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A front-tracking method is developed for direct numerical simulations of viscoelastic two-phase systems
in which one or both phases could be viscoelastic. One set of governing equations is written for the whole
computational domain and different phases are treated as a single fluid with variable material and rhe-
ological properties. The interface is tracked explicitly using a Lagrangian grid while the flow equations are
solved on a fixed Eulerian grid. The surface tension is computed at the interface using the Lagrangian grid
and included into the momentum equations as a body force. The Oldroyd-B, FENE-CR and FENE-MCR
models are employed to model the viscoelasticity. The viscoelastic model equations are solved fully cou-
pled with the flow equations within the front-tracking framework. A fifth-order WENO scheme is used to
approximate the convective terms in the viscoelastic model equations and second-order central differ-
ences are used for all other spatial derivatives. A log-conformation method is employed to alleviate
the high Weissenberg number problem (HWNP) and found to be stable and very robust for a wide range
of Weissenberg numbers. The method has been first validated for various benchmark single-phase and
two-phase viscoelastic flow problems. Then it has been applied to study motion and deformation of vis-
coelastic two-phase systems in a pressure-driven flow through a capillary tube with a sudden contraction
and expansion. The method has been demonstrated to be grid convergent with second-order spatial accu-
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racy for all the cases considered in this paper.
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1. Introduction

Viscoelastic emulsions are ubiquitous in a wide range of engi-
neering applications such as materials and food processing, phar-
maceuticals, polymer blends and droplet-based microfluidics
[51,49]. In particular, almost all the particle-laden biological fluids
in nature exhibit viscoelastic behavior. Therefore it is of crucial
importance to understand the dynamics of an individual viscoelas-
tic droplet in a viscoelastic or Newtonian medium [51].

Computational modeling of viscoelastic fluid flow is a difficult
task mainly due to the large disparity in time scales especially at
high Weissenberg numbers known as the high Weissenberg num-
ber problem (HWNP). The existence of a moving and deforming
interface in two-phase systems makes the problem even more
complicated and challenging. Viscoelasticity has been usually
modeled based on the microstructure of dilute polymer solutions
and expressed by various constitutive differential equations such
as upper convected Maxwell (UCM)/Oldroyd-B [40], Giesekus
[22] and finitely extensible nonlinear elastic (FENE-P [5],
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FENE-CR [13]) models for single and multiphase flow systems
[51,42]. Various numerical approaches have been proposed to
solve these models coupled with the flow equations. However
the conventional numerical algorithms usually failed to converge
above a certain Weissenberg number limit [42]. This stability prob-
lem is primarily caused by the exponential growth of viscoelastic
stresses in regions of high shear rates or near stagnation points
[42]. The failure of the numerical methods to properly approximate
this exponential growth results in a numerical instability.
Moreover this instability is pronounced if the positive definiteness
of the conformation tensor is not preserved at the numerical solu-
tion level. The conformation tensor has a definite physical origin
and interpretation stemming from the internal microstructure of
polymer molecules in a continuum level [4] dictating the confor-
mation tensor to be positive definite. Hulsen [26] proved that the
conformation tensor must be initialized and remain positive defi-
nite for numerical stability. However, this condition can be vio-
lated in numerical approximations due to accumulation of
numerical errors [42].

In a pioneering study, Keunings [28] observed failure of existing
numerical methods at high Weissenberg numbers and attributed
this failure to the inappropriate numerical methodologies. Since
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then, a number of stabilization approaches have been proposed to
overcome the HWNP in viscoelastic flow simulations as recently
discussed in details by Chen et al. [12]. Marchal and Crochet [31]
developed one of the first successful numerical methods for simu-
lations of viscoelastic flows at high Weissenberg numbers using
upwind discretization of the convective terms in a mixed
finite-element framework. Mompean and Deville [32] developed
a finite-volume method and successfully performed simulations
of Oldroyd-B fluid flow in a 3D planar contraction at high
Weissenberg numbers. More recently, Fattal and Kupferman [20]
developed the log-conformation method (LCM) based on reformu-
lation of the constitutive equations using a logarithmic transfor-
mation of conformation tensor. The LCM has been shown to be
stable and accurate at high Weissenberg numbers, i.e., as high as
Wi =100 [27]. This representation makes the problem more stable
at numerical solution level since it preserves the positive definite-
ness of the conformation tensor and successfully captures sharp
elastic stress layers. Sarkar and Schowalter [48] proposed a
semi-analytical method (SAM) in which the exponential time vari-
ation is retained explicitly. In contrast with the LCM, the SAM does
not require any eigen-decomposition so it has an advantage of hav-
ing lower computation cost and implementation simplicity.
However the positive definiteness of the conformation tensor is
not preserved automatically in the SAM. Thus it may diverge at
high Weissenberg numbers unless special treatments are done to
guarantee the positive definiteness at numerical solution level.
The SAM has been successfully used for two-phase viscoelastic
flow simulations including shear [1,33] and buoyancy-driven [34]
flows. However we found that, although the SAM is efficient at
low or moderate Weissenberg numbers, it diverges when
Weissenberg number exceeds a certain limit, i.e., Wi > 2, in simu-
lating a viscoelastic droplet in a pressure-driven constricted chan-
nel. Therefore the SAM is used for low or moderate Weissenberg
numbers while the LCM is employed at high Weissenberg numbers
in the present study.

In spite of significant progress made for viscoelastic
single-phase flow simulations, numerical methods have not yet
reached maturity for simulating multiphase viscoelastic flows
especially at high Weissenberg numbers. Tanner [50] performed
a pioneering numerical study of die-swell problem using a
Maxwell fluid model. Later Crochet and Keunings [19] simulated
a circular and slit die-swell problem using the Oldroyd-B fluid
model. Keunings and co-worker have also performed numerical
simulations of various free-surface viscoelastic flows [9,10,28].
Kolte et al. [29] used a Lagrangian method to simulate the transient
filament stretching rheometer. More recently various one-field for-
mulations have been employed to perform direct numerical simu-
lations of interfacial viscoelastic flows. Examples include the
level-set [3,45], the volume of fluid (VOF) [14,23,25], marker and
cell [43,53,54], phase-field [8,62,67], the conservative
semi-Lagrangian advection scheme of constrained interpolation
profile method with rational function (CIP-CSLR) [21] and the
front-tracking methods [17,18,48]. In addition, versions of the arbi-
trary Lagrangian-Eulerian (ALE) [15,28,59,63,64] and the
Lagrangian [47,61] methods have been also employed. Lind and
Phillips [30] recently studied the effect of viscoelasticity on a rising
gas bubble using a boundary element method. These methods have
been used to investigate a wide range of interfacial viscoelastic
flow problems including the jet buckling [6,39,54], extrudate swell
[15,53,54], viscoelastic drop dynamics [17,18,33,43] and the
cross-slot flow [43], among others.

The front-tracking method developed by Unverdi and
Tryggvason [57] has been widely used to examine many aspects
of Newtonian interfacial flows [55,36,52,37,41,38]. The method
was extended to treat viscoelastic interfacial flows first by Sarkar

and Schowalter [48] and has been successfully used to study vis-
coelastic drop dynamics in shear and buoyancy-driven flows
[1,33-35]. Sarkar and Schowalter [48] used the semi-analytical
method that is limited to low or moderate Weissenberg numbers
as mentioned earlier. Chung et al. [17,18] developed a
finite-element/front-tracking method for simulation of viscoelastic
interfacial flows in two-dimensional planar geometries using the
log-conformation approach but the method is restricted to low
Reynolds number (creeping) flows. This method has been success-
fully applied to study viscoelastic two-phase systems in a planar
channel with a sudden constriction.

In the present study, a finite-difference/front-tracking method
is developed for direct numerical simulation of viscoelastic
two-phase flow systems including a Newtonian droplet in a vis-
coelastic medium (NV), a viscoelastic droplet in a Newtonian med-
ium (VN) and a viscoelastic droplet in another viscoelastic medium
(VV). Although the method is general and applicable to virtually
any interfacial flow involving viscoelastic fluids, our main goal is
to simulate the drop dynamics encountered or inspired by
micro/bio-fluidic applications [52,58,65,66]. The method is
designed to accommodate the generic family of viscoelastic model
equations including the Oldroyd-B, FENE-CR of Chilcott Rallison
[13] and FENE-MCR of Coates et al. [11]. The convective terms in
viscoelastic constitutive equations are approximated using a
second-order ENO [24] and fifth-order upwinded WENO-Z [7]
schemes. It is found that the WENO-Z scheme outperforms the
ENO scheme in resolving thin high viscoelastic stress layers near
the interface. All the other spatial derivatives are approximated
using central differences on a staggered grid. Both the
semi-analytical and log-conformation methods are employed to
overcome high Weissenberg number problem. It is found that the
SAM is computationally more efficient than the LCM but fails to
achieve convergence at high Weissenberg numbers especially for
the pressure-driven viscoelastic two-phase flows in constricted
capillary tubes. On the other hand, the LCM successfully achieves
convergence for much higher Weissenberg numbers, e.g., as high
as Wi =100 without any difficulty but with a higher computa-
tional cost and increased implementation complexity. The method
has been first validated for two benchmark single-phase problems.
The first problem deals with the start-up Poiseuille flow of an
Oldroyd-B fluid in a circular capillary tube. For this case, the
numerical results are found to be in excellent agreement with
the analytical solution obtained by Waters and King [60] both for
the transient and steady state cases. The second benchmark prob-
lem concerns with a pressure-driven single-phase FENE-MCR fluid
flow through an abrupt 4:1 constricted pipe. The results are com-
pared and found to be in good agreement with the computational
results of Coates et al. [11]. Then the method is applied to simulate
the motion and deformation of a buoyancy-driven droplet in vis-
coelastic two-phase systems moving through a capillary tube stud-
ied computationally by You et al. [64]. The results are found to be
in good agreement with You et al. [64] especially when the
WENO-Z scheme is used to discretize the convective terms in the
viscoelastic model equations. Finally the method has been success-
fully applied to a more challenging case involving motion and
deformation of a droplet in pressure-driven viscoelastic
two-phase systems flowing through a capillary tube with a sudden
contraction and expansion. This test case holds a great promise to
be a benchmark problem for testing performance of numerical
methods developed to simulate viscoelastic two-phase systems
of practical interest. The present numerical algorithm has been
found to be very robust and grid convergent with second-order
spatial accuracy for all the cases considered in this paper.

The main contributions of the present work can be summarized
as follows:
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1. The front-tracking method is extended for simulations of
viscoelastic interfacial flows with significant inertial effects at
high Weissenberg numbers using the log-conformation
approach.

2. A fifth-order WENO-Z scheme is used for convective terms of
the viscoelastic model equation, and found to be instrumental
for resolving thin viscoelastic stress boundary layers especially
near the interface. Note that the usual second-order central dif-
ferences are unstable while second-order ENO schemes are
excessively dissipative.

3. The method is general and applicable to two-phase systems in
which phases can be all Newtonian, Newtonian-viscoelastic
and viscoelastic-viscoelastic. It can accommodate virtually
any viscoelastic model for each phase. Moreover, the method
is readily extendible for simulation of multiphase systems in
which more than two-phases may exist.

4. To the best of our knowledge, it is the first time that the
front-tracking method is applied to pressure-driven viscoelastic
interfacial flows in axisymmetic geometries with sudden
contraction and expansion at finite Reynolds and Weissenberg
numbers. The previous applications were restricted to 2D
planar channels [17,18,25]. Moreover, simulations are per-
formed for Newtonian-Newtonian, viscoelastic-Newtonian,
Newtonian-viscoelastic and viscoelastic-viscoelastic cases.

The rest of this paper is organized as follows: In the next sec-
tion, we briefly describe the governing equations including the
constitutive models for viscoelasticity. The numerical method is
presented in Section 3. The emphasis is placed on the numerical
solution of viscoelastic model equations within the framework of
the front-tracking method. The results are presented and discussed
in Section 4. The method is first validated for single-phase and
two-phase viscoelastic test problems, and then applied to vis-
coelastic two-phase systems in a pressure-driven flow through a
circular pipe with a sudden contraction and expansion. Finally con-
clusions are drawn in Section 5.

2. Mathematical formulation

The governing equations are described in the context of the
finite difference/front tracking method. The flow is assumed to
be incompressible. Following Unverdi and Tryggvason [57], a sin-
gle set of governing equations can be written for the entire compu-
tational domain provided that the jumps in the material properties
such as density, viscosity and relaxation time are taken into
account and the effects of the interfacial surface tension are treated
appropriately.

The continuity and momentum equations can be written as
follows:

V. u=0, (1)

ag;tquV-(puu):prJrVnus(VquVuT)JrV-1+Apg

+ / OKNd(X — X¢)dA, (2)
A

where u,, p,g,p,u and 7 denote the solvent viscosity and the den-
sity of the fluid, the gravitational acceleration, the pressure, the
velocity vector and the extra stress tensor, respectively. The last
term in Eq. (2) represents the body force due to surface tension
where ¢ is the surface tension coefficient, x is twice the mean cur-
vature, and n is the unit vector normal to the interface, respectively.
The surface tension acts only on the interface as indicated by the
three-dimensional delta function, 6, whose arguments X and X¢

are the points at which the equation is evaluated and a point at
the interface, respectively.

The Oldroyd-B, FENE-CR and FENE-MCR models are adopted as
the constitutive equations for the viscoelastic extra stresses. These
models can be written in a generic transport equation form as

é(%f+V-(uE)—(Vu)T~E—E-Vu>+E:S, (3)
where E can be extra stress or conformation tensor and S is a source
term. In Eq. (3), F, S and 7 are specified in Table 1 for the three vis-
coelastic models considered in the present study. In this table,
Uy, 4, L, F,1 and 7 are the polymeric viscosity, the relaxation time,
the ratio of the length of a fully extended polymer dumbbell to its
equilibrium length, the stretch function, the identity and extra
stress tensors, respectively. The conformation tensor is then defined
as

A:ﬁrﬂ. (4)
14

It is also assumed that the material properties remain constant fol-
lowing a fluid particle, i.e.,

Dp , Du, D,upi - Di
o= % O =0 o

S : (5)
where 2 =2 4 u.V is the material derivative. The density, poly-
meric and solvent viscosities, and the relaxation time vary discon-
tinuously across the fluid interface and are given by

‘up ::up,il_‘_:up.o(l _I); :us ::usjl+:us‘o(] _I);
p=pl+p,(1=1); A=xl+2(1-1),
where the subscripts i and o denote the properties of the drop and

bulk fluids, respectively, and I is the indicator function defined such
that it is unity inside the droplet and zero outside.

(6)

3. Numerical method

The viscoelastic flow equations are solved using the
front-tracking method developed by Unverdi and Tryggvason
[57]. This method is based on a single-field formulation of the flow
equations for the entire computational domain and treats different
phases as a single fluid with variable material properties. The
emphasis is placed on describing the new ingredients and essential
features of the method as it is applied to two-phase viscoelastic
systems and specifically to the numerical solution of the viscoelas-
tic model equations within the front-tracking framework.

3.1. Front-tracking method

The interface between different phases is represented by sepa-
rate, non-stationary computational marker points connected to
form a Lagrangian grid that lies within a stationary Eulerian grid
as sketched in Fig. 1. The marker points move with the local flow
velocity interpolated from the neighboring Eulerian grid points.
Each piece of the interface between two neighboring marker points
is called an interface (or front) element. The surface tension force is
first computed at the centroids of the front elements using a

Table 1

Specification of the parameters F,S and 7 in Eq. (3).
Model F S T
Oldroyd-B 1 | UF(E—T)/2
FENE-CR 2 /(12 — trace(E)) I H,F(E—-1)/2
FENE-MCR

(L% + }.trace(l-:)//lp)/(L2 -3) u(Vu+ vu') E
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Fig. 1. The Lagrangian and Eulerian grids used in computations. The flow equations
are solved on the fixed Eulerian grid. The interface between different phases is
represented by a Lagrangian grid consisting of connected marker points.

third-order Legendre polynomial fit through the end points of each
element and the end points of the adjacent elements. These forces
are then distributed on the neighboring staggered Eulerian grid
points in a conservative manner and added to the discrete momen-
tum equations as source terms in a similar way as discussed by
Tryggvason et al. [55].

The front is also used to advect the discontinuous material
property fields at each time step. First, the indicator function is
computed. Based on the locations of the interface marker points,
unit magnitude jumps are distributed in a conservative manner
on the Eulerian grid points near the interface and are then inte-
grated to obtain the indicator function everywhere. This procedure
involves solution of a separable Poisson equation on the Eulerian
grid and yields a smooth transition of the indicator function across
the interface. Once the indicator function distribution is deter-
mined, the material properties are set as a function of the indicator
function according to Eq. (6).

As the interface evolves, it greatly deforms and stretches. Thus
some front elements become too large resulting in a lack of resolu-
tion while some become too small resulting in formation of wig-
gles much smaller than the grid size. To maintain accuracy, the
Lagrangian grid is restructured at every time step by deleting the
front elements that are smaller than a prespecified lower limit
and by splitting the front elements that are larger than a prespec-
ified upper limit to keep the front element size nearly uniform and
comparable to the Eulerian grid size. The curvature of the interface
is accounted for using a third-order Legendre polynomial fit in
deleting and adding a front element as described by Tryggvason
et al. [55].

Information must be passed between the Lagrangian and
Eulerian grids at each time step since the locations of the marker
points do not necessarily coincide with the stationary Eulerian grid
points. This is achieved by approximating the infinitely thin inter-
face by a smooth distribution function that is used to distribute the
interfacial surface tension forces computed on the interface over
the Eulerian grid points near the interface and also to interpolate
the velocity onto the locations of the marker points from the
Eulerian grid. Thus the front is given a finite thickness comparable
to the mesh size in order to maintain stability and smoothness.
This also prevents numerical diffusion since this thickness remains
constant for all time. The Peskin’s cosine distribution function [44]
is employed for this purpose and found to perform well.

The details of the front-tracking method can be found in the
original paper by Unverdi and Tryggvason [57], the review paper
by Tryggvason et al. [55] and the recent book by Tryggvason
et al. [56].

3.2. Flow solver

The flow equations are solved using a projection method on a
staggered fixed Eulerian non-uniform Cartesian grid in which the
velocity nodes are located at the cell faces while the material prop-
erties, the pressure and the extra stresses are all located at the cell
centers. The spatial derivatives are approximated using central dif-
ferences and time integration is performed using the projection
method developed by Chorin [16]. Although a second-order accu-
racy in time can be easily achieved using a predictor-corrector
scheme [55], a very conventional first order scheme is employed
and briefly described here for completeness. In advancing solutions
from time level n to level n + 1, first the interface is advanced for a
time step using an explicit Euler method and the density field is
updated based on the new locations of the marker points to obtain
p"1. Then the momentum equation is integrated in two steps. In
the first step, the pressure gradient is ignored and the unprojected
velocity field is computed as

pn+1 u — pnun

Ar = Ve (puw) Vi (Vi + Viw)

n

+Apg+V~r+/ofcn5(x—xf)dA , (7)
A

where At is the time step, V,, is the discrete version of the nabla
operator and u* is the unprojected velocity vector. In the second
step, the velocity field is corrected as

pn+1un+1 _ pn+1u*
At
Taking divergence of Eq. (8) and using the incompressiblity condi-

tion Vj,-u™! =0, a non-separable Poisson equation is obtained
for the pressure field in the form

— Vi, ®)

1 )
Vi Vip™! = _Evh -, 9

’ pn+]
which is solved on the fixed Eulerian grid using a multigrid method
as described by Tryggvason et al. [55].

3.3. Solution of the viscoelastic model equations

Numerical solution of the viscoelastic constitutive equations is
notoriously difficult especially in two-phase systems mainly due
to the large disparity in time scales and discontinuous variation
of viscoelastic properties across the interfaces. To overcome these
difficulties, two approaches are adopted in the present study. In
the first approach, a semi-analytical method (SAM) developed by
Sarkar and Schowalter [48] is used and found to be effective for
Weissenberg numbers up to order of unity. For larger
Weissenberg numbers, the log-conformation method (LCM) devel-
oped by Fattal and Kupferman [20] is employed.

In the SAM, the viscoelastic constitutive equations (e.g., Eq. (3))
are first written as

) OE
&S T E=KO). (10)
where

I((t):Sfé[v-(uE)f(Vu)T-EfE-Vu]. (11)

Eq. (10) is integrated from time level n to level n + 1 for a time step
At to get

E'! — Ere-AtF/i + I("(] _ efAfF//'-)7 (12)

where K and F are assumed to remain constant during the integra-
tion. This scheme is equivalent to an explicit Euler method as
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At — 0 and consistent everywhere (including the regions where
/=0). The convective terms are approximated using a
second-order ENO [24] or a fifth-order upwinded WENO-Z [7]
scheme while central differences are used for all other spatial
derivatives. In contrast with the LCM, the SAM does not automati-
cally preserve positive definiteness of the conformation tensor.
Thus the SAM becomes unstable at high Weissenberg numbers
due to accumulation of numerical errors unless special treatments
are done to ensure positive definiteness.

The LCM is used to overcome the well known high Weissenberg
number problem (HWNP). In this approach, Eq. (3) is rewritten in
terms of the logarithm of the conformation tensor through
eigen-decomposition, i.e., ¥ = logA. This representation ensures
the positive definiteness of the conformation tensor. The core fea-
ture of the formulation is the decomposition of the gradient of
divergence free velocity field Vu' into two anti-symmetric tensors
denoted by Q (pure rotation) and N, and a symmetric tensor
denoted by C which commutes with the conformation tensor
[20], i.e.,

Vu' =Q+C+NA"". (13)

Inserting Eq. (13) into Eq. (3) and replacing the conformation tensor
with the new variable ¥, the transformed constitutive equations
can be written as

oY F

SpF V) - (@¥ - we) - 2C=" (e -, (14)

This equation is integrated using an explicit Euler scheme, i.e.,

\],n+1 — \l;n
+ At<7V - (UY) + (Q¥ — ¥Q) + 2C + § (e - l)) (15

where the spatial derivatives are again approximated using central
differences except for the convective terms for which a
second-order ENO [24] or a fifth-order upwinded WENO-Z [7]
scheme is employed. The conformation tensor is then obtained
using the inverse transformation as A = e¥.

When the log-conformation method is used in the straightfor-
ward one-field formulation framework as described above, numer-
ical difficulties arise at the viscoelastic/Newtonian interface since
Eq. (15) becomes singular as 4 — 0 on the Newtonian side. To cir-
cumvent this problem, a simple procedure is employed here and
found to be very robust. In this approach, the viscoelastic model
equations are solved only in the viscoelastic region identified by
the indicator function that is slightly truncated to avoid the singu-
larity. For instance, the viscoelastic model equations are solved in
the region where I > ¢ and I < 1 — ¢ for the VN and NV cases,
respectively, and the viscoelastic stresses are set to zero otherwise.
Since the viscoelastic stresses are zero in the Newtonian region, the
conformation tensor equals to the identity tensor, (i.e., A=1) and
¥ = 0 there. The cut off parameter ¢ is used to avoid the singular-
ity on the Newtonian side and set to ¢ = 0.005 in the present
study. Note that the results are found to be insensitive to the value
of the cut off parameter as long as ¢; < 0.01.

4. Results and discussion
4.1. Single-phase flow

The method is first validated for viscoelastic single-phase flows.
For this purpose, two test cases are considered. The first test case
concerns with the start-up Poiseuille flow of an Oldroyd-B fluid
in a circular pipe of radius R. The flow is assumed to be axisym-
metic so a cylindrical coordinate system is adopted with z repre-
senting the axial direction aligned with the pipe axis and r the

radial direction. Waters and King [60] studied this problem and
provided analytical solutions both for the transient and
steady-state cases. Thus it serves an ideal test case for validation
of the present numerical method. In this problem, the fluid is ini-
tially at rest and set into motion by a constant applied pressure
gradient G = —% = const. in the axial direction. No-slip and peri-
odic boundary conditions are applied at the pipe wall and in the
axial direction, respectively. Following dimensionless variables
are introduced:

R =1 T=£; v=la g B Re:ipyOR; wi =220,
R A Vo Ho Ho R
(16)
where v, is the axial velocity and p, = u; + 1, is the total viscosity.
In Eq. (16), the velocity scale v, is defined as vy = f% %.

Computations are performed on a uniform grid with grid size
Ar=R/128 for three different Weissenberg numbers, i.e.,
Wi = 1,10 and 100. The other dimensionless parameters are kept
constant at Re =1 and B = 0.1. Fig. 2a shows the velocity profiles
at various dimensionless times for Wi = 10. The evolution of the
centerline velocity is plotted in Fig. 2b for Wi = 1,10 and 100. As
can be seen in these figures, there is excellent agreement between
the computational and analytical results indicating the accurate
solution of the viscoelastic model equations. Note that, although
not shown here due to space consideration, the steady state results
of the viscoelastic stresses and velocity are also found to be in good
agreement with the analytical solutions.

The second test case deals with a single-phase viscoelastic fluid
flow through an abrupt axisymmetric 4:1 contraction. This flow
has been widely used as a benchmark problem for validation of
computational methods, see e.g., Owens and Phillips [42]. The
FENE-MCR model is employed here to facilitate comparison of
the present results with Coates et al. [11]. The semi-analytical
method is used for this test problem. The channel consists of two
circular tubes. The fluid passes from the larger channel of radius
R; into the narrower channel of radius R,. The relevant dimension-
less parameters are the viscosity ratio f = u,/l, the Reynolds
number Re = pUR,/u, and the Weissenberg number Wi = AU/R,,
where u, = U, + W, is the total viscosity and U is the average veloc-
ity in the narrow channel. The present results are compared with
the computational simulations of Coates et al. [11]. For this pur-
pose, the streamline patterns are shown in Fig. 3 in the vicinity
of the constriction for two different Weissenberg numbers. As
can be seen in the figure, the present results are overall in good
agreement with those of Coates et al. [11], i.e., the vortex stretches
towards the reentrant corner and grows in upstream direction with
increasing Weissenberg number and the vortex lengths compare
well in both simulations. Although not included in the paper, there
is also good quantitative agreement between the present simula-
tions and the results of Coates et al. [11] for all flow quantities
including the mean velocity and the extra stress components.

4.2. Multiphase flow

After validating the numerical algorithm for the benchmark
single-phase viscoelastic flows, the method is now applied to study
two-phase viscoelastic flow systems. For this purpose, the method
is first validated for the buoyancy-driven viscoelastic droplet sys-
tems studied computationally by You et al. [64]. Then the perfor-
mance of the numerical method is demonstrated for a more
challenging two-phase viscoelastic flow system involving the
motion and deformation of a droplet in a pressure-driven con-
stricted channel.
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Fig. 2. The start-up Poiseuille flow: (a) The velocity profiles at different non-dimensional times for Wi = 10. (b) The evolution of centerline velocity for Wi = 1,10 and 100.
The symbols represent the computational results and the solid lines are the analytical solution of Waters and King [60].
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Fig. 3. The vortices computed in the corner of the 4:1 contraction using the FENE-MCR model. (a) Wi = 1.55 and (b) Wi = 2.35. The present results (bottom portion) are
compared with the results of Coates et al. [11] (top portion). (Re = 0.1, = 0.01, and Grid : 128 x 320).

4.2.1. Buoyancy-driven viscoelastic two-phase systems in a capillary
tube

You et al. [64] considered buoyancy-driven droplet systems in
which either the droplet or the bulk fluid could be viscoelastic. In
addition to these two flow systems, we also consider the case in
which both the phases are viscoelastic with different rheological
properties. The FENE-CR model is employed in the present simula-
tions to facilitate direct comparison with the results of You et al.
[64]. The physical problem is shown schematically in Fig. 4. The
tube has a diameter of 1.4d,; and a length of 6.5d,, and are closed
at both ends. A spherical droplet of diameter d; is initially located
at the centerline of the tube with a 1.5d; distance from the bottom
wall. Flow is assumed to be axisymmetric and no-slip boundary
conditions are applied at the walls. For the conformation tensor,
the Neumann and axisymmetric boundary conditions are applied
on the walls and at the centerline, respectively. The droplet starts
moving due to buoyancy from rest in an otherwise quiescent ambi-
ent fluid. Following You et al. [64], the non-dimensional parame-
ters are defined as follows:

Re:LVdd; Ca:MsV ; Wizﬂ;
lus o dd (-17)
ius.i ,0,' ;Li
0=""; a=<Lt; k==,
:uso Po )”0

where Re,Ca, and Wi represent the Reynolds, capillary and
Weissenberg numbers, respectively. In Eq. (17), the velocity scale
is defined as V* = (p, — p;)gd5/u, where g is the gravitational accel-
eration. The other parameters 0, « and k denote the solvent viscos-
ity, the density and the relaxation time ratios, respectively. Unless
specified otherwise, the viscosity and density ratios are fixed at
0=0.5,5=0.77, and o = 0.5 for the results presented in this sec-
tion. The computations are performed using dimensional quantities
but the results are made dimensionless with the length scale d; and
time scale t* = d;/V". Note that You et al. [64] defined a slightly dif-
ferent conformation tensor that is related to AasB=A - 1.
Extensive computations are performed to examine the effects of
the viscoelasticity on drop mobility and deformation. The vis-
coelastic  constitutive equations are solved using the
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Fig. 4. Schematic illustration of a buoyancy-driven viscoelastic two-phase system.

semi-analytical method. The computational domain is resolved by
a 128 x 1184 grid. The constant contours of the components of the
conformation tensor are plotted in Figs. 5 and 6 in the vicinity of
the droplet in a steady motion for a viscoelastic droplet in a
Newtonian medium (VN) and a Newtonian droplet in a viscoelastic
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medium (NV), respectively, together with the computational
results of You et al. [64]. These figures show that a Newtonian drop
immersed in a viscoelastic fluid experiences an extending trailing
edge while a viscoelastic drop in a Newtonian fluid develops an
indentation around the rear stagnation point. Moreover, in both
cases, there is a thin layer at the interface in the leading and trail-
ing edges of the droplet where the viscoelastic stress concentration
occurs with a sharp gradient due to large polymer extensions.
These results are overall in good qualitative and quantitative
agreement with the computational simulations of You et al. [64].
The slight difference in the maximum magnitudes of some compo-
nents of the conformation tensor between the present results and
the results of You et al. [64] is mainly attributed to the lack of res-
olution of the thin viscoelastic layer at the interface in the present
simulations. Note that You et al. [64] used a separate body-fitted
curvilinear grid for each phase. Therefore they were able to greatly
stretch the grids near the interface resulting in a good resolution of
the thin viscoelastic layers there for these particular flow systems.
The terminal velocities of the VN and NV systems are shown in
Fig. 7 where the steady drop shapes are also plotted. The terminal
velocity is slightly under predicted for the VN system while it is
over predicted for the NV system. However, the steady drop shapes
are in good agreement with those of You et al. [64]. Further simu-
lations are also performed to examine dynamics of a
buoyancy-driven viscoelastic droplet immersed in another vis-
coelastic medium for a wide range of elasticity ratio k = ;/Z,.
Two sample results are shown in Fig. 8 for k=0.2 and k=5 to
demonstrate the ability of the present method for simulation of vis
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Fig. 5. The steady droplet shapes and the constant contours of the conformation tensor B for a buoyancy-driven FENE-CR droplet rising in a Newtonian fluid. The present
results (left portion) are compared with the results of You et al. [64] (right portion). (Re = 10, Ca = 50, Wi = 50, Grid : 128 x 1184).
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Fig. 6. The steady droplet shapes and the constant contours of the conformation tensor B for a buoyancy-driven Newtonian droplet rising in a FENE-CR fluid. The present
results (left portion) are compared with the results of You et al. [64] (right portion). (Re = 10, Ca = 20, Wi = 50, Grid : 128 x 1184).
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Fig. 7. The terminal velocity versus the non-dimensional time for a droplet in the
VN and NV systems, and their respective steady shapes. Solid lines are the present
results and the symbols are the results of You et al. [64]. The results are obtained
using a 128 x 1184 grid. (VN case: Re=10,Ca=50,Wi=50; NV case:
Re =10,Ca = 10, Wi = 100).

coelastic-viscoelastic two-phase systems. As can be seen in this
figure, k = 0.2 case resembles the NV system while k = 5 resem-
bles the VN system.

The properties of the numerical algorithm are also examined for
this test case. For this purpose, first the second-order ENO and the

fifth-order upwinded WENO-Z schemes are compared for the VN
and NV systems in Fig. 9. Considering the results of You et al.
[64] shown in Figs. 5 and 6, Fig. 9 clearly demonstrates that the
WENO-Z scheme outperforms the ENO scheme in resolving the
thin viscoelastic layer at the interface. The WENO-Z scheme is par-
ticularly successful for the VN case providing a comparable resolu-
tion with the results of You et al. [64] whereas the ENO scheme
results in about 40% under prediction in terms of the maximum
magnitude of By and B, on the same grid. It is also emphasized
here that the extra stress boundary conditions are more easily
implemented for the VN case since the viscoelasticity is essentially
confined in the flow domain far from the tube walls. Then the con-
sistency of the semi-analytical and log-conformation methods is
examined. The semi-analytical and log conformation methods are
mathematically identical so they must be consistent at the numer-
ical solution level within the spatial and temporal discretization
errors. This is verified in Fig. 10 where the constant contours of
By and B,, obtained by the two methods are compared. As can
be seen from this figure, both methods yield essentially the same
results indicating good consistency of two approaches. We also
note that, although not shown here, both methods have been com-
prehensively compared for a wide range of flow conditions and
found to be in excellent agreement for all the cases. It is worth
stressing that no HWNP related instability has been observed for
this buoyancy-driven flow case when the SAM is employed even
for very high Weissenberg numbers, i.e., as high as Wi = 1000.

It is well known that the vanishing solvent viscosity poses a sig-
nificant challenge for most numerical methods and often leads to
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Fig. 8. A buoyancy-driven FENE-CR droplet rising in another FENE-CR fluid for k = 0.2, Wi;
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20 and Wi, = 100 and for k = 5, Wi; = 100 and Wi, = 20. (a) The steady shapes,

and (b) the constant contours of the conformation tensor component B,,. (Re = 10, Ca = 20, Grid : 64 x 592).
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Fig. 9. The second-order ENO versus the fifth-order upwinded WENO-Z schemes. The constant contours of the conformation tensor components By, and B,, for VN and NV
cases. (VN case: Re = 10, Ca = 50, Wi = 50; NV case: Re = 10, Ca = 20 and Wi = 50; Grid : 64 x 592).

numerical instabilities [2] mainly due to the loss of the elliptic nat-
ure of the governing equations as p, — 0. The performance of the
present numerical method is examined through extensive simula-
tions for a range of solvent viscosity ratios () while keeping the
other parameters fixed. For this purpose, the solvent viscosity ratio

is varied in the range g = 0.1 and g = 10~ by successively increas-
ing the polymeric viscosity and reducing solvent viscosity such
that the total viscosity remains the same. The steady drop shapes
and corresponding constant contours of trace(B) are shown in
Figs. 11 and 12 for the VN and NV systems, respectively. Note that
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Fig. 10. The semi-analytical method (SAM) versus the log-conformation method (LCM). The constant contours of the conformation tensor components By, and B,, for VN and
NV cases. (VN case: Re = 10, Ca = 50, Wi = 50; NV case: Re = 10, Ca = 20 and Wi = 50; Grid : 64 x 592).

the results for # = 10~* case are not shown in Figs. 11 and 12 since
the effects of g become negligible after < 0.01 and thus the
results of f=10"2 and g=10"* cases are indistinguishable for
both NV and VN cases. It is found that the present method remains

very robust even for g = 10" case without any sign of instability.
As p decreases, the viscoelastic stresses grow and can dominate
over the surface tension. In the VN case, when g is reduced below
a threshold value, the surface tension cannot balance the viscoelas-
tic stresses anymore and the dimple created at the trailing edge
penetrates through the droplet and eventually forms a toroidal
shape as seen in Fig. 11. Similar drop deformation was also
observed by Mukherjee and Sarkar [34] for a viscoelastic drop fall-
ing through a viscous medium. It is also interesting to observe that
the droplet mobility increases and the terminal velocity becomes
more oscillatory for smaller g values as shown in Fig. 13. These
results are consistent with the results of Pillapakkam et al. [46]
and Lind and Phillips [30]. We finally note that, in the NV case,
the increased viscoelastic stresses sharpen the trailing edge of
the droplet as f decreases as seen in Fig. 12.

Finally the spatial and temporal accuracy of the numerical
method is examined for the VN case. In the present method, the
numerical error can be generally decomposed into spatial and
time-stepping errors. First, computations are performed using var-
ious grid resolutions ranging between 32 x 296 and 128 x 1184 to
show the overall dependence of the numerical results on grid
refinement. The terminal velocity is plotted against the

non-dimensional time in Fig. 14a while trace(B) is computed at
the drop centerline and plotted against the local vertical position
of drop measured from the trailing edge in Fig. 15a. As can be seen
in these figures, differences between successive grid resolutions
decrease as grid is refined indicating grid convergence.
Furthermore, the terminal velocity and trace(B) are plotted in
Figs. 14b and 15b, respectively, as a function of square of
non-dimensional grid size. The approximate linear relation indi-
cates expected second-order spatial accuracy of the method.
Fig. 14b also shows that a 64 x 592 grid is sufficient to reduce
the maximum spatial error in terminal velocity below 1%.
However, much finer grid is required to resolve the thin viscoelas-
tic stress boundary layer near the interface. For instance, even the
finest grid can reduce the spatial error only below 4% for trace(B) at
the leading edge stagnation point.

Since the present numerical method is explicit, the time step is
strictly restricted by the stability conditions so the time stepping
error is expected to be small compared to the spatial error. To
check this, simulations are performed for various time steps using
a 64 x 592 grid. The results are shown in Fig. 16 where the
non-dimensional axial coordinate of droplet centroid is plotted
against the non-dimensional time (Fig. 16a) and trace(B) is plotted
along the droplet centerline in steady motion (Fig. 16b) for various
time steps. As can be seen in this figure, the temporal error is neg-
ligible even for the maximum time step allowed by the stability
constraints.
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Fig. 11. The effects of solvent viscosity ratio (f) for the VN case. The steady droplet shapes are shown together with the constant contours of trace(B) for a buoyancy-driven
FENE-CR droplet rising in a Newtonian fluid. (Re = 10, Ca = 50, Wi = 50, Grid : 64 x 592).
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Fig. 12. The effects of solvent viscosity ratio (f) for the NV case. The steady droplet shapes are shown together with the constant contours of trace(B) for a buoyancy-driven
Newtonian droplet rising in a FENE-CR fluid. (Re = 10, Ca = 20, Wi = 50, Grid : 64 x 592).
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4.2.2. Pressure-driven viscoelastic two-phase systems in a capillary
tube with sudden contraction and expansion

The method is finally applied to study the viscoelastic
two-phase systems in a capillary tube with a sudden contraction
and expansion. A viscoelastic droplet in a Newtonian medium
(VN), a Newtonian droplet in a viscoelastic medium (NV) and a vis-
coelastic droplet in another viscoelastic medium (VV) cases are
considered. In addition to the well known stress singularities at
the corners of the constriction, the strong droplet-constriction
interactions and the subsequent large droplet deformations pose
a challenge for the numerical solution algorithms. In particular,
when a large droplet is forced to squeeze through the constriction
at low capillary and high Weissenberg numbers, it undergoes large
deformations leading to significant viscoelastic stress build ups
especially near the corners of the constriction. It is worth mention-
ing here that the Oldroyd-B model is used for this test case in order
to demonstrate the robustness of the present numerical method
since the numerical solution of Oldroyd-B model equations is gen-
erally deemed to be more difficult than that of the FENE type
models.
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Fig. 14. Grid convergence for the VN case. (a) The terminal velocity of the droplet against the non-dimensional time. The results are obtained using 32 x 296,64 x 592 and
128 x 1184 grids. (b) Variation of normalized terminal velocity with the square of the non-dimensional grid size (Ax/R)* at t/t* = 40,100 and 160. The solid lines are the
linear least squares fits to the computational results indicating the expected second-order accuracy of the method. (Re = 10, Ca = 50, Wi = 50).
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Fig. 17. (a) Schematic illustration of a pressure-driven viscoelastic two phase
system. (b) Mesh near the re-entrant corner.

The physical problem is schematically shown in Fig. 17a. The
flow is assumed be axisymmetric so only one half is used as the
computational domain. This geometry is motivated by the recent
computational studies of Chung et al. [17,18] who simulated
motion of a two-dimensional viscoelastic droplet in a creeping
flow through a planar constricted channel using a
finite-element/front-tracking method. A similar problem has been
also studied by Harvie et al. [25] who performed volume-of-fluid
simulations for a viscoelastic droplet in a Newtonian fluid moving
through a pressure-driven 2D planar channel with a constriction.
To the best of our knowledge, the only axisymmetric simulations
of a viscoelastic droplet through a constricted channel have been
performed by Zhou et al. [66] as a model for neutrophil deforma-
tion and transport in capillaries. Following Chung et al. [17], the
constriction ratio is selected in the present study as 5:1:5, i.e,,
the ratio of the tube radius to that of the constriction is
Ry /R, = 5. Note that this constriction ratio is more severe in the
present axisymmetric case than that in the planar flow. The tube
has a total length of 60R;. A sudden constriction of length 20R; is
located at the middle of the tube as shown in Fig. 17a. A spherical
droplet of diameter d; = 2.5R; is placed instantly at the axis of the
channel with a distance of 10R, upwards from the inlet. A parabolic
fully developed velocity profile is specified at the channel entrance

Fig. 18. An Oldroyd-B droplet moving through a Newtonian ambient fluid in a pressure driven constriction/expansion tube for Wi = 0.4. The constant contours represent the
average polymer extension defined as \/trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are performed using the

LCM on a 96 x 1152 grid (Ca =0.1,Re =1).
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Fig. 21. An Oldroyd-B droplet moving through a Newtonian ambient fluid in a pressure driven constriction/expansion tube for Wi = 2. The constant contours represent the
average polymer extension defined as \/trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are perform

LCM on a 96 x 1152 grid (Ca = 0.1,Re = 1).

ed using the
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0

Fig. 22. An Oldroyd-B droplet moving through a Newtonian ambient fluid in a pressure driven constriction/expansion tube for Wi = 50. The constant contours represent the
average polymer extension defined as \/trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are performed using the
LCM on a 96 x 1152 grid (Ca =0.1,Re = 1).

Fig. 23. An Oldroyd-B droplet moving through a Newtonian ambient fluid in a pressure driven constriction/expansion tube for Wi = 100. The constant contours represent the
average polymer extension defined as \/trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are performed using the
LCM on a 96 x 1152 grid (Ca = 0.1,Re = 1).

0 0

Fig. 24. A Newtonian droplet moving through an Oldroyd-B fluid in a pressure driven constriction/expansion tube for Wi = 0.4. The constant contours represent the average
polymer extension defined as /trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are performed using the LCM on a
96 x 1152 grid (Ca = 0.1,Re = 1).

and the pressure is fixed at the exit. The viscoelastic stresses are The Neumann boundary conditions are applied at the other

specified at the inlet based on the analytical solution assuming a boundaries.

fully developed pipe flow, i.e., In addition to the property ratios defined in Eq. (17), the rele-
o, o vant dimensionless parameters are the capillary (Ca), the

Tr=0; Top=0; 7T,= ’M”W’ Ty = 2),rrza—rz. (18) Weissenberg (Wi) and the Reynolds (Re) numbers defined as
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where U is the mean velocity in the narrow part of the tube. Drop
deformation is defined as

W, —Hy

deformation = ————,
Wb + Hb

(20)

where W, and H, are the maximum droplet dimensions in the axial
and radial directions, respectively. The capillary number, the
Reynolds number and the property ratios are fixed at
Ca=0.1,Re=1,8=0.5,0=0.5and o = 1.17 in all the results pre-
sented in this section. The computations are again performed using
dimensional quantities but the results are made dimensionless
using the length scale R, and time scale t* = 125R, /U.

The simulations are first performed for the dimensionless num-
bers that are of the same order of those in Chung et al. [17,18]. The
computational grid is stretched near the walls and in the vicinity of
the constriction similar to the single-phase flow case (Fig. 17b).
The semi-analytical method is found to be convergent only up to
Wi = 2 for the Oldroyd-B fluid model for this flow. Thus computa-
tions are performed using the log-conformation in all the results
presented in this section. Figs. 18 and 21 show the evolution of
an Oldroyd-B droplet moving in a Newtonian fluid (VN system)
through the constriction for Wi = 0.4 and Wi = 2, respectively.

Before presenting further results, a comprehensive study is con-
ducted to demonstrate the grid convergence and determine the
appropriate grid resolution for this pressure-driven case. Sample
results are presented here for the VN system only. For this purpose,
simulations are performed for the VN system shown in Fig. 18
using various grid resolutions ranging between 32 x 384 and
128 x 1536. The evolution of drop deformation and the steady
solution of A, — A, along the drop centerline are plotted in
Figs. 19a and 20a, respectively. As can be seen in these figures, dif-
ferences between successive grid resolutions decrease as grid is
refined indicating grid convergence. To quantify the spatial error,
values of drop deformation and A,, — A, are plotted at selected
locations against the square of non-dimensional grid size in
Figs. 19b and 20b, respectively. The approximate linear relation-
ship confirms the expected second order spatial accuracy of the
method. These figures show that a 96 x 1152 grid is required to
reduce the maximum spatial error below 4% for A,, — A, while only
a 64 x 768 grid is sufficient to reduce the spatial error below 1% in
the drop deformation. Note that the results presented in this paper
are obtained using a 96 x 1152 grid for which the maximum spa-
tial error is reduced below 4% in all the flow quantities.

N W A OO N O ©

In order to demonstrate the robustness of the numerical
method, simulations are also performed for much higher
Weissenberg numbers and sample results are plotted in Figs. 22
and 23 for Wi = 50 and Wi = 100, respectively. The constant con-
tours of \/trace(A) are used to quantify the evolution of the vis-
coelastic stresses. It is seen that, as the leading tip of the drop
enters the contraction, the region in the vicinity of the front stag-
nation point contains significantly extended polymers due to
extensional flow leading to accumulation of viscoelastic stresses
there. As the droplet further progresses into the constriction, sig-
nificant stress concentration also occurs on the side of the droplet
due to high shear stresses exerted by the ambient fluid near the
wall. These viscoelastic stresses are then convected toward the

Fig. 26. The constant contours of the difference between the normal components of
the conformation tensor A,; — Ay, in the vicinity of the droplet in the constriction. (a)
NV system and (b) VN system. (Ca = 0.1,Re = 1, Wi = 0.4 and Grid : 96 x 1152.)

Fig. 25. An Oldroyd-B droplet moving through another Oldroyd-B fluid in a pressure-driven constriction/expansion tube for Wi; = 2 and Wi, = 0.4. The constant contours
represent the average polymer extension defined as ./trace(A). From left to right, the snapshots are taken at times t/t* = 0.70,0.71,77,83 and 0.85. Simulations are

performed using the LCM on a 96 x 1152 grid (Ca = 0.1,Re = 1).
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trailing edge mainly by the internal circulation and accumulated
near the centerline when the droplet reaches a nearly steady
motion in the constriction. As droplet leaves the constriction, the
fluid decelerates resulting in negative extensional strain that
reduces droplet length forming a part-moon shape. The droplet
eventually relaxes to a nearly spherical shape due to surface ten-
sion. The stress patterns are similar for all Weissenberg number
cases but the viscoelastic effects are more pronounced as Wi
increases. Similar simulations are also performed for a
Newtonian droplet in a viscoelastic medium (NV) and a viscoelastic
droplet in another viscoelastic medium (VV). Figs. 24 and 25 show
the evolution of the NV and VV systems, respectively. Similar to the
VN case, in the NV system, the viscoelastic stresses concentrate
near the leading edge as drop enters the constriction and then
move toward the side of the droplet near the tube wall mainly
due to the shear stresses exerted by the ambient fluid. In the case
of VV, the stress patterns are a combination of the VN and NV
cases. The constant contours of A,, — A,, are plotted in Fig. 26 both
for the VN and NV cases in the middle of constriction when the

i
| []

lO.

06|

deformation

_N
o
i

"0 2 4 6 8 10 12 14 16 18 20
moving distance of drop (y d12R2)
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droplet reaches a nearly steady motion. For the VN case, the nor-
mal stress differences develop inside the drop on the sides close
to the wall as well as near the rear stagnation point. For the NV
case, the normal stress differences are significantly higher in the
film region as seen in Fig. 26a. In the both cases, the high stress dif-
ference on the sides helps the drop swell at the exit of the constric-
tion since the normal stress difference exerts force in the radial
direction.

Typical deformation patterns are illustrated in Fig. 27a for the
all Newtonian case (NN), i.e., Wi = 0. The deformation is plotted
against the moving distance y, defined as the distance that the dro-
plet travels in the axial direction relative to its initial position. For
the same case, the deformations in the axial and radial directions
are plotted separately in Fig. 27b. The drop deforms as it moves
into the constriction and becomes more elongated due to increased
confinement. Once the centroid of the drop is within the capillary
its rear is held by the contraction while its front continues to elon-
gate. After some time the rear of the drop clears the contraction
and drop attains a nearly steady shape in the narrow channel. As

6 2 4 6 8 10 12 14 16 18 20
moving distance of drop (y d/2R2)

(b)

Fig. 27. Drop deformation versus the moving distance of the drop centroid for the Newtonian-Newtonian system (NN). (a) The drop deformation and the corresponding drop
shapes. (b) The drop deformation in the axial (solid line) and the radial (dashed line) directions, respectively. (Wi = 0,Re = 1,Ca = 0.1 and Grid : 96 x 1152.)
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Fig. 28. Effects of fluid elasticity on drop deformation. The simulations are performed using a 96 x 1152 grid for Re = 1 and Ca = 0.1. (a) Oldroyd-B model (Wi; = 2, Wi, = 0.4

for VV), (b) FENE-CR model (L = 5).
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Fig. 29. The constant contours of A, — 1 for a viscoelastic drop in a Newtonian fluid
for Wi =25,Re = 1,Ca = 0.1. The simulations are performed on a 96 x 1152 grid.
(a) Oldroyd-B model. (b) FENE-CR model (L = 5).

drop leaves the constriction, it swells as indicated by the negative
deformation in Fig. 27a. Finally, the droplet restores its spherical
shape due to surface tension in the expansion region. Drop defor-
mation is compared in Fig. 28 for NV, VN and VV cases both for
the Oldroyd-B and FENE-CR models. As can be seen in this figure,
the drop deformation is almost identical for NV, VN and VV sys-
tems irrespective of the elastic properties of the fluids. Note that
the present results are qualitatively similar to the 2D planar simu-
lations of Chung et al. [18].

Finally simulations are performed for a high Weissenberg num-
ber case, i.e., Wi = 25, to demonstrate the difference between the
Oldroyd-B and FENE-CR models. The results are shown in Fig. 29
where the constant contours of A,, — 1 are plotted both for the
Oldroyd-B and FENE-CR models. As can be seen, the Oldroyd-B
model results in a large build up of polymer extensions along the
droplet centerline (Fig. 29a) whereas the polymer extension is
moderate in the FENE-CR model case (Fig. 29b). This is a direct
result of the finitely extensible nature of the FENE-CR model and
is the main reason that the Oldroyd-B model presents a consider-
able challenge to numerical simulations especially at high
Weissenberg numbers. The present results demonstrate that the
front-tracking method is robust and successfully simulates vis-
coelastic two-phase systems at high Weisenberg numbers, i.e., as
high as Wi = 100 for Oldroyd-B model.

5. Conclusions

A front-tracking method is developed for direct numerical sim-
ulations of viscoelastic interfacial flows. The method is general and
applicable to two-phase systems in which either phase or both
phases can be viscoelastic. It can accommodate virtually any vis-
coelastic model for each phase. Moreover, the method is readily

extendible for simulation of multiphase systems in which more
than two-phases may exist.

Semi-analytical and log-conformation schemes are used to inte-
grate the viscoelastic constitutive equations in time. The
log-conformation method is found to be in good agreement with
the semi-analytical method and very robust for a wide range of
Weissenberg numbers. A fifth-order upwinded WENO-Z scheme
is used to discretize the convective terms in the viscoelastic model
equations and found to be crucially important for resolving thin
viscoleastic boundary layers near the interface.

The method is first validated for single-phase viscoelastic flows
including a start up flow in a circular channel and a
pressure-driven flow through a 4:1 constriction. Then it is applied
to buoyancy-driven motion of viscoelastic two-phase systems
encompassing a viscoelastic droplet in Newtonian medium, a
Newtonian droplet in a viscoelastic medium and a viscoelastic dro-
plet in another viscoelastic medium. The results are compared and
found to be in good qualitative and quantitative agreement with
the computational simulations of You et al. [64]. Moreover, the
present method is found to be stable and very robust for very
low solvent viscosity ratios, i.e., as low as g = 107%. It is also veri-
fied that the results obtained using the log-conformation and
semi-analytical methods are consistent. Finally, the method is
applied to study the dynamics of viscoelastic droplet systems in
a pressure-driven contraction/expansion channel. It is found that
the log-conformation method is stable and preserves positive def-
initeness of conformation tensor for a wide range of Weissenberg
numbers whereas the semi-analytical method remains stable only
for small or moderate Weissenberg numbers, i.e., up to Wi = 2 for
this case. However the semi-analytical method has advantage of
requiring lower computational time and implementation complex-
ity compared to the log-conformation method. Thus the
semi-analytical method is an optimal choice for computation of
viscoleastic flows at small or moderate Weissenberg numbers. It
is also worth to note that the log-conformation method can pro-
vide stable simulations at large Weissenberg numbers, but it can-
not guarantee accuracy at arbitrarily high Weissenberg numbers
as discussed by Fattal and Kupferman [20].
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