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Implicit Multigrid Computations
of Buoyant Drops Through
Sinusoidal Constrictions
Two-dimensional computations of dispersed multiphase flows involving complex g
etries are presented. The numerical algorithm is based on the front-tracking meth
which one set of governing equations is written for the whole computational domain
different phases are treated as a single fluid with variable material properties. The f
tracking methodology is combined with a newly developed finite volume solver bas
dual time-stepping, diagonalized alternating direction implicit multigrid method. T
method is first validated for a freely rising drop in a straight channel, and it is then u
to compute a freely rising drop in various constricted channels. Interaction of
buoyancy-driven drops in a continuously constricted channel is also presented.
@DOI: 10.1115/1.1795222#
a

i

r

o

i
f

i
r

een
ow
e-

ew
nt

s of
od
ages,
ons
on
to
ri-

ary
the
for
d by
y

he
d

d in

ng
are

V/FT
n-
ite-

s of
on-
n 5.

ses
ace
mo-
he

i

0

a

l
M

1 Introduction
Dynamics of dispersed bubbles or drops in capillary flows

volving complex geometries has attracted considerable inte
due to its applications in enhanced oil recovery, hazardous w
management, microfluidic devices, and biological systems@1–3#.

The presence of deforming phases makes the multiphase
computations a challenging task, and strong interactions betw
the phases and complex geometries add further complexity to
problem. Therefore, the progress was rather slow and the com
tations of multiphase flows have been usually restricted to sim
geometries@4# or to moderately complex geometries in the lim
ing case of creeping flow regime@5,6#. Since nearly all-
multiphase flows of practical importance involve complex geo
etries, it is of obvious interest to extend the modeling a
computational techniques to treat multiphase flows in arbitra
complex geometries.

The motion of a drop in a constricted capillary tube has be
studied experimentally by Olbricht and Leal@1#, Olbricht and
Kung @7#, and Hemmat and Borhan@2#, and computationally in
the creeping flow regime by Tsai and Miksis@5# and Magna@6#.
Udaykumar et al.@3# performed computations of the motion o
droplets in a constricted channel at finite Reynolds numbers
using a mixed Eulerian-Lagrangian method.

In the present work, a finite-volume/front-tracking~FV/FT!
method is used to simulate dynamics of two-dimensional dr
rising due to buoyancy in various constricted channels. The fro
tracking ~FT! method developed by Unverdi and Tryggvason@8#
is incorporated into a newly developed finite-volume~FV! algo-
rithm in order to facilitate efficient and accurate simulations
dispersed multiphase flows in arbitrarily complex geometries. T
front-tracking method is based on writing one set of govern
equations for the whole computational domain and treating dif
ent phases as a single fluid with variable material properties
this method, the fronts are explicitly tracked in a Lagrang
frame and the effects of surface tension are accounted fo
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treating them as body forces. The front tracking method has b
successfully applied to a variety of dispersed multiphase fl
problems, but all in relatively simple geometries. A detailed d
scription of the front-tracking method can be found in the revi
paper by Tryggvason et al.@4#. The FV method used in the prese
work is based on the concept of the dual~or pseudo! time-
stepping method and is developed for unsteady computation
incompressible laminar flows. The dual time-stepping meth
uses subiterations in pseudotime and has a number of advant
such as direct coupling of the continuity and momentum equati
in incompressible flow equations, the elimination of factorizati
error in factored implicit schemes, the elimination of errors due
approximations made in the implicit operator to improve nume
cal efficiency, the elimination of errors due to lagged bound
conditions at both solid and internal fluid boundaries, and
ability to use nonphysical, preconditioned iterative methods
more efficient convergence of the subiterations as discusse
Caughey@9#. In order to combine the front-tracking methodolog
with the FV method, an algorithm is developed for tracking t
front in curvilinear grids and is found to be very efficient an
robust. The details of the present FV/FT method can be foun
Muradoglu and Kayaalp@10#.

The paper begins with a brief description of the governi
equations and the numerical solution algorithm. The results
then presented and discussed in Section 4. The present F
method is first validated for a freely rising drop in a straight cha
nel, and the results are compared with the results of the fin
difference/front-tracking~FD/FT! method implemented in the
FTC2D code of Unverdi and Tryggvason@8#. It is then applied to
a single drop rising in various constricted channels. Interaction
two identical drops are also studied in the continuously c
stricted channel. Finally, some conclusions are drawn in Sectio

2 Mathematical Formulation

Following Unverdi and Tryggvason@8#, the Navier-Stokes
equations are written for the whole flow field, and different pha
are treated with variable material properties. The effects of surf
tension are modeled as body forces and are included in the
mentum equations asd functions at the phase boundaries. In t

onal
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Cartesian coordinates, two-dimensional time-dependent Na
Stokes equations for incompressible flow can be written in c
servative form as

]q

]t
1

]f

]x
1

]g

]y
5

]fv

]x
1

]gv

]y
2DrG1E d~x2xf!sknds (1)

where

q5S 0
ru
rv

D , f5S u
p1ru2

ruv
D , g5S v

ruv
p1rv2

D ,

fv5S 0
txx

txy

D , gv5S 0
txy

tyy

D (2)

and the viscous stresses are given for a Newtonian fluid as

txx52m
]u

]x
, txy5mS ]u

]y
1

]v
]xD , tyy52m

]v
]y

(3)

In Eqs.~1!–~3!, u, v, p, r, andm denote the velocity component
in x and y directions, the pressure, the density, and the dyna
viscosity, respectively. The third term on the right-hand side
Eq. ~1! represents the body force due to buoyancy withG being
the gravitational acceleration andDr5ro2r, where ro is the
density of the ambient fluid. The last term represents the effec
the surface tension andd, xf , s, k, n and ds denote the Dirac
delta function, the location of the front, the surface tension co
ficient, the curvature, the outward unit normal vector on the in
face, and the arc length along the interface, respectively.

The fluids in and out of the drop are assumed to be incompr
ible, and the effects of heat transfer are neglected. Therefore
viscosity and the density remain constant in each fluid parti
i.e.,

Dr

Dt
50,

Dm

Dt
50 (4)

The flow regime of bubbly flows is characterized by four non
mensional parameters as discussed by Clift et al.@11#. These are
the Morton numberM5mo

4(ro2rb)G/ro
2s3, the Eötvös number

Eo5(ro2rb)de
2G/s, the density ratiog5rb /ro , and the vis-

cosity ratioz5mb /mo , wherede is the equivalent drop diamete
and the subscriptso andb refer to the ambient and the drop fluid
respectively. The Reynolds number is defined as Re5roVde /mo ,
whereV is the rise velocity.

3 Numerical Procedure
As can be seen in Eq.~1!, the continuity equation is decouple

from the momentum equations because it does not have any
derivative term in incompressible flows. To circumvent this dif
culty and to be able to use time-marching algorithms, pseudot
derivative terms augmented with a preconditioning matrix
added to Eq.~1! yielding

G21
]w

]t
1

]q

]t
1

]f

]x
1

]g

]y
5

]fv

]x
1

]gv

]y
2~ro2r!G

1E d~x2xf!sknds (5)
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D , G215S 1

rb2
0 0

2au

b2
r 0

2av

b2
0 r

D (6)

whereb is a preconditioning parameter with dimensions of velo
ity and a is a dimensionless parameter to be determined. In
~5!, t denotes the pseudotime and the dual time-stepping me
is based on marching in pseudotime until a convergence
reached for each physical time step. Since the transient solutio
pseudotime is not of interest, we are free to use any nonphys
convergence acceleration technique, such as preconditioning
cal time-stepping, and multigrid methods. To facilitate treatm
of complex geometries, Eq.~5! is transformed into a curvilinea
coordinates defined by

j5j~x,y!, h5h~x,y! (7)

Using the relationq5I 1rw where the incomplete identity matrix
I1 is defined as

I15F 0 0 0

0 1 0

0 0 1
G (8)

and the transformation given by Eq.~7!, the transformed equa
tions in the curvilinear coordinates can be written as

G21
]hw

]t
1I 1

]hrw

]t
1

]hF

]j
1

]hG

]h
5

]hFv

]j
1

]hGv

]h
1hfb

(9)

whereh5xjyh2xhyj is the determinant of the Jacobian of th
transformation andhF, hG, hFv , and hGv are the transformed
convective and viscous fluxes given by

hF5yhf2xhg, hFv5yhfv2xhgv ,
(10)

hG52yjf1xjg, hGv52yjfv1xjgv

The vectorfb represents the last two terms on the right-hand s
of Eq. ~1!, namely, the sum of the buoyancy forces and the surf
tension. Following Caughey@9#, subiterated implicit scheme to
solve Eq.~9! can be written as

G21h
wp112wp

Dt
1I1

3~rhw!p1124~rhw!n1~rhw!n21

2Dt

5uF]hFv

]j
1

]hGv

]h
1hfbG p

2uF]hF

]j
1

]hG

]h G p11

2~12u!

3F]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbGn

(11)

where ( )p denotes thepth level of the subiteration and ( )n de-
notes thenth level of the physical time step. The iterations in th
physical and pseudotimes are called the outer and inner iterat
respectively. The parameteru is the implicitness factor withu51,
corresponding to a fully implicit method in pseudotime. As can
seen in Eq.~11!, the viscous and source terms are treated imp
itly in the physical time and explicitly in the pseudotime. Th
correctionDw5wp112wp is computed in each subiteration a
cording to
Transactions of the ASME
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Dt
1

3r

2Dt
I 1DDwp52I 1F3~rhw!p24~rhw!n1~rhw!n21

2Dt G
1uF]hFv

]j
1

]hGv

]h
1hfbG p

2uF]hF

]j

1
]hG

]h G p11

2~12u!F]h~F2Fv!

]j

1
]h~G2Gv!

]h
2hfbGn

(12)

As can be seen in Eq.~12!, when a steady state is reached in t
pseudotime, i.e.,Dwp50, we have ( )p→( )n11. Therefore the
method is equivalent to the second-order implicit backward Eu
method in the physical time. To solve Eq.~12!, the convective
fluxes are linearized in pseudotime according to

S ]hF

]j D p11

5S ]hF

]j D p

1A
]Dwp

]j
1O~Dt2!

(13)

S ]hG

]h D p11

5S ]hG

]h D p

1B
]Dwp

]h
1O~Dt2!

where the Jacobian matrices are defined as

A5S ]F

]wD p

, B5S ]G

]wD p

(14)

From Eqs.~12!–~14!, the linearized equations can be written a

F I1
uDt

h S Ã
]

]j
1B̃

]

h D GDwp5R (15)

where the residual vector is defined as

R52DÀ1I 1
Dt

rh F3~rhw!p24~rhw!n1~rhw!n21

2Dt G
2

DtDÀ1G

h H uF]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbG p

1~12u!

3F]h~F2Fv!

]j
1

]h~G2Gv!

]h
2hfbGnJ (16)

and

Ã5DÀ1GA; B̃5DÀ1GB; D5I1
3Dt

2Dt
I 1 (17)

Following Caughey@9#, Eq. ~15! is factorized as

F I 1
uDt

h
Ã

]

]jGF I 1
uDt

h
B̃

]

hGDwp5R (18)

which can be solved efficiently in two steps by using a blo
tridiagonal solver. However, Eq.~18! can be solved more effi
ciently using the diagonalization procedure. The diagonalizatio
possible because the inviscid part of the preconditioned equa
are hyperbolic, so there exist modal matricesQÃ andQB̃ such that

LÃ5Q
Ã
21

ÃQÃ; LB̃5Q
B̃
21

B̃QB̃ (19)

and the diagonal matrices having real eigenvalues. The diogo
ized algorithm is then given by

F I 1
uDt

h
LÃ

]

]jGQÃ
21

QB̃F I 1
uDt

h
LB̃

]

h GDVp5Q
Ã
21

R (20)

whereDVp5Q
B̃
21

Dwp. Equation~20! is solved in two steps using
a scalar tridiagonal solver in each step. Note that the spatial
rivatives are approximated by a cell-centered finite volu
method, which is equivalent to second-order central difference
a regular Cartesian grid and fourth-order numerical dissipa
Journal of Applied Mechanics
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terms similar to that of Caughey@9# are added explicitly to the
right-hand side of Eq.~18! to prevent the odd-even decoupling.

A front-tracking method similar to that of Unverdi and Tryg
gvason@8# is developed for treatment of the different phases a
the surface tension. In this method, the interface is divided i
small line segments called front elements, and the end point
each element are tracked explicitly in a Lagrangian frame. T
details of the numerical method can be found in Muradoglu a
Kayaalp @10#. The complete solution procedure can be summ
rized as follows:

In advancing solutions from physical time leveln (tn5n•Dt)
to level n11, the locations of front points at the new time lev
n11 are first predicted using an explicit Euler method, i.e.,

Xf
n115Xf

n1DtVf
n (21)

whereXf andVf denote the position of front points and the flo
velocity interpolated from the neighboring fixed grid points on
front pointXf , respectively. Then the material properties and s
face tension are evaluated using the predicted front positionXf ,
i.e.,

rn115r~Xf
n11!; mn115m~Xf

n11!; fb
n115fb~Xf

n11!
(22)

The velocity and pressure fields at new physical time leveln
11) are then computed by solving the flow equations by the
method for a single physical time step, and finally the positions
the front points are corrected as

Xf
n115Xf

n1
Dt

2
~Vf

n1Vf
n11! (23)

After this step, the material properties and the body forces are
reevaluated using the corrected front position. Cubic B-splines
used for all the interpolations from the fixed curvilinear grid on
front points and from the front points onto fixed curvilinear gri
and for distributing surface tension onto fixed curvilinear gr
The overall method is second-order accurate both in time
space. It is emphasized that the method is implicit in physical ti
and the physical time stepDt is solely determined by accurac
considerations.

An auxiliary regular Cartesian grid is utilized for tracking th
positions of the front points in the curvilinear grid and is found
be very robust and efficient. Details of the tracking algorithm c
also be found in Muradoglu and Kayaalp@10#. The auxiliary regu-
lar Cartesian grid is also used to determine the material prope
using the procedure developed by Unverdi and Tryggvason@8#,
which involves solution of a Poisson equation. Bilinear interpo
tions are used to interpolate the material properties from the re
lar grid onto the curvilinear grid. The front marker points a
reflected back into the computational domain in the case that
points cross the solid boundary due to numerical errors. The
face tension is distributed only onto the neighboring grid poi
when the front is close to the solid boundary and care is take
make sure that the distributed forces are equivalent to the sur
tension. However, no special treatment is done when two fro
come close to each other in the computational domain.

We note that, in addition to the preconditioning method, a m
tigrid method similar to that of Caughey@9# and a local time-
stepping method are used to further accelerate convergence ra
pseudotime stepping. The details of the FV method can be fo
in Muradoglu and Kayaalp@10#.

4 Results and Discussion
The method is first validated for the test case of a buoyan

driven drop rising in a straight channel, and the results obtai
with the present method and with the well-tested FD/FT meth
of Unverdi and Tryggvason@8# implemented in the FTC2D code
are compared. Then the method is applied to more challenging
cases of the buoyancy-driven drops in various constricted ch
nels. Although the method is general and can handle many d
NOVEMBER 2004, Vol. 71 Õ 859
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Fig. 1 Velocity vectors around a light drop rising in a straight channel for Eo ¨ tvö s and Morton numbers EoÄ1, M
Ä10À4

„top plots …, EoÄ4, MÄ4Ã10À4
„middle plots … and EoÄ16, MÄ16Ã10À4

„bottom plots … at t *Ä9.487. Present
results „left plots … are compared with the FTC2D results „right plot …. Grid: 96 Ã384, dt *Ä0.0316.
c
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interactions, here only a single drop and two drop cases are
sidered. The computational results are expressed in terms of
dimensional quantities. For this purpose, the length, time,
velocity scales are defined asL5de , T5Ade /G and Vr
5mo /rode , respectively, and the nondimensional quantities
denoted by* . For example, thex andy coordinates are nondimen
sionalized asx* 5x/L and y* 5y/L, respectively. Although a
three orders-of-magnitude reduction in therms residuals of the
Õ Vol. 71, NOVEMBER 2004
on-
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nd
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subiterations is found to produce essentially the same results
rms residuals are reduced by four orders of magnitude in e
inner iteration in pseudotime for all the simulations presented
this paper.

4.1 Freely Rising Drop in a Straight Channel. The
method is first applied to a two-dimensional freely rising drop in
straight channel. The purpose of this test case is to validate
Transactions of the ASME



Jour
Fig. 2 The vertical positions „left plot … and the rise velocities „right plot … of the drop centroid taken from the simula-
tions of the light drop rising in a straight channel. Computations are performed for Eo ¨ tvö s numbers 1, 4, and 16. The
solid lines denote the FTC2D results and the symbols are the present calculations. Grid: 96 Ã384, dt *Ä0.0316.
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method against the FD/FT method implemented in FTC2D c
of Unverdi and Tryggvason@8# that can only use regular Cartesia
grids. The computational domain is 2de38de , wherede is the
initial drop diameter and is resolved by a 963384 uniform regular
Cartesian grid. No-slip boundary conditions are applied on
side walls~i.e., x50 andx52de), while periodic boundary con-
ditions are used in the vertical direction. The drop is initially
infinitely long circular cylinder centered at (xc* ,yc* )5(1.0,2.0)
and starts rising from the rest due to buoyancy forces at timet*
50. Freely rising drops take various shapes depending essen
on the Eo¨tvös number.

To show this effect, computations are performed for three
ferent Eötvös and Morton numbers~i.e., Eo51, M51024; Eo
54, M5431024; and Eo516, M51631024), while the vis-
cosity ratio is kept constant atz51. The corresponding densit
ratios areg50.975, 0.9, and 0.6, respectively. The physical tim
step is fixed atdt* 50.0316, and the residuals are reduced by fo
orders of magnitude in each inner iteration in pseudotime. T
drop shapes and the velocity vector field in the vicinity of the dr
are plotted in Fig. 1 at timet* 59.487 for the cases ofEo51 ~top
plots!, Eo54 ~middle plots!, and Eo516 ~bottom plots!. The
results obtained with the FTC2D code are also shown in the r
plots of Fig. 1. It can be seen in this figure that the present res
are in good agreement with the FTC2D results demonstrating
accuracy of the present method. It is also observed that drop
formation increases as the Eo¨tvös number increases as expecte
To better quantify the accuracy of the present method the ver
position of the drop centroid and the drop rise velocity compu
with the present method as well as with the FTC2D code
plotted as a function of time in Fig. 2. As can be seen in t
figure, the present results are overall in very good agreement
the results of the FTC2D code except for the small discrepan
observed between the two results forEo516, which is partly
attributed to the time-stepping error in the present results. N
that the time step used in the present method is about 20 t
larger than that used in the FTC2D code for the case ofEo
516. Although the flow is incompressible, drop volume~area!
changes due to numerical errors and the percentage change
drop volume is a good indicator for the accuracy of the meth
Figure 3 shows the percentage change of the drop area obta
with the present method and the FTC2D code for all three set
dimensionless numbers. It can be observed in this figure tha
contrast with the FTC2D results, the drop volume reduces in t
as the drop rises in the present method for this test case, bu
overall percentage change in the drop volume is comparabl
nal of Applied Mechanics
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magnitude in both methods. In summary the present results c
pare well with the results of the well-tested FD/FT method
Unverdi and Tryggvason@8# demonstrating the accuracy of th
present algorithm.

4.2 Freely Rising Drops in Various Constricted Channels.
After validating the method for the case of a freely rising drop
a straight channel, we now consider buoyancy-driven drops ris
in various constricted channels to show the ability of the meth
for treating dispersed multiphase flows in complex geomet
where the phases strongly interact with the solid boundaries.
first test case concerns a single initially cylindrical drop rising d
to buoyancy in a constricted channel. The channel is 2de wide,
extends to 12de in the y direction, and is constricted sinusoidall
at the middle by 75% as shown in Fig. 4~b!. In Fig. 4~a!, a portion
of a coarse grid containing 323192 grid cells is plotted in the
vicinity of the constriction to show the overall structure of th
body-fitted curvilinear grid used in the simulations. The govern
nondimensional numbers are set toEo58, M5831024, g50.8,
and z51. No-slip boundary conditions are applied on the so

Fig. 3 Percentage change in the drop area for Eo ¨ tvö s num-
bers 1, 4, and 16 in the computations of the freely rising drop in
the straight channel. Dashed curves denote the present results,
and the solid curves are the FTC2D results. Grid: 96 Ã384, dt *
Ä0.0316.
NOVEMBER 2004, Vol. 71 Õ 861
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Fig. 4 Freely rising drop in a sinusoidally constricted channel. „a… A portion of the body-fitted
curvilinear coarse grid containing 32 Ã192 grid cells. „b… Snapshots taken at time frames t *Ä0,
9.49, 15.81, 22.14, 28.46, 31.62, 37.95, and 44.27. Time progresses from bottom to top. „c… The
vertical position „top plot … and the rise velocity „bottom plot … of the drop centroid computed with
the physical time steps dt *Ä0.3162 „dotted line …, dt *Ä0.1581 „dashed line …, and dt *Ä0.0791
„solid line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 128 Ã768.
c
,

e
re
nt

n-
uted
walls, and periodic boundary conditions are employed in the v
tical direction. The drop is initially centered at (xc* ,yc* )
5(1.0,2.0) and starts rising from the rest due to buoyancy for
The snapshots taken at the time framest* 50, 9.49, 15.81, 22.14
28.46, 31.62, 37.95, and 44.27 are plotted in Fig. 4~b! to show the
overall behavior of the drop. The computations are performed
, NOVEMBER 2004
er-

es.

on

a 1283768 grid. In order to better quantify the drop motion, th
vertical position and the rise velocity of the drop centroid a
plotted in Fig. 4~c!. Computations are repeated for three differe
physical time steps~i.e., dt* 50.3162, 0.1581, and 0.0791! on the
same 1283768 grid to demonstrate the time-stepping error co
vergence. The small differences between the results comp
Fig. 5 Grid convergence analysis for the freely rising drop in the straight channel. The vertical position „left plot …
and the rise velocity „right plot … of the drop centroid as a function of time computed on the body-fitted curvilinear
grids containing 48 Ã288 „solid line …, 96Ã576 „dotted line … and 128Ã768 „dashed line … grid cells in the time interval
t *Ä25 and t *Ä35. dt *Ä0.1581, EoÄ4.
Transactions of the ASME
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Fig. 6 Effects of grid refinement of the front structure. Before the drop enters „left plot, time t *Ä12.65… and after
it passes „right plot, time t *Ä22.14… the constriction computed on 48 Ã288 „solid line … and 128Ã768 „dashed line …

grids. dt *Ä0.1581, EoÄ4. The coarse grid results in wiggles on the front while the front remains smooth in the
case of the fine grid.
h
c

h the
of

ime
with the two smallest physical time steps indicate that the tim
stepping error convergence is achieved anddt* 50.1581 is suffi-
cient for this test problem. Figures 4~b! and 4~c! together show
that the drop motion initially resembles that of the straig
channel case before the drop starts feeling the effects of the
al of Applied Mechanics
e-

t-
on-

striction~i.e., before aboutt* 515), but then it is strongly affected
by the presence of the constriction as the drop passes throug
constriction. In Fig. 5, the vertical position and the rise velocity
the drop centroid computed on 483288, 963576, and 1283768
grids are plotted to show the grid convergence. The physical t
Fig. 7 Freely rising drop in a continuously constricted channel. „a… A portion of the body-fitted
curvilinear coarse grid containing 32 Ã192 grid cells. „b… Snapshots taken at time frames t *
Ä0, 10.33, 20.66, 30.98, 41.31, and 51.64. Time progresses from bottom to top. „c… The vertical
position „top plot … and the rise velocity „bottom plot … of the drop centroid computed with the
physical time step dt *Ä0.1291 on a 128Ã768 grid. EoÄ18, MÄ8Ã10À4, gÄ0.8, zÄ1.
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Fig. 8 Buoyancy-driven two-drop interaction in the continuously constricted channel. Snapshots taken at t *Ä0, 35.78,
53.67, 71.55, 89.44, 107.33, 125.22, 143.11, 161.00, and 178.89. EoÄ2, MÄ8Ã10À4, gÄ0.8 and zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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step is kept constant atdt* 50.1581, and the results are show
only in the time intervalt* 525 and t* 535, during which the
drop passes through the constriction. The decreasing differe
between results obtained on the successively finer grids indi
that the grid convergence is achieved and the 963576 grid is
sufficient for this test case. Figure 6 shows the fronts compute
the 483288 and 1283768 grids just before the drop enters a
after it passes the constriction in order to demonstrate the eff
of the grid refinement on the front structure. As can be seen in
figure, the coarse grid results in wiggles on the front while
front remains very smooth in the case of the fine grid. Note t
results obtained on the 963576 grid is not plotted because it i
almost indistinguishable from the 1283768 grid case.

The next test case concerns a buoyancy-driven drop freely
ing in a continuously constricted channel depicted in Fig. 7~b!.
4 Õ Vol. 71, NOVEMBER 2004
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The channel is 4de/3 wide, and extends to 8de in the y direction,
and is constricted along they-axis by sinusoidal wavy walls. The
constriction ratio is 75% as in the singly constricted channel ca
The initial and the boundary conditions are the same as the si
constricted channel case, and the drop is initially centered
(xc* ,yc* )5(0.6667,1.6). The governing nondimensional numb
are Eo518, M5831024, g50.8, andz51. Computations are
performed on a 963576 grid with the constant physical time ste
dt* 50.1291. A portion of a coarser grid containing 323192 grid
cells is plotted in Fig. 7~a!. Note that a similar geometry was use
by Hemmat and Borhan@2# in their experimental study of the
buoyancy-driven drops and bubbles. The snapshots taken a
time framest* 50.0, 10.33, 20.66, 30.98, 41.31, and 51.64 a
plotted in Fig. 7~b! to show the overall evolution of the dro
motion. The strong interactions between the drop and the s
Fig. 9 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal „left plot … and
the vertical „right plot … positions of the „initially … left drop centroid „solid line …, the „initially … right drop „dashed line …,
and the center of the mass of the drop system „dotted line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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Fig. 10 Buoyancy-driven two-drop interaction in the continuously constricted channel. The horizontal „left plot … and
the vertical „right plot … velocities of the „initially … left drop centroid „solid line …, the „initially … right drop „dashed line …,
and the center of the mass of the drop system „dotted line …. EoÄ2, MÄ8Ã10À4, gÄ0.8, zÄ1. Grid: 96 Ã576,
dt *Ä0.2236.
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walls can be clearly seen in this figure. It is emphasized that
spite of large deformations, the front remains smooth, wh
might be considered as a good indication for the accuracy of
simulation. The vertical position and the rise velocity of the dr
centroid are plotted in Fig. 7~c!. It can be seen in this figure tha
the rise velocity becomes periodic after a transient period~i.e.,
after aboutt* 520).

Finally, the method is used to compute two identical dro
freely rising in the continuously constricted channel. In this ca
the drop diameters are relatively small compared to the cha
width, and the ratio of the initial drop diameter to the maximu
channel width isde /dmax50.25. The corresponding nondimen
sional numbers areEo52, M5831024, g50.8, andz51. The
same 963576 grid is employed as used in the single-drop c
and the physical time step is taken asdt* 50.2236. The drops are
initially located at (xc* ,yc* )5(1.0,4.8) and (xc* ,yc* )5(3.0,4.8).
The snapshots taken at the time framest* 50, 35.78, 53.67, 71.55
89.44, 107.33, 125.22, 143.11, 161.00, and 178.89 are plotte
Fig. 8 to show the overall behavior of the drops. The dro
strongly interact with the solid walls as well as with themselv
and deform considerably as they pass through the constriction
is interesting to observe that the drops initially rise side by s
but the right drop passes the first constriction little earlier than
left drop and then the left drop catches up and passes the
drop. After that the drops switches their positions and this beh
ior is repeated periodically after each constriction. This beha
can also be seen in Figs. 9 and 10, where the horizontal
vertical locations, the horizontal and vertical~rise! velocities of
the individual drop centroids, and the center of the mass of
drop system are plotted. Note that neither breakup nor coalesc
is allowed in the present simulations. It can be seen from th
figures that the motion of a two-drop system becomes perio
after a transient period. Due to relatively poor grid resolution a
large physical time step, drops lose about 20% volume when
move about 14 drop diameters~which corresponds tot* 5215). In
spite of very strong interactions between the drops and the s
walls as well as between drops themselves and a relatively co
grid, the periodic behavior of the two-drop system observed
nal of Applied Mechanics
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Figs. 9 and 10 indicates that the main features of the two-d
interactions are well captured by the present method.

5 Conclusions
The computations of buoyant drops in constricted chann

have been reported in this paper. The FV/FT method is first v
dated for the case of a buoyancy-driven drop in a straight cha
by comparing the results with the computations obtained by
well-tested FD/FT method implemented in FTC2D code@8#. The
method has been successfully applied to buoyant drops in var
constricted channels. Some error convergence studies have
been performed. It is found that the present method is a via
tool to model dispersed multiphase flows in arbitrarily compl
geometries.
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