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1 Introduction treating them as body forces. The front tracking method has been

Dynamics of dispersed bubbles or drops in capillary flows irzuccessfully applied to a variety of dispersed multiphase flow
volving complex geometries has attracted considerable inter8pPlems, but all in relatively simple geometries. A detailed de-
due to its applications in enhanced oil recovery, hazardous waggéiption of the front-tracking method can be found in the review
management, microfluidic devices, and biological systEtas3].  paper by Tryggvason et 44]. The FV method used in the present

The presence of deforming phases makes the multiphase flowrk is based on the concept of the duar pseudd time-
computations a challenging task, and strong interactions betwestapping method and is developed for unsteady computations of
the phases and complex geometries add further complexity to {hgéompressible laminar flows. The dual time-stepping method
problem. Therefore, the progress was rather slow and the compdes subiterations in pseudotime and has a number of advantages,
tations of multiphase flows have been usually restricted to simpl§ch as direct coupling of the continuity and momentum equations
geometrieg4] or to moderately complex geometries in the limity, j,-omoressible flow equations, the elimination of factorization
ing case of creeping flow regim¢5,6]. Since nearly all- error in factored implicit schemes, the elimination of errors due to

multiphase flows of practical importance involve complex geom- L . o . .
etries, it is of obvious interest to extend the modeling angPProXimations made in the implicit operator to improve numeri-

computational techniques to treat multiphase flows in arbitrarif?! efficiency, the elimination of errors due to lagged boundary
complex geometries. conditions at both solid and internal fluid boundaries, and the

The motion of a drop in a constricted capillary tube has beebility to use nonphysical, preconditioned iterative methods for
studied experimentally by Olbricht and Lefl], Olbricht and more efficient convergence of the subiterations as discussed by
Kung [7], and Hemmat and Borhg2], and computationally in Caughey[9]. In order to combine the front-tracking methodology
the creeping flow regime by Tsai and Mik¢s] and Magnd6].  with the FV method, an algorithm is developed for tracking the
Udaykumar et al[3] performed computations of the motion ofgront in curvilinear grids and is found to be very efficient and
droplets in a constricted channel at finite Reynolds numbers Py, o The details of the present FV/FT method can be found in
using a mixed Eulerian-Lagrangian method. Muradoglu and KayaalpL0].

In the present work, a finite-volume/front-trackin&V/FT) Th beai ith a brief d inti fth .
method is used to simulate dynamics of two-dimensional drops € paper begins with a briet description ot the ‘governing
uations and the numerical solution algorithm. The results are

rising due to buoyancy in various constricted channels. The froritd ; : !
tracking (FT) method developed by Unverdi and Tryggvageh then presented and discussed in Section 4. The present FV/FT
is incorporated into a newly developed finite-voluiiie/) algo- Method is first validated for a freely rising drop in a straight chan-
rithm in order to facilitate efficient and accurate simulations ofel, and the results are compared with the results of the finite-
dispersed multiphase flows in arbitrarily complex geometries. Thiference/front-tracking(FD/FT) method implemented in the
front-tracking method is based on writing one set of governingTC2D code of Unverdi and Tryggvas8]. It is then applied to
equations for the whole computational domain and treating diffezsingle drop rising in various constricted channels. Interactions of
ent phases as a single fluid with variable material properties. df}o identical drops are also studied in the continuously con-

this method, the fronts are explicitly tracked in a Lagrangiaguicted channel. Finally, some conclusions are drawn in Section 5.
frame and the effects of surface tension are accounted for by
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Cartesian coordinates, two-dimensional time-dependent Navier- 1

Stokes equations for incompressible flow can be written in con- — 0 O
servative form as pB
aq odf 99 of, dg u r—1 Zau 0 (6)
% v W= =l — P
—t =t —=—+— + — ’ 2
T ax Ty ax ey ApG J S(x—X;)oxnds (1) v B
2av
where — 0 »p
B
0 u ) v wherep is a preconditioning parameter with dimensions of veloc-
q=|pu|, f=|ptpu|, g=| puv |, ity and « is a dimensionless parameter to be determined. In Eqg.
pv puv p+pv? (5), 7 denotes the pseudotime and the dual time-stepping method
is based on marching in pseudotime until a convergence is
0 0 reached for each physical time step. Since the transient solution in
f=| 7 | ) pseudotime is not of interest, we are free to use any nonphysical
v | Qv Xy convergence acceleration technique, such as preconditioning, lo-
Txy Tyy cal time-stepping, and multigrid methods. To facilitate treatment

. . ) ) of complex geometries, E@5) is transformed into a curvilinear
and the viscous stresses are given for a Newtonian fluid as  -qordinates defined by
au Jdu Jdv

Txxzzl’*&: Txy::“(@_’_a_x

d = = 7
, TyyZZM% (3) é f(XyY), 7 77(X:Y) ( )

Using the relatiomg=I'pw where the incomplete identity matrix

In Egs.(1)—(3), u, v, p, p, and u denote the velocity components!* is defined as

in x andy directions, the pressure, the density, and the dynamic

viscosity, respectively. The third term on the right-hand side of 0 0 O

Eq. (1) represents the body force due to buoyancy v@tlbeing =0 1 0 ®)
the gravitational acceleration anip=p,—p, wherep, is the

density of the ambient fluid. The last term represents the effects of 0 01

the surface tension andl x;, o, x, n andds denote the Dirac ] )

delta function, the location of the front, the surface tension coednd the transformation given by E@), the transformed equa-
ficient, the curvature, the outward unit normal vector on the intefions in the curvilinear coordinates can be written as

face, and the arc length along the interface, respectively.

The fluids in and out of the drop are assumed to be incompress- ., W __ ,dhpw JhF ohG _JhF, ohG,
ible, and the effects of heat transfer are neglected. Therefore, the or ot € an € an
viscosity and the density remain constant in each fluid particle, 9)
ie.,

+hf,

whereh=x.,y,—X,y; is the determinant of the Jacobian of the
transformation andF, hG, hF,, andhG, are the transformed
Dp Du . A .
a=0, Dt =0 (4) convective and viscous fluxes given by

hF=y,f—x,0, hF,=y,f,— ,
The flow regime of bubbly flows is characterized by four nondi- Yol =Xs8 vEY T X (10)
mensional parameters as discussed by Clift efldl]. These are

the Morton numbeM = ua(p,— py) G/ p20°, the Edvos number

Eo=(p,— pp)d5G/ o, the density ratioy=py/p,, and the vis- The vectorf, represents the last two terms on the right-hand side
cosity ratiod= up/ 1, , Whered, is the equivalent drop diameter of Eq. (1), namely, the sum of the buoyancy forces and the surface
and the subscripts andb refer to the ambient and the drop fluids tension. Following Caughef@], subiterated implicit scheme to
respectively. The Reynolds number is defined assR¥d./u,, solve Eq.(9) can be written as

whereV is the rise velocity.

hG=—yf+x.0, hG,=—yf,+x.0,

wPH—wP e 3(phw)P 1 —4(phw)"+ (phw)" 1

-1
Ih At 2At
3 Numerical Procedure JhF, dhG, P [shE ohGlP+1
As can be seen in Eql), the continuity equation is decoupled = [ E + a7 + fb} - {ﬁ—§+ Fr) —(1-90)
from the momentum equations because it does not have any time
derivative term in incompressible flows. To circumvent this diffi- oh(F=F,) dh(G—-G,) n
culty and to be able to use time-marching algorithms, pseudotime X E + P hf, (11)

derivative terms augmented with a preconditioning matrix are

added to Eq(1) yielding where (P denotes thepth level of the subiteration and [ Yde-
notes thenth level of the physical time step. The iterations in the

_1ﬂ+ &_q+ 0_f+ g _ dfy N I G physical and pseudotimes are called the outer and inner iterations,

ar | at  Iax dy  ax  ay (Po=p) respectively. The parametéris the implicitness factor witt#=1,
corresponding to a fully implicit method in pseudotime. As can be
seen in Eq(11), the viscous and source terms are treated implic-
itly in the physical time and explicitly in the pseudotime. The
correctionAw=wP**—wP is computed in each subiteration ac-
with cording to

r

+f S(X—X;)oknds (5)
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rt 3p 3(phw)P—4(phw)"+ (phw)" 1 terms similar to that of Caughdy] are added explicitly to the
h(— Il) AwP=— Il{ SAt } right-hand side of Eq(18) to prevent the odd-even decoupling.
A front-tracking method similar to that of Unverdi and Tryg-
ohF, dhG, p JhE gvason[8] is developed for treatment of the different phases and
{ oE + 3 + b} - [(9_5 the surface tension. In this method, the interface is divided into
K small line segments called front elements, and the end points of

JhGlp+1 oh(F—F,) each element are tracked explicitly in a Lagrangian frame. The
+ s —(1- 0){ 9E details of the numerical method can be found in Muradoglu and
K Kayaalp[10]. The complete solution procedure can be summa-
dh(G—-G,) n rized as follows:
+ “am hfy (12) In advancing solutions from physical time leve(t,=n-At)

to leveln+1, the locations of front points at the new time level
As can be seen in Eq12), when a steady state is reached in tha+1 are first predicted using an explicit Euler method, i.e.,
pseudotime, i.e.AwP=0, we have (§—()""!. Therefore the N1 Ny ApYT

method is equivalent to the second-order implicit backward Euler Xi =X+ AtV (21)
method in the physical time. To solve E(L2), the convective whereX; andV; denote the position of front points and the flow

fluxes are linearized in pseudotime according to velocity interpolated from the neighboring fixed grid points onto
JhEPFL (GhE\P  AWP front point X, respectively. Then the material properties and sur-
(_) = (_) A——+0O(AT?) face tension are evaluated using the predicted front poskion
29 9 9 i.e.
(13) ’
¢?h_G D+1_ c?h_G D+B(9AWP+O(A 2) pn+1:p(x;1+1); Mn+1:M(XP+1); fg+1:fb(xP+1)
an - an an T (22)
where the Jacobian matrices are defined as The velocity and pressure fields at new physical time level (
+1) are then computed by solving the flow equations by the FV
dF\P JG\P method for a single physical time step, and finally the positions of
A=lowl + B=low (14) " the front points are corrected as

From Eqgs.(12)—(14), the linearized equations can be written as

| 0Ar(;& J .éa)

where the residual vector is defined as

At
XPTE= X+ o (Vi VT (23)
AwWP=R (15)

After this step, the material properties and the body forces are also
reevaluated using the corrected front position. Cubic B-splines are
used for all the interpolations from the fixed curvilinear grid onto

A7 3(phW)p4(phw)”+(phw)“1} front poin'gs apd ]‘rom the front po.ints onto fjxed curviﬁnear griq,
R=-D"Y1— and for distributing surface tension onto fixed curvilinear grid.
ph 24t The overall method is second-order accurate both in time and
ADI [ [oh(F—F,) dh(G—G,) P space. It is emphasized that the method is implicit in physical time
- [6[ + —hfy| +(1-0) and the physical time stefit is solely determined by accuracy
h g an considerations.
dh(F—F,) oh(G—G,) n An auxiliary regular Cartesian grid is utilized for tracking the
x[ + hfb} ] (16) positions of the front points in the curvilinear grid and is found to
23 an be very robust and efficient. Details of the tracking algorithm can

and also be found in Muradoglu and Kayadl0]. The auxiliary regu-
lar Cartesian grid is also used to determine the material properties
A=D-TA: B=D-TIB: D=I+ 3A_7'|1 17) using Fhe procedure_ developeq by Unver(_ji and_ Trygg_va[ﬁd),n
' ' 2At which involves solution of a Poisson equation. Bilinear interpola-
tions are used to interpolate the material properties from the regu-

Following Caughey9), Eq. (15 is factorized as lar grid onto the curvilinear grid. The front marker points are
OAT~ O OAT~ O reflected back into the computational domain in the case that the
I+ TAﬁ_g I+ TB; AwP=R (18) points cross the solid boundary due to numerical errors. The sur-

face tension is distributed only onto the neighboring grid points
which can be solved efficiently in two steps by using a blocwhen the front is close to the solid boundary and care is taken to
tridiagonal solver. However, Eq18) can be solved more effi- make sure that the distributed forces are equivalent to the surface
ciently using the diagonalization procedure. The diagonalizationtisnsion. However, no special treatment is done when two fronts
possible because the inviscid part of the preconditioned equati@mne close to each other in the computational domain.
are hyperbolic, so there exist modal matri€gsandQg such that We note that, in addition to the preconditioning method, a mul-
g~ = tigrid method similar to that of Caughdy®] and a local time-
AA=Q; AQa; Ag=Q; BQg (19)  stepping method are used to further accelerate convergence rate in
r&§_eudotime stepping. The details of the FV method can be found

and the diagonal matrices having real eigenvalues. The diogo B 'Muradoglu and Kayaalp10].

ized algorithm is then given by
4 Results and Discussion

The method is first validated for the test case of a buoyancy-
1 ] ) ) ~driven drop rising in a straight channel, and the results obtained
whereAVP=Qg "AwP. Equation(20) is solved in two steps using with the present method and with the well-tested FD/FT method
a scalar tridiagonal solver in each step. Note that the spatial dé-Unverdi and Tryggvasof8] implemented in the FTC2D code
rivatives are approximated by a cell-centered finite volumare compared. Then the method is applied to more challenging test
method, which is equivalent to second-order central differences oases of the buoyancy-driven drops in various constricted chan-
a regular Cartesian grid and fourth-order numerical dissipatiorls. Although the method is general and can handle many drop

OAT d| 1 0AT J o -l
I+TAA(9_§ Q:& Qs |+TAB; AV =Q; R (20)

Journal of Applied Mechanics NOVEMBER 2004, Vol. 71 / 859



28}

2.6

2.4

2.2

p [-222233355T

1 12 14 16 18

1 12 14 ‘ . . 02 . . 0.8 1 1.2

Fig. 1 Velocity vectors around a light drop rising in a straight channel for Eo “tvos and Morton numbers Eo=1, M
=10"* (top plots ), Eo=4, M=4X10"* (middle plots ) and Eo=16, M=16X10"* (bottom plots ) at t*=9.487. Present
results (left plots ) are compared with the FTC2D results  (right plot ). Grid: 96 X384, dt* =0.0316.

interactions, here only a single drop and two drop cases are ceobiterations is found to produce essentially the same results; the
sidered. The computational results are expressed in terms of npmrs residuals are reduced by four orders of magnitude in each

dimensional quantities. For this purpose, the length, time, afiher iteration in pseudotime for all the simulations presented in
velocity scales are defined as=d,, T=\de/G and V, thjs paper.

=uo/pode, respectively, and the nondimensional quantities are
denoted b¥. For example, th& andy coordinates are nondimen- 4.1 Freely Rising Drop in a Straight Channel. The
sionalized asx*=x/L and y*=y/L, respectively. Although a method is first applied to a two-dimensional freely rising drop in a
three orders-of-magnitude reduction in thas residuals of the straight channel. The purpose of this test case is to validate the
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Fig. 2 The vertical positions  (left plot ) and the rise velocities (right plot ) of the drop centroid taken from the simula-
tions of the light drop rising in a straight channel. Computations are performed for Eo “tva's numbers 1, 4, and 16. The
solid lines denote the FTC2D results and the symbols are the present calculations. Grid: 96 X384, dt*=0.0316.

method against the FD/FT method implemented in FTC2D codeagnitude in both methods. In summary the present results com-
of Unverdi and Tryggvasof8] that can only use regular Cartesiarpare well with the results of the well-tested FD/FT method of
grids. The computational domain isd2<8d,., whered, is the Unverdi and Tryggvasofi8] demonstrating the accuracy of the
initial drop diameter and is resolved by a*@884 uniform regular present algorithm.

Cartesian grid. No-slip boundary conditions are applied on the e ) ) .

side walls(i.e., x=0 andx=2d,), while periodic boundary con- 42 Freely Rising Drops in Various Constricted Channels.
ditions are used in the vertical direction. The drop is initially aA\ter validating the method for the case of a freely rising drop in

infini ; ; *y _ a straight channel, we now consider buoyancy-driven drops rising
infinitely Ion_g_ circular cylinder centered ak{ ,y;)=(1.0,2.0) in various constricted channels to show the ability of the method
and starts rising from the rest due to buoyancy forces at time

—0. Freelv risina d tak ) h d di t.f r treating dispersed multiphase flows in complex geometries
— 0. FTeely r1sing drops take various shapes depending essentigiifoe the phases strongly interact with the solid boundaries. The
on the Edvos number.

To sh_pw__this effect, computation.s are performed for4three di}gséltgsytacnisyeiﬁogc:ggztﬁcstgl(?lgﬁggﬁellﬁ g){qlgn%rﬁgilnderl%g :,Z;:jneg{ due
ferent Edvos a_nfl Morton numbersi.e., onlv M=10" EO gxtends to 1@, in they direction, and is constricted sinusoidally
=4, M=4Xx10"" andEo=16, M=16x10""), while the Vis- i the middle by 75% as shown in Figl¥ In Fig. 4@a), a portion
cosity ratio is kept constant at=1. The corresponding density of 5 coarse grid containing 32192 grid cells is plotted in the
ratios a_rey=0.975, 0.9, and 0.6, respe_ctlvely- The physical imGicinity of the constriction to show the overall structure of the
step is fixed atit* = 0.0316, and the residuals are reduced by foody-fitted curvilinear grid used in the simulations. The governing
orders of magnitude in each inner iteration in pseudotime. Thgndimensional numbers are setfio=8, M=8x 104, y=0.8,
drop shapes and the velocity vector field in the vicinity of the drogng ;=1. No-slip boundary conditions are applied on the solid
are plotted in Fig. 1 at tim&* =9.487 for the cases &o=1 (top
plots), Eo=4 (middle plotg, and Eo=16 (bottom plot$. The
results obtained with the FTC2D code are also shown in the righ* ¢ 5

plots of Fig. 1. It can be seen in this figure that the present resul__ -— ETcth
are in good agreement with the FTC2D results demonstrating tt3 0.4} - - fresen

accuracy of the present method. It is also observed that drop d&
formation increases as the t06s number increases as expected.g
To better quantify the accuracy of the present method the verticg 0.2}
position of the drop centroid and the drop rise velocity compute@_
with the present method as well as with the FTC2D code arg °'f
plotted as a function of time in Fig. 2. As can be seen in thisce ¢
figure, the present results are overall in very good agreement wi g
the results of the FTC2D code except for the small discrepancie§ -0.1r
observed between the two results féo=16, which is partly ©
attributed to the time-stepping error in the present results. Noi%
that the time step used in the present method is about 20 tim € -0.3¢
larger than that used in the FTC2D code for the caseEof ¢
=16. Although the flow is incompressible, drop volurteea  -04f
changes due to numerical errors and the percentage change in  _g 5 . . . 2
drop volume is a good indicator for the accuracy of the methoc 0 3.16 6.32 Ti 949 12.65 158
Figure 3 shows the percentage change of the drop area obtaineu ime ()

with the present method and the FTC2D code for all three sets,_%_ 3 Percentage change in the drop area for Eo “tv's num-
dimensionless numbers. It can be observed in this figure that,jgs 1, 4, and 16 in the computations of the freely rising drop in
contrast with the FTC2D results, the drop volume reduces in tingge straight channel. Dashed curves denote the present results,

as the drop rises in the present method for this test case, but i@ the solid curves are the FTC2D results. Grid: 96 X384, dt*
overall percentage change in the drop volume is comparable=10.0316.

-0.2F

cel
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Fig. 4 Freely rising drop in a sinusoidally constricted channel. (a) A portion of the body-fitted

curvilinear coarse grid containing 32 X192 grid cells. (b) Snapshots taken at time frames t*=0,
9.49, 15.81, 22.14, 28.46, 31.62, 37.95, and 44.27. Time progresses from bottom to top. (c) The
vertical position (top plot ) and the rise velocity (bottom plot ) of the drop centroid computed with
the physical time steps dt*=0.3162 (dotted line ), dt*=0.1581 (dashed line ), and dt*=0.0791
(solid line ). Eo=2, M=8X10"*%, y=0.8, {=1. Grid: 128 X768.

walls, and periodic boundary conditions are employed in the vea-128<768 grid. In order to better quantify the drop motion, the
tical direction. The drop is initially centered atx)(,yy) vertical position and the rise velocity of the drop centroid are
=(1.0,2.0) and starts rising from the rest due to buoyancy forcgdotted in Fig. 4c). Computations are repeated for three different
The snapshots taken at the time franties 0, 9.49, 15.81, 22.14, physical time step§.e.,dt* =0.3162, 0.1581, and 0.079&n the
28.46, 31.62, 37.95, and 44.27 are plotted in Fily) 40 show the same 12&768 grid to demonstrate the time-stepping error con-
overall behavior of the drop. The computations are performed orrgence. The small differences between the results computed
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Fig. 5 Grid convergence analysis for the freely rising drop in the straight channel. The vertical position (left plot )

and the rise velocity (right plot ) of the drop centroid as a function of time computed on the body-fitted curvilinear
grids containing 48 X288 (solid line ), 96X576 (dotted line ) and 128 X768 (dashed line ) grid cells in the time interval
*=25 and t*=35. dt*=0.1581, Eo=4.
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Fig. 6 Effects of grid refinement of the front structure. Before the drop enters (left plot, time t*=12.65) and after

it passes (right plot, time t*=22.14) the constriction computed on 48 X288 (solid line ) and 128 X768 (dashed line )
grids. dt*=0.1581, Eo=4. The coarse grid results in wiggles on the front while the front remains smooth in the
case of the fine grid.

with the two smallest physical time steps indicate that the timetriction (i.e., before about* = 15), but then it is strongly affected
stepping error convergence is achieved dititi=0.1581 is suffi- by the presence of the constriction as the drop passes through the
cient for this test problem. Figuregb} and 4c) together show constriction. In Fig. 5, the vertical position and the rise velocity of
that the drop motion initially resembles that of the straighthe drop centroid computed on %888, 96<576, and 12&768
channel case before the drop starts feeling the effects of the cgnids are plotted to show the grid convergence. The physical time
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Fig. 7 Freely rising drop in a continuously constricted channel. (a) A portion of the body-fitted
curvilinear coarse grid containing 32 X192 grid cells. (b) Snapshots taken at time frames  t*
=0, 10.33, 20.66, 30.98, 41.31, and 51.64. Time progresses from bottom to top. (¢) The vertical
position (top plot ) and the rise velocity (bottom plot ) of the drop centroid computed with the
physical time step dt*=0.1291 on a 128 X768 grid. Eo=18, M=8X10"%, y=0.8, {=1.
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Fig. 8 Buoyancy-driven two-drop interaction in the continuously constricted channel. Snapshots taken at *=0, 35.78,

53.67, 71.55, 89.44, 107.33, 125.22, 143.11, 161.00, and 178.89. Eo=2, M=8X10"% ¥=0.8 and ¢=1. Grid: 96 X576,
dt*=0.2236.

step is kept constant att* =0.1581, and the results are showriThe channel is /3 wide, and extends todj in they direction,
only in the time intervalt* =25 andt* =35, during which the and is constricted along theaxis by sinusoidal wavy walls. The
drop passes through the constriction. The decreasing differeng@8striction ratio is 75% as in the singly constricted channel case.
between results obtained on the successively finer grids indicdfe€ initial and the boundary conditions are the same as the singly
that the grid convergence is achieved and the<SB6 grid is constricted channel case, and the. drop is. |n|t|aI_Iy centered at
sufficient for this test case. Figure 6 shows the fronts computed bf ;Y ) =(0.6667,1.6). The governing nondimensional numbers
the 48x288 and 12&768 grids just before the drop enters andire Eo=18, M=8x10"4, y=0.8, and/=1. Computations are
after it passes the constriction in order to demonstrate the effeptyformed on a 98576 grid with the constant physical time step
of the grid refinement on the front structure. As can be seen in thig* =0.1291. A portion of a coarser grid containing>3292 grid
figure, the coarse grid results in wiggles on the front while theells is plotted in Fig. #). Note that a similar geometry was used
front remains very smooth in the case of the fine grid. Note thay Hemmat and Borhaf2] in their experimental study of the
results obtained on the 8&76 grid is not plotted because it isbuoyancy-driven drops and bubbles. The snapshots taken at the
almost indistinguishable from the 12§68 grid case. time framest* =0.0, 10.33, 20.66, 30.98, 41.31, and 51.64 are
The next test case concerns a buoyancy-driven drop freely rigotted in Fig. Tb) to show the overall evolution of the drop
ing in a continuously constricted channel depicted in Fidn).7 motion. The strong interactions between the drop and the solid
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Fig. 9 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal (left plot ) and

the vertical (right plot ) positions of the (initially ) left drop centroid (solid line ), the (initially ) right drop (dashed line ),
and the center of the mass of the drop system (dotted line ). Eo=2, M=8X10"*, y=0.8, {=1. Grid: 96 X576,
dt*=0.2236.
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Fig. 10 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal (left plot ) and

the vertical (right plot ) velocities of the (initially ) left drop centroid (solid line ), the (initially ) right drop (dashed line ),

and the center of the mass of the drop system (dotted line ). Eo=2, M=8X10"%, y=0.8, {=1. Grid: 96 X576,
dt*=0.2236.

walls can be clearly seen in this figure. It is emphasized that, Figs. 9 and 10 indicates that the main features of the two-drop
spite of large deformations, the front remains smooth, whidhteractions are well captured by the present method.
might be considered as a good indication for the accuracy of the

simulation. The vertical position and the rise velocity of the drop Conclusions
centroid are plotted in Fig.(@). It can be seen in this figure that Th tati f b t d . tricted ch |
the rise velocity becomes periodic after a transient pefia, € computations ol buoyant drops In constricted channels
after about* = 20). have been reported in this paper. T_he FVIFT _method is first vali-

Finally, the method is used to compute two identical dro gatedr;or trr;re] C?t?e ?faﬁu%?#%_dnvf: df[oﬁ '2 astt)rtali%htdcgarmel
freely rising in the continuously constricted channel. In this cas yltlz_? ?ad FQI]D/F'T' es;Jh Sd impl e C? dp_u aF'Ic')CZIS) gﬂ]eeTh y the
the drop diameters are relatively small compared to the chanr’{\éqthegﬁ been metho fml}p emei_ngt "E) - dCr M € i
width, and the ratio of the initial drop diameter to the maximu € to' ¢ 35 hee sluccgss ully applied to buoya t ((j)_ps Ih va IOL|JS
channel width isde/dy,=0.25. The corresponding nondimen-CONSHICEA Channels. >ome error convergence studies have aiso
sional numbers ar€o=2, M=8x10"%, y=0.8, and¢=1. The been performed. It is found that the present method is a viable
same 9&576 grid is ;mioloy_ed as us‘edyiw the singl_e-drop cast980| to model dispersed multiphase flows in arbitrarily complex

. ) . eometries.

and the physical time step is takendi$ =0.2236. The drops are
initially located at & ,y§)z_(1.0,4.8) and X% ,y%)=(3.0,4.8). References
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