–Lagrangian methods
(e.g. the front tracking method) when compared to the
Eulerian–Eulerian methods are more challenging to
parallelize because in addition to the Eulerian grid, the
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Lagrangian grid and communication between the two
grids should be handled in the computation.

With the current technology trends, the communica-
tion cost between processors exceeds the computation
cost both in terms of energy consumption and perfor-
mance (Ang et al., 2014; Unat et al., 2015). For scal-
ability on modern architectures, large-scale applications
such as multiphase flow simulations have to optimize
their data movement using communication hiding and
avoiding techniques (Demmel, 2013; Driscoll et al.,
2013; You et al., 2015). In this paper, we study a three-
dimensional (3D) front tracking method and optimize
the communication both in Eulerian and Lagrangian
grids using MPI (Message Passing Interface) for mod-
ern large-scale parallel architectures. The Lagrangian
grid (e.g. bubble) is unstructured, movable, and con-
tinuously restructured with time, which poses great dif-
ficulties in its parallelization. To handle the
communication between Lagrangian grids, we design
two parallelization strategies: owner-computes and
redundantly-all compute. The owner-computes associates
a shared Lagrangian grid with a single processor and
communicates the newly computed data with the
sharers. The redundantly-all compute strategy adopts a
different approach, where the shared Lagrangian grid is
computed by all the sharers at the expense of increased
computation but reduced communication. We imple-
ment both strategies and explore their actual perfor-
mance on two supercomputers.

Our contributions can be summarized in the following.

1. We analyze and optimize the parallelization of
both the Eulerian and Lagrangian grids for a three-
dimensional front tracking method.

2. We develop two parallelization strategies for
Lagrangian grids: owner computes and redundantly
all compute, and compare their resulting communi-
cation cost by modeling three different types of
communication (Lagrangian–Eulerian, Eulerian–
Eulerian, and Lagrangian–Lagrangian).

3. By using realistic problem settings, we conduct a
strong scaling study using 256 cores simulating
1728 bubbles and achieve 32.5x speedup over the
baseline. We also perform a weak scaling study up
to 4096 cores simulating 27,648 bubbles and
observe good scalability.

The rest of the paper is organized as follows: In the
next section, we present the related work. Then we
briefly describe the formulation and numerical algo-
rithm behind the front tracking method. Next, we
develop a data dependency graph among different tasks
of the front tracking method and provide details of the
parallelization strategies. Then we present and compare
models for different types of communication used in
the front tracking method. After that, we discuss the

implementation details for parallelization, and provide
the results for the strong and weak scaling of the paral-
lelized code. Finally, we draw conclusions.

2 Related work

In the literature, efforts towards the performance stud-
ies of parallel Eulerian–Lagrangian methods are limited
to either a small number of processors or to a small
number of bubbles (interfaces). The early idea of the
front tracking method has been mainly developed by
Glimm et al. (1988) and Glimm et al. (2001). In their
version of front tracking, the interface itself is described
by additional computational elements and the evolving
interface is represented by a connected set of points
forming a moving internal boundary. An irregular grid
is then constructed in the vicinity of the interface and a
special finite-difference stencil is used to solve the flow
equations on this irregular grid. An implementation is
available on the FronTier library (Glimm et al., 2000,
2002; Fix et al., 2005). Later, Tryggvason and cowor-
kers (Unverdi and Tryggvason, 1992; Tryggvason
et al., 2001) improved the front-tracking method so
that the fixed grid does not change near the interface.
Moreover, unlike the Glimm’s front tracking method,
where different phases are treated separately, in
Tryggvason’s method different phases are treated as a
single phase, which makes simulating the many bubble
cases easier. In the present study, we base our imple-
mentation on the version of the front tracking method
developed by Unverdi and Tryggvason (1992).
Esmaeeli and Tryggvason (1996) and Bunner and
Tryggvason (2002a,b) studied the motion of a few hun-
dred two-dimensional and three-dimensional bubbles,
respectively, using the front tracking method. Bunner
(2000) parallelized the front tracking method on a 3D
Eulerian grid using domain decomposition and the
Lagrangian grid was parallelized using a master-slave
approach. The Lagrangian grid shared by multiple sub-
domains is computed by the master process in the
master-slave approach. The master process also distri-
butes the updated data to the slave processes.

In an Eulerian–Lagrangian multiphase flow simula-
tion, particles can be used to represent phases. They can
be connected if they are used to separate the phases or
they can be independent, representing different phases.
Existing Eulerian–Lagrangian methods usually use
independent particles, which are easier to parallelize
compared to connected ones. In the connected particle
cases as in the front tracking method, coupled data
between the Eulerian and Lagrangian grids makes it
more challenging to parallelize. For example, Darmana
et al. (2006) and Nkonga and Charrier (2002) paralle-
lized the independent particles using a domain decom-
position method for both Eulerian and Lagrangian
grids.
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Kuan et al. (2013) parallelized the connected particle
Eulerian–Lagrangian method by applying domain
decomposition to both grids. They spatially decompose
the Lagrangian grid similar to the Eulerian grid. They
overlap the subdomains during decomposition to hide
communication with computation and perform re-
decomposition each time the Lagrangian marker points
move out of the subdomain. To keep track of subparts
of the Lagrangian grid they carry out some extra com-
putation for the grid’s connectivity construction.
Although they use one or two interfaces in their simula-
tions, the implementation achieves only modest scaling
on a small number of processors.

The main focus of the prior work about the paralle-
lization of the Eulerian–Lagrangian methods for multi-
phase flows (Nkonga and Charrier, 2002; Darmana
et al., 2006; Kuan et al., 2013) relied on domain decom-
position and focused less on the resulting communica-
tion overhead. In this work, we model the resulting
communication in depth and implement two strategies
for the Eulerian–Lagrangian method. The increasing
gap between the computational and communication
capabilities have forced researchers to look for tech-
niques to deal with the architectural limitations.
Redesigning of algorithms to avoid or hide communi-
cation by replicating the computation is becoming an
alternative technique to deal with the rising gap. Some
of the motivational work inspiring our methods are
based on communication avoiding algorithms devel-
oped by Demmel (2013) for direct and iterative linear
algebra, You et al. (2015) for support vector machines
on distributed memory systems, and Driscoll et al.
(2013) for N-body particle interactions algorithm.

3 Front tracking method

The governing equations are described in the context of
the finite difference or front tracking method
(Tryggvason et al., 2001). The flow is assumed to be
incompressible. Following Unverdi and Tryggvason
(1992), a single set of governing equations can be writ-
ten for the entire computational domain provided that
the jumps in the material properties such as the density
and viscosity are taken into account and the effects of
the interfacial surface tension are treated appropriately.

The continuity and momentum equations can be
written as follows

r � u= 0

r
∂u

∂t
+ rr � uu= �rp+r � mðru+rTuÞ

ð1Þ

+Drg+

Z
A

skndðx� xfÞdA ð2Þ

where m, r, g, p, and u denote the viscosity and the den-
sity of the fluid, the gravitational acceleration, the

pressure, and the velocity vector, respectively. The last
term in equation (2) represents the body force due to
surface tension where s is the surface tension coeffi-
cient, k is twice the mean curvature, and n is the unit
vector normal to the interface, respectively. The surface
tension acts only on the interface as indicated by the
three-dimensional delta function, d, whose arguments x
and xf are the points at which the equation is evaluated
and a point at the interface, respectively.

It is also assumed that the material properties remain
constant following a fluid particle, i.e.

Dr

Dt
= 0;

Dm

Dt
= 0 ð3Þ

where D
Dt

= ∂
∂t
+ u � r is the material derivative. The

density and viscosity vary discontinuously across the
fluid interface and are given by

m=miI +moð1� IÞ; r= riI + roð1� IÞ ð4Þ

where the subscripts i and o denote the properties of the
drop and bulk fluids, respectively, and I is the indicator
function defined such that it is unity inside the droplet
and zero outside.

The flow equations (equations (1) to (2)) are solved
on a stationary staggered Eulerian grid. The spatial
derivatives are approximated using second order cen-
tral finite-differences for all field quantities except for
the convective terms that are discretized using a third
order QUICK (Quadratic Upstream Interpolation for
Convective Kinematics) scheme (Leonard, 1979). Time
integration is achieved using a projection method first
proposed by Chorin (1968). The numerical method is
briefly described here in the framework of the actual
Fortran implementation. The method is explicit so that
the time-step Dt is restricted for numerical stability and
computed at the beginning of the time-stepping loop as

Dt=asf min
h2
min

6smax
;

h

U

� �
min

� �
ð5Þ

where smax is the largest value among the kinematic
viscosities of the drop and ambient fluids and hmin is
the smallest grid size. ðh=UÞmin is the minimum value of
grid size h divided by the magnitude of the velocity U

in the domain, and asf is the safety factor taken as 0.9
in this study. Then the increment in velocity vector due
to the convection and viscous terms is computed using
the quantities evaluated at the previous time level n as

du= r � ðuuÞ+ r � mðru+r
TuÞ

r

� �n

ð6Þ

where the convective terms are evaluated using the
QUICK scheme (Leonard, 1979) while the viscous
terms are approximated using the central differences on
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the staggered grid. The body force due to surface ten-
sion forces is evaluated as

ff =

Z
A

skndðx� xfÞdA

� �
ð7Þ

where it is first computed on the Lagrangian grid and
is then distributed onto the neighboring Eulerian grid using
the Peskin’s cosine distribution function as discussed in
detail by Tryggvason et al. (2001). The front is then moved
by a single time-step using an explicit Euler methods as

xn+ 1
f = xn

f + un
f Dt ð8Þ

where un
f is the velocity interpolated onto the location

of the marker point from the Eulerian grid. After this
step, the body force due to surface tension forces is
added to the buoyancy force and du. Then the unpro-
jected velocity field u� is computed as

du= du+
gDrn

rn
+

ff

rn
; ð9Þ

u�= un +Dtdu ð10Þ

To enforce the incompressibility condition, the pres-
sure field is computed by solving a Poisson equation in
the form

r � 1

rn
rpn+ 1

� �
=

1

Dt
r � u� ð11Þ

The Poisson equation (equation (11)) is solved for the
pressure using the HYPRE (High Performance
Preconditioners) library (HYPRE Library). Then the
velocity field is corrected to satisfy the incompressibility
condition as

un+ 1 = u� � Dt

rn
rpn+ 1 ð12Þ

Finally the indicator function is computed using the
standard procedure as described by Tryggvason et al.
(2001), which requires the solution of a separable
Poisson equation in the form

r2In+ 1 =r � rIð Þn+ 1 ð13Þ

which is again solved using the HYPRE libarary
(HYPRE Library). To evaluate the right hand side of
equation (13), unit normal vectors are first computed
at the center of each front element, then distributed
onto neighboring Eulerian grid points in a conservative
manner, and finally the divergence is evaluated using
central differences.

The numerical methods described above is first order
accurate in time. However, second-order accuracy is
recovered by using a simple predictor-corrector scheme
in which the first-order solution at n+ 1 serves as a pre-
dictor that is then corrected by the trapezoidal rule as
discussed by Tryggvason et al. (2001).

In the front tracking method, the interface is used to
explicitly track the fluid-fluid interface as shown in
Figure 1a. The interface consists of Lagrangian points
(or marker points) connected by triangular elements as
shown in Figure 1b. The Lagrangian points are used to
compute the surface tension forces on the interface,
which are then distributed as body forces using the
Peskin’s cosine distribution function (Peskin, 1977)
over the neighboring Eulerian grid cells (Unverdi and
Tryggvason, 1992; Tryggvason et al., 2001). The indica-
tor function is computed at each time-step based on the
location of the interface using the standard procedure
(Unverdi and Tryggvason, 1992; Tryggvason et al.,
2001) and is then used to set the fluid properties in each
phase according to equation (4). The restructuring is
performed by deleting the elements that are smaller
than a pre-specified lower limit and by splitting the ele-
ments that are larger than a pre-specified upper limit in
the same way as described by Tryggvason et al. (2001)

Figure 1. (a) Lagrangian and Eulerian grids in 2D. The flow equations are solved on the fixed Eulerian grid. The interface between
different phases is represented by a Lagrangian grid consisting of connected Lagrangian points (marker points). (b) Structure of a 3D
interface. Each interface is a collection of triangular elements, which have pointers to the marker points and to the adjacent
elements. Marker points are the corner points of an element.
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to keep the element size nearly uniform. It is critically
important to restructure the Lagrangian grid since it
avoids unresolved wiggles due to small elements and
lack of resolution due to large elements.

More details about the front tracking method can
be found in the original paper by Unverdi and
Tryggvason (1992), the review paper by Tryggvason
et al. (2001) and the recent book by Tryggvason et al.
(2011). See the literature for different applications of
the method (Muradoglu and Tasoglu, 2010; Terashima
and Tryggvason, 2010; Shin et al., 2011; Muradoglu
and Tryggvason, 2014; Izbassarov and Muradoglu,
2015).

4 Parallelization of the front tracking
method

In this section we present the parallelization method
used for the front tracking method, particularly focus-
ing on the parallelization of the Lagrangian grid. We
first derive a data dependency graph for the equations
as shown in Figure 2.

A gray rectangle in the figure represents a task and
the number inside a task indicates which equation it
solves. The arrows indicate data dependencies from
one task (equation) to another. As Figure 2 suggests all
tasks are dependent on the data from other tasks.
However, the computations on the Eulerian and
Lagrangian grids can be performed in parallel.

We refer to the processes computing on the Eulerian
grid as Domain processes and the processes computing
on the Lagrangian grid as Front. The Eulerian grid is a
structured grid and as a result simple domain decompo-
sition can be easily applied for its parallelization. Each
subdomain can be assigned to one MPI-process.
Similar to the Eulerian grid, we subdivide the
Lagrangian grids into subgrids, and distribute bubbles
among the parallel Fronts. The Front, which contains

the center of a bubble becomes the owner of that bub-
ble. Each Front is mapped to a number of Domain pro-
cesses and the Front communicates with only these
Domains. An example mapping of 8 Domains to 2
Fronts is shown in Figure 3a.

A bubble may move anywhere in the physical
domain over time. There is a possibility that a bubble
may be lying at the border and be shared by more than
one Front as shown in Figure 3b, where a single bubble
is shared by 2 Fronts. Shared bubbles complicate paral-
lelization. To update the coordinates of the marker
points that do not lie inside the owner Front are needed
to be sent and received to or from other Fronts. One
approach to deal with such bubbles is to break the bub-
ble into parts and each Front works only on its own
portion as discussed by Bunner (2000). This approach
is computationally much more complex as it requires
matching points and elements at the boundaries to
maintain the data coherency. Instead we propose the
following two approaches.

1. Owner-Computes: In this approach, the shared
bubble is computed by the owner Front, which
contains the center of the bubble and updates the
sharers. The responsibilities of the owner include
solving the equations, keeping track of the sharers,
and sending or receiving the data (n; ff , and xf )

Figure 2. Data dependency among the tasks in the front
tracking method (number inside the rectangle indicates the
equation number computed in that task).

Figure 3. (a) Work division for parallel Fronts where upper 4
Domains are assigned to upper Front and lower 4 Domains are
assigned to lower Front. (b) Two parallel Fronts with a shared
bubble.
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associated with shared portion of the bubble to or
from corresponding sharers. The responsibility of
sharers is only to route the shared data of the bub-
ble to the corresponding Domains.

2. Redundantly-All-Compute: This strategy eliminates
the communication of n and ff among the sharers at
the cost of redundantly computing a shared bubble
by all the sharers. Fronts containing the shared por-
tion of the bubble redundantly perform the compu-
tations for the shared bubble. Responsibilities of
sharers include solving the equations, keeping track
of new sharers, communication with their corre-
sponding Domains, and sending or receiving the
shared data xf to or from the sharers. The owner of
the shared bubble has the same responsibilities as the
sharer with an additional responsibility of sending
entire data of the shared bubble to the new sharers.

We analyze these two approaches in terms of their
communication overhead and present their implemen-
tation in the following sections.

5 Modeling communication

Parallelization of both the Lagrangian and Eulerian
grids introduce three types of communication: (1)
Front-Domain, (2) Domain-Domain, and (3) Front-
Front. In this section, we analytically compute the mes-
sage sizes and number of messages sent by each of the
Front and Domain processes. For the sake of simplicity
we assume that the Eulerian grid size is N in the x, y,
and z dimensions.

5.1 Front to domain communication

The message size in Front to Domain communication is
variable as it depends on the number of bubbles, the
deformation in bubbles, and the allowed distance
between two points of a bubble. The total number
of points in the ith bubble, Pi, can be approximately
given by

Pi = ðpr 3
N

L
3

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
amin 3 amax

p
Þ2

ð14Þ

where r is the radius of the bubble and N
L
is the ratio of

grid size to the length of physical domain. amin and
amax are the minimum and maximum limits, respec-
tively, for the distance allowed between two points in
an element. The total message size between a Front and
all its Domains in a single time-step, denoted by Mf2d ,
can be computed by

Mf2d =Msend +Mrecv

Msend = 9 3
Xn

i= 1

Pi; Mrecv = 3 3
Xn

i= 1

Pi

ð15Þ

where Msend is the data sent and Mrecv is the data
received by the Front. For each point there are point
coordinates in the x,y, and z directions and every point
coordinate has a corresponding surface tension force
and normal vector to the edge of the element. A total
of 9 double precision elements per point should be sent
to a Domain while only updated point coordinates (3
double precision elements) are received from a Domain.
Let dx, dy, and dz be the geometry of the MPI processes
for the Domains. For the sake of simplicity if we
assume d = dx = dy = dz, then there are d3 Domains in
total. The number of messages sent and received by the
Front in a single time-step would be 2d3 because all
point coordinates destined to a single Domain could be
packed in a single message.

If there are f Fronts and an approximately equal
number of Domains are assigned to each Front, then
the number of messages and message size per Front are
reduced by a factor of f ; each Front exchanges 2d3=f

messages with size of Mf2d=f . However, the actual mes-
sage size per Front can vary based on how bubbles are
distributed in the physical domain.

5.2 Domain to domain communication

The message size in this type of communication is fixed
and depends on the stationary Eulerian grid size. Every
Domain needs to exchange its ghost cells (halos) with
its 6 neighbors in the x, y, and z directions. Each mes-
sage size is ng 3 N2

d2 ;, where ng is the depth of the ghost
cells and the subdomain size is N

d
. Thus the Domain to

Domain communication size, Md2d , is given by

Md2d = 6 3 d 3 N2 3 ðng 3 14Þ ð16Þ

Each Domain needs to send at least 30 messages per
time-step. The details are as follows: After receiving of
n and ff from the Front, these values are interpolated
on the Eulerian grid and needed to be updated on the
neighboring Domains. As every Domain communicates
with its six neighbors, a total of 6 messages are sent.
Ghost cells of flow velocity, u, are communicated with
all six neighboring Domains after their computation in
equation (10) and equation (12), resulting in another 12
messages. Pressure and density computed in equation
(11) and equation (4) result in two more message
exchanges with six neighbors.

5.3 Front to front communication

Front to Front communication is required to exchange
the point coordinates of the shared bubbles, which
were updated by Domains. Front to Front communica-
tion is difficult to approximate as it depends on the
number of the shared bubbles, the number of Fronts
sharing those bubbles and the shared portion of a bub-
ble. Let’s suppose that we have b number of shared
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bubbles, where each bubble is shared by s number of
Fronts. The value of b depends on the total number of
Fronts and the movement of bubbles during simula-
tion. There are three types of boundaries between the
Fronts as shown in Figure 4: (1) A plane boundary that
is between two adjacent Fronts, (2) a line boundary
where four neighboring Fronts meet, and (3) a point
boundary that is shared by eight neighboring Fronts.

The probability that a bubble is shared on a certain
boundary depends on many variables e.g. the bubble
diameter i.e. if a single large bubble is simulated it is
expected to be shared on a point boundary. However,
here only the probabilities of the boundary types are
compared. Probabilities of boundary types are based
on the amount of space they occupy in the domain.
For example, if a domain is divided into 8 subdomains,
then there will be only single point boundary, two line
boundaries, and three plane boundaries. If there are
100 bubbles then at maximum only one bubble can be
shared on the point boundary. On the other hand, bub-
bles shared on the lines are more probable than points
and the maximum probability is to be shared on a
plane boundary. Moreover the many bubble case is
considered here so the diameters of the bubbles are
expected to be smaller when compared to the domain
size. Thus it is more likely that a bubble will be shared
on a plane boundary compared to a line or point. As a
result, the value of s for a large number of shared bub-
bles is 2.

5.3.1 Owner-computes the shared bubble strategy. In the
owner-computes strategy the owner of the bubble sends
point coordinates, corresponding surface tension force,
and normal vector to the sharers and then receives the
updated point coordinates from them. The amount of
shared points is initially small when a bubble becomes
shared and increases as the bubble moves. The amount
of shared points starts decreasing when a bubble’s cen-
ter crosses the boundary and the ownership is

transferred to the neighboring Front. In one
extreme case (when the center of the bubble is
almost at the boundary) the fraction of points in
the owner Front will be slightly more than half,
quarter, and one eighth of total points for plane,
line, and point boundaries, respectively. Thus, ðs�1Þ

s

fraction of the points are exchanged with sharers.
In another extreme case, only 1 point from each
shared bubble is exchanged. Then, the number of
messages exchanged per time-step is 2ðs� 1Þb. The
minimum and maximum communication size is
denoted by Mf 2fOCmin

and Mf 2fOCmax
, respectively, for

both sending and receiving the point coordinates
per time-step driven from equation (15) for all the
Fronts are represented by

Mf 2fOCmax
= ð9+ 3Þ ðs� 1Þ

Pb
i= 1 Pi

s

Mf 2fOCmin
= ð9+ 3Þ ðs� 1Þb

s

ð17Þ

5.3.2 Redundantly-all-compute the shared bubble
strategy. Communication in the redundantly-all-compute
strategy is different when compared to the owner-com-
putes strategy because communication has to take place
among all the Fronts sharing the bubble and each Front
has to redundantly send the same point coordinates
that were updated in Front to all the other sharers. The
number of messages exchanged per time-step is
sðs� 1Þb. The communication size per time-step for all
the Fronts, Mf 2fRC, is given by

Mf 2f RC = ð3 3 ðs� 1ÞÞ
Xb

i= 1

Pi ð18Þ

5.4 Comparison of communication overheads

Table 1 summarizes the communication overhead for
all three types of communication. The number of

Figure 4. Three types of Front boundaries: (a) plane boundary - represented by the gray plane, dividing the bubble into two parts,
(b) line boundary - is the line where two planes intersect each other, and (c) point boundary - is the point where all three planes
intersect.
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Domain processes ðd3Þ and bubbles ðnÞ are dominant
factors in the communication overhead. In the simula-
tion the number of shared bubbles, b, is typically much
smaller than the total number of bubbles. Similarly, the
number of sharers is smaller than the number of fronts,
f or domains, d3. As a result, it is expected that the
communication size in Domain to Domain is much
larger than Front to Domain, which is also larger than
the Front to Front communication. The number of mes-
sages is expected to be the highest for Domain to
Domain. In Front to Front, the number of messages
mainly depends on how many bubbles are shared and
the number of sharers.

The cost model for the redundantly-all-compute strat-
egy holds at all times because the model is independent
of what portion of a bubble is shared. On the contrary
we can only approximate the communication cost of
the owner-computes strategy. If we take the average of
the minimum and maximum communication size into
account for owner-computes, then the following obser-
vations can be made.

1. If a bubble is shared at a plane boundary or line
boundary, then redundantly-all-compute is advan-
tageous in terms of communication size; owner-
computes strategy would exchange 3b and 9b more
double precision elements, for planes and lines
respectively.

2. If a bubble is shared at a point boundary, then
owner-compute is advantageous in terms of com-
munication size because there are eight sharers.

3. The number of messages for both strategies are
equal when a bubble is shared on a plane boundary
but the redundantly-all-compute strategy exchanges
more messages when a bubble is shared on a line
or a point boundary.

4. Considering that it is more likely for bubbles to be
shared at a plane or line boundary, redundantly-all-
compute should perform better because of its smaller
overall communication volume. On the other hand,
redundantly-all-compute comes at the expense of
increased computation at the sharer Fronts.

Based on these observations, there is no clear win-
ner. The best strategy depends on how the bubbles are

shared, the balance between the interconnection net-
work and compute capabilities of the underlying
machine, and finally how much communication over-
head is hidden behind computation. As a result, it is
worthwhile to implement both strategies and explore
their actual performance.

6 Implementation

The Eulerian grid is partitioned in all three dimensions
of space resulting in a number of subgrids (Domains),
each of which is executed by a separate MPI process.
Every Domain works on its portion of the stationary
Eulerian grid while exchanging boundary values with
neighboring Domains. The Domain processes are
responsible for solving the equations on the Eulerian
grid indicated in Figure 2. The Poisson equation for
the pressure (equation (11)), and the indicator function
(equation (13)) are solved using the HYPRE library
(HYPRE Library).

The interpolation of n and ff from the Lagrangian
to Eulerian grid and the interpolation of u from the
Eulerian to Lagrangian grid mentioned in Figure 2 can
be done either in the Domain or in the Front processes.
Both these interpolations are done in the Domain to
reduce the communication size because the Eulerian
grid is denser than the Lagrangian grid. We send xf

from the Front to the Domain because it is needed for
interpolation. The Domain process also solves equation
(8) as it simply updates xf .

In the remainder of this section we present the imple-
mentation details for the two parallelization strategies
for the Lagrangian grid. It is important to note that we
use non-blocking communication calls as much as pos-
sible as a result some of the communication cost might
be hidden behind computation.

6.1 Parallel front with owner-computes shared
bubbles

The design for the parallel Front using the owner-
computes strategy is shown in Figure 5a. The inner do-
loop executes twice for each time-step to achieve sec-
ond order accuracy in time. A bubble created initially
inside a Front may also be shared with another Front

Table 1. Number of messages and message sizes for different types of communication with the assumption of uniform distribution
of bubbles.

Communication type Number of messages Communication size

Front to Domain 2d3 Mf2d = ð9+ 3Þ
Pn

i= 1 Pi

Domain to Domain 30d3 Md2d = 63d3N23ðng314Þ
Front to Front
(Owner-computes) 2ðs� 1Þb

Mf 2fOCmax
= ð9+ 3Þ ðs�1Þ

Pb

i= 1
Pi

s
(Redundantly-all-compute) sðs� 1Þb Mf 2fRC = ð33ðs� 1ÞÞ

Pb
i= 1 Pi
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or it may become shared in any time-step. We imple-
ment the Find_Shared_Interface subroutine, which iter-
ates over all bubbles and finds the bubbles that are
shared among multiple Fronts. The next step is to send
and receive the n and ff at the shared point coordinates
along with xf to and from the sharers.

Instead of all Fronts communicating with each other
we optimize the communication overhead by adding
the Find_Fronts_to_Communicate subroutine, which
finds and notifies only those Fronts that need to com-
municate with each other. In this subroutine each Front
fills an array, having length equal to the number of
Fronts, with a flag to indicate whether it needs to com-
municate with a specific Front or not. A communica-
tion table at each Front process is built using this array
and serves as an input to the MPI_AllGather. Based on
this communication table all owners exchange n; ff , and
xf with sharers in the Exchange ðn; ff ; xf Þ subroutine
and then all Fronts communicate with their correspond-
ing Domains. After receiving the updated point coordi-
nates xf from Domains, sharers in the Exchange ðxf Þ
subroutine send these updated point coordinates to the
owners.

In the Exchange_Interface_Properties subroutine a
single Front gather Interface_Properties for all bubbles
from their owners and then broadcasts these to all
Fronts. At the end of a time-step if the center of the
bubble has moved from the owner Front to some other
Front then the ownership is transferred to the new
Front. When that happens, the Ownership_Transfer sub-
routine sends all the point coordinates, element corners,
neighbors, and surface tension data to the new owner.

6.2 Parallel front with redundantly-all-compute
shared bubbles

Figure 5b shows the design for the redundantly-all-com-
pute strategy. During the initialization every Front

performs additional work to find the shared bubbles
and notifies the sharers to redundantly create that bub-
ble. After creating the shared bubbles redundantly each
Front calculates surface tension force and normal vec-
tors at the corresponding point coordinates and sends
them to their allocated Domains. After receiving the
updated point coordinates xf from the Domains, each
Front in the Exchange ðxf Þ subroutine send its received
portion of the point coordinates to all other sharers so
that every Front can have all the relevant point coordi-
nates for the shared bubbles.

As a result of the point coordinate update and
movement of a bubble, some portion of a bubble may
now be shared with a new Front that was previously
not computing the bubble. The Find_Shared_Interface
subroutine is called to find the shared bubbles and their
sharers. Subsequently in the Find_New_Fronts_
and_Communicate subroutine the owner of the bubbles
finds the new sharers and sends them all the point coor-
dinates, old point coordinates, element corners, neigh-
bors, and surface tension so that these new sharers can
redundantly start computing the shared bubble.
Exchange_Interface_Properties works similar to the
one in the owner-computes strategy. However, in the
Ownership_Transfer subroutine sending a bubble’s data
is eliminated because all the Fronts sharing the bubble
have already computed that information. Lastly,
because averaging and regridding subroutines may
introduce new sharers, Find_Shared_Interface and
Find_New_Fronts_and_Communicate functions are
called again to discover new sharers.

7 Results and discussion

We carry out the performance studies for the parallel
front tracking method on two supercomputers. The
first one is the Abel cluster located at the University

Figure 5. (a) Parallel Front design of owner-computes strategy for the shared bubble. (b) Parallel Front design of redundantly-all-compute
strategy for the shared bubble.
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of Oslo and other is the Hazel Hen located at the
High Performance Computing Centre, Stuttgart.
Specifications of both Abel and Hazel Hen are listed in
Table 2. Abel has an FDR (Fourteen Data Rate)
Infiniband interconnection network while Hazel Hen has
a Cray Aries Dragonfly network. Throughout the perfor-
mance studies we use 0.058 void fraction and deformable
bubbles with fluid properties given in Table 3. Fluid prop-
erties are mainly based on the deformable bubble case
used by Lu and Tryggvason (2008) and the bubble’s dia-
meter is selected so that a bubble can have a reasonable
number of grid points i.e. 28 in this case. We use periodic
boundary conditions for all directions and double preci-
sion arithmetic in our calculations. In our experiments we
found that shared memory parallelism do not perform
well as compared to distributed memory parallelism.
Using hyper-threading within MPI processes produces
optimal performance. This conclusion is aligned with prior
work by Reguly et al. (2016). All our experiments use 2
OpenMP (Open Multi-Processing) threads for hyper-
threading within each MPI process.

7.1 Strong scaling

Strong scaling studies enable us to observe the behavior
of the code for solving the same problem with more
resources. Grid parameters and different input config-
urations for strong scaling runs are given in Table 4.

Domain size is the container size that we are simulating
and the mesh resolution is the Eulerian grid that is used
in the Domain. The baseline for the speedup is the
redundantly-all-compute strategy with two MPI pro-
cesses one for the Domain and one for the Front.

Figure 6 shows the results for the strong scaling. On
Abel, for the given mesh size ð2563Þ, the best speedup
for both strategies is achieved when 64 Domain+64
Front processes are used. The speedup over the baseline
with 1+1 processes is 163 for redundantly-all-com-
pute and 14x for the owner-computes strategy.
Increasing the MPI processes beyond 128 is not realis-
tic because at that point there are only few data points
assigned to each MPI process. On Hazel Hen, we
achieve much better scalability because Hazel Hen has
a higher network bandwidth, which is 11.7 GB/s,
almost twice of that of Abel. The maximum speedup
we achieve on Hazel Hen is around 32.53 over 1+1
processes for both strategies. Again here increasing the
MPI processes beyond 256 is not realistic.

When we compare two parallelization strategies of
the Lagrangian grid, the redundantly-all-compute
strategy performs better than the owner-computes
strategy when the number of processes are large. This
is because increasing the number of processes results
in more subdomains, thus more boundaries ultimately
increasing the number of shared bubbles. For fewer
number of processes owner-computes performs better
because the communication overhead due to shared
bubbles is lower than the extra computation per-
formed by the redundantly-all-compute strategy. These
results are in line with our conclusions in communica-
tion modeling i.e. the communication overhead due to
shared bubble is lower for redundantly-all-compute
strategy at the expense of extra computation. The per-
formance gap between the two strategies is small, not
visible in the figure, on Hazel Hen as compared to
Abel due to the fast interconnection network on
Hazel Hen.

Table 2. Machine specifications for Abel and Hazel Hen.

Machine name Abel Hazel Hen

CPUs Intel E5-2670 Intel E5-2680 v3
Sandy Bridge
(Xeon E5-2670)

Haswell
(Xeon E5-2680)

Sockets / 2 / 8 2 / 12
cores per socket
Threads per core 2 2
Clock rate (GHz) 2.6 2.5
Shared L3 (MB) 20 30
Main memory (GB) 64 128
Memory bandwidth 58 (GB/s) 68 (GB/s)
Network bandwidth 6.78 (GB/s) 11.7 (GB/s)

Table 3. Fluid properties.

Bubble diameter ðdbÞ) 0.16/0.08
Bubble/fluid density 0.1/1.0
ðrb=rf Þ
Bubble/fluid viscosity 0.0003333/0.0003333
ðmb=mf Þ
Surface tension ðsÞ 0.002
Eotvos number 3.0
ðDrgd2

b=sÞ
Morton number 3:6155310�7

ðDrgm4
f =r2

f s3Þ

Table 4. Strong scaling inputs.

Domain size (x, y, and z) 2 3 2 3 2
Mesh resolution 256 3 256 3 256 (Abel) /

512 3 512 3 512 (Hazel Hen)
Number of bubbles 216 (Abel) / 1728 (Hazel Hen)
Number of processes
(x,y,z) =

2 = 1 3 1 3 1 + 1 3 1 3 1

Domain process
geometry +

4 = 2 3 1 3 1 + 2 3 1 3 1

Front process geometry 8 = 2 3 2 3 1 + 2 3 2 3 1
16 = 2 3 2 3 2 + 2 3 2 3 2
32 = 4 3 2 3 2 + 4 3 2 3 2
64 = 4 3 4 3 2 + 4 3 4 3 2
128 = 4 3 4 3 4 + 4 3 4 3 4
256 = 8 3 4 3 4 + 8 3 4 3 4
512 = 8 3 8 3 4 + 8 3 8 3 4

MPI processes/node 16 (Abel) / 24 (Hazel Hen)
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7.2 Weak scaling

We conduct a weak scaling study for the front tracking
method because high mesh resolutions allow research-
ers to investigate complex fluid-fluid or fluid-gas inter-
action problems. Inputs for weak scaling are shown in
Table 5. In this study, we fix the amount of computa-
tional work assigned to each process in all six inputs:
64 3 128 3 128 grid size to each Domain process and
approximately 14 bubbles to each Front process.

Results for weak scaling are shown in Figure 7.
Although the computational work per process stays the
same, the time per iteration slowly rises as we scale due
to the communication overhead on Abel. On the other
hand, both strategies show good scaling on Hazel Hen
up to 2048 processes (1024+1024) but time per itera-
tion rises with further increase in the number of pro-
cesses. Although the number of messages and
communication size per process stay the same, the total
number of messages and message sizes increase in all
three types of communication that leads to network
contention. In the implementation we use global syn-
chronizations such asMPI_AllReduce to select the min-
imum time-step value, MPI_AllGather to assemble the
communication matrix in the Front processes, and
MPI_Broadcast to send the interface properties to the
Front processes. These global synchronizations lower

the parallel efficiency beyond 2048 processes. Future
work will further improve the communication and syn-
chronization costs by removing some of the global syn-
chronization points.

(a) (b)

Figure 6. Strong scaling speedup (higher is better). (a) Abel. (b) Hazel Hen.

(a) Abel (b) Hazel Hen

Figure 7. Weak scaling (lower is better).

Table 5. Weak scaling inputs.

Input-1/2/3/4/5/6

Domain size (x, y, z) 2 3 4 3 4/4 3 4 3 4/
4 3 8 3 4/4 3 8 3 8/
8 3 8 3 8/8 3 8 3 16

Mesh resolution 256 3 512 3 512/
512 3 512 3 512/
512 3 1024 3 512/
512 3 1024 3 1024/
1024 3 1024 3 1024/
1024 3 1024 3 2048

Number of bubbles 864/1728/3456/
6912/13,824/27,648

Number of
processes (x, y, z) =

128 = 4 3 4 3 4 + 4 3 4 3 4/

Domain process
geometry +

256 = 8 3 4 3 4 + 8 3 4 3 4/

Front process
geometry

512 = 8 3 8 3 4 + 8 3 8 3 4/

1024 = 8 3 8 3 8 + 8 3 8 3 8
2048 = 8 3 8 3 16 + 8 3 8 3 16
4096 = 8 3 16 3 16 + 8 3 16 3 16

MPI processes/node 16 (Abel) / 24 (Hazel Hen)
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7.3 Process placement and ratios

We also compare two placement scenarios for the
Domain and Front processes. In the first scenario, ‘co-
located’, Domains and their corresponding Fronts are
placed in the same compute node while in the second
scenario, ‘separated’, Domains and Fronts processes are
placed in separate compute nodes. For example, con-
sider the case of 8 (4+4), where processes numbered
0–3 are the Domain processes and 4–7 are the Front
processes. In the separated scenario we schedule the
processes 0–3 to run on the first node and 4–7 on the
second node. In the co-located scenario processes
0,2,4,6 are scheduled to run on the first node and
1,3,5,7 on the second node. Note that in both scenarios
the same number of resources (cores and nodes) are
used to schedule MPI processes. We use ‘‘cyclic:cyclic’’
for co-located and ‘‘block:block’’ for separated in the
Slurm (SLURM) task distribution method in the job
submission script. As shown in Figure 8 placing Fronts
and their corresponding Domains in separated nodes
performs better than co-locating them in the same
node. The performance improvement becomes clearer
as the number of processes is increased. Indeed our
communication model suggests that the separated task
distribution should perform better because the Domain
to Domain communication plus Front to Front commu-
nication is more than the Front to Domain communica-
tion. For example, consider the (32+32) case. Based
on equations (15) to (17), in a single time-step, Domain
to Domain communication results in 36.7 MB of data
exchange in 960 messages, Front to Front communica-
tion results in 5.77 MB of data exchange using 216
messages, and finally Front to Domain communication
results in 34.6 MB of data exchange in 64 messages. As
a result, placing these two types of processes on differ-
ent nodes is the best since node to node communication
is more costly than within the node communication.

In Figure 6 we ran the application by assigning one
Front to every Domain. Next, we experiment with dif-
ferent Domain to Front ratios to find an optimal value.

The ratio between Domain and Front processes should
be balanced to avoid underutilization of resources.
Computation performed by a Front process is consider-
ably less expensive than a Domain process. Thus spar-
ing more processes for Front than Domain is not
beneficial. The result shown in Figure 9 suggests that
assigning a single Front to every 4 Domains can achieve
almost the same speedup as single Front to single
Domain. 2:1 ratio (two Domains for every Front) per-
forms slightly better in some cases, however in strong
and weak scaling we did not observe any significant
gain for 2:1 ratio over 1:1 because the benefit of addi-
tional resources is negated by the additional communi-
cation overhead. Although the figure shows only the
owner-computes strategy, the Domain to Front ratios
for both strategies give similar performance.

8 Conclusions

Eulerian–Lagrangian methods for multiphase flows
simulations are more challenging than Eulerian meth-
ods to parallelize because the Lagrangian grid is
unstructured, movable, and restructures continuously
with time and requires coupling with the Eulerian grid.
In this work, we focused on the parallelization of the
front tracking method that belongs to the family of the
Eulerian–Lagrangian approach. The parallelization of
the method is necessary to be able to simulate large
number of interfaces (bubbles) and to overcome the
memory limitation on a single compute node. We
implemented and analyzed two different parallelization
strategies for the Lagrangian grid, namely owner-com-
putes and redundantly-all-compute. The communication
cost model we devised for these parallelization strate-
gies suggests that the best performing strategy depends
on the distribution of bubbles in the fluid and the
underlying machine specifications.

Our implementation can achieve 32.5x speedup on
256 cores on the Hazel Hen supercomputer and 16x
speedup on the Abel supercomputer with 128 cores over

Figure 8. Co-located vs separated Domain and corresponding
Front (lower is better).

Figure 9. Number of Domains to number of Fronts ratio
(higher is better).
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the baseline (2 cores) with strong scaling. We conducted
the weak scaling study of our code by simulating up to
28 thousand bubbles on 1024 3 1024 3 2048 grid size
using about four thousand cores, and achieved very
good scaling. The experimental results indicate that
owner-computes slightly performs better on weak scal-
ing studies but redundantly-all compute performs better
in strong scaling studies. Thus, we expect that on a
machine with high compute capability but low network
bandwidth, redundantly-all-compute is likely to outper-
form owner-computes. Finally co-locating Domain pro-
cesses on the same node performs better than splitting a
node between Domain and its corresponding Front pro-
cesses because the Domain to Domain communication
size is significantly more than the Front to Domain
communication.
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