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Axial dispersion of a tracer in a two-dimensional gas-liquid flow is studied computationally using
a finite-volume/front-tracking method. The effects of Peclet number, capillary number, and segment
size are examined. At low Peclet numbers, the axial dispersion is mainly controlled by the
convection through the liquid films between the bubbles and channel walls. In this regime, the
computational results are found to be in a very good agreement with the existing model due to
Pedersen and Horvath �Ind. Eng. Chem. Fundam. 20, 181 �1981��. At high Peclet numbers, the axial
dispersion is mainly controlled by the molecular diffusion, with some convective enhancement. In
this regime, a new model is proposed and found to agree well with the computational results. These
Peclet number regimes are shown to persist for different slug lengths. The axial dispersion is found
to depend weakly on the capillary number in the diffusion-controlled regime. Finally, computational
simulations are performed for the cases of six bubbles to mimic bubble trains, and results are
compared with the theoretical models. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2750295�

I. INTRODUCTION

Segmented gas-liquid flows are of importance in a vari-
ety of engineering processes such as two-phase catalytic
monolith reactors,1–4 polymer blow molding, enhanced oil
recovery,5 continuous-flow analysis of biological or chemical
samples �e.g., AutoAnalyzer�,6–8 and, more recently, microf-
luidics applications.9 Not surprisingly, the fluid dynamics of
these flows have been studied extensively, with two widely
cited early references: Taylor10 and Bretherton.11 Studies of
mass transfer have focused on experiments and simplified
models. In this paper, we report on a numerical study that
accounts for both the fluid dynamics and convective-
diffusive mass transfer. The understanding from these de-
tailed simulations then motivates an improved model of the
basic transport processes at the scale of the bubble.

In the case considered here, a wetting continuous-phase
liquid flowing through a capillary tube is segmented by
equally sized and spaced gas bubbles of an equivalent diam-
eter larger than the channel size as sketched in Fig. 1. The
bubbles completely fill the channel cross section except for
thin liquid films that separate them from the channel wall.
The low-Reynolds-number flow field inside the liquid slug
between two bubbles is significantly modified compared to

the flow of a single-phase liquid and it can be characterized
by the capillary and Peclet numbers defined as Ca=�Ub /�
and Pe=Ubw /D, respectively, where �, Ub, �, w, and D are
the liquid viscosity, the bubble velocity, surface tension, the
width of the channel, and molecular diffusivity of solute in
the liquid, respectively. Note that the influence of the
Reynolds number is typically weak in such flows.12–14 When
the capillary number is small, i.e., Ca�1, the bubbles adopt
a characteristic capsular shape and, relative to a coordinate
system moving with the bubbles, create a toroidal rotating
vortical flow pattern in the liquid slugs. This convective flow
pattern offers distinct advantages over the single-phase liquid
flow. First, the recirculation significantly enhances mixing in
the liquid slugs leading to augmented heat and mass transfer
in the radial direction; second, axial dispersion is greatly
reduced when segmented flow occurs instead of homoge-
neous laminar flow.15 The combination of enhanced heat and
mass transfer in the radial direction and low dispersion in the
axial direction makes the segmented flow suitable for appli-
cations in two-phase systems involving mass transfer, gas-
liquid or wall-liquid-solid chemical reactions, or reactions in
single-phase systems that otherwise suffer from excessive
back mixing.16

The liquid films between the gas bubbles and the chan-
nel wall provide the only means of communication between
two successive liquid slugs. In the limit of small capillary
number, i.e., Ca�1, Bretherton11 showed that the bubble
moves a little faster than the mean speed of the liquid and the
film thickness is given by h /�=c1Ca2/3, where � is the char-
acteristic channel size and c1 is a constant of order of unity.
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In the majority of applications of practical importance, the
film thickness is only a fraction of the characteristic channel
size.

The axial dispersion in gas-liquid segmented flow is a
result of mass transfer from the bulk fluid to the slow moving
film region by a combined effect of molecular diffusion and
convection due to recirculation in the liquid slugs. The effect
of molecular diffusion is characterized by the Peclet number.
Although axial dispersion is much reduced in the segmented
gas-liquid flow compared to an equivalent single-phase sys-
tem, because of the nearly stagnant film region there may
still be significant backmixing especially in the case of small
Peclet numbers and for larger capillary numbers where films
are thicker. In particular, this backmixing may significantly
deteriorate the performance of monolith reactors.17,18 It is
therefore of fundamental importance to understand and con-
trol the axial dispersion in gas-liquid segmented systems.

Recent studies of the gas-liquid segmented flow have
been motivated primarily by applications in catalytic mono-
lith reactors4,18–20 and mixing enhancement combined with
chemical and material synthesis in microfluidic sys-
tems.9,21,22 In particular, Pedersen and Horvath15 developed a
model based on a two-region description of the segmented
flow: mass transfer from the recirculating bulk liquid region
to the film region was modeled through an adjustable mass
transfer coefficient and a perfect mixing was assumed in both
regions. Bercic and Pintar1 numerically modeled the effects
of gas bubbles and liquid slug length on the axial mass trans-
fer in the segmented flow and found that the mass transfer is
mainly determined by the slug length and velocity. Thulasi-
das et al.19 also divided the liquid slugs into the recirculating
and film regions but solved a one-dimensional diffusion
equation in the radial direction to account for mass transfer
by molecular diffusion. Although they ignored the effects of
convection in the recirculating region, they showed a good
agreement between their mathematical model and experi-
mental results. More recently, Salman et al.23,24 proposed a
model based on a one-dimensional convection-diffusion
equation. They found that the axial dispersion is in general
low and increases with increasing capillary number and slug
and bubble lengths. As a final remark, Trachsel et al.25 re-
cently developed an experimental technique for on-chip dis-

persion measurements in gas-liquid segmented flows and
found that the variance of the residence time distribution
�RTD� was significantly smaller for segmented gas-liquid
flows than the single-phase flow at similar conditions.

In the present paper, we study the axial dispersion in a
gas-liquid segmented flow using a finite-volume/front-
tracking method26 in a two-dimensional setting. Passive
tracer particles are used to visualize and quantify the mass
transfer. Molecular diffusion is modeled by a random walk of
the tracer particles. Computations are performed to show the
effects of Peclet number, capillary number, and slug length
on the axial dispersion in the segmented flow. Based on the
results from these simulations, a simple analytical model is
proposed and compared with the numerical results. The
present model is similar to the earlier models in the sense
that it divides the liquid slugs into recirculating and film
regions. However, the new model not only accounts for the
molecular diffusion in the radial direction, but it also ac-
counts for the effects of the convection by the nonuniform
velocity profile in the liquid segment. Reasonably good
agreement is found between the analytical model and com-
putational results at high Peclet numbers, i.e., Pe�103. It is
also found that the computational results are in very good
agreement with Pedersen and Horvath’s model15 in the limit
of perfect mixing in the slug, i.e., in the limit as Pe→0.
Finally simulations are performed for a six-bubble system
to mimic bubble trains and computational results are com-
pared with Pedersen and Horvath’s model15 again in the
convection-controlled regime.

The paper is organized as follows. The mathematical for-
mulation and numerical method are briefly summarized in
the next section and details are provided in the Appendix.
The physical problem is described in Sec. III. The results are
presented and discussed in Sec. IV and conclusions are
drawn in Sec. V.

II. FORMULATION AND NUMERICAL METHOD

The governing equations and numerical method are
briefly described in this section and details are provided in
the Appendix. The numerical simulations are performed us-
ing the finite-volume/front-tracking method developed by
Muradoglu and Kayaalp.26 In this method, a single set of
flow equations is written for the entire computational domain
and different phases are treated with variable material
properties.27,28 The effects of surface tension are treated as
body forces and added to the momentum equations as delta
functions at the phase boundaries. As discussed in the
Appendix, the resulting system of the equations is in the
same form as the standard incompressible flow equations so
that it can be solved by virtually any standard flow solver
developed for single-phase flow simulations.

In the present study, the front-tracking method devel-
oped by Unverdi and Tryggvason28 is combined with a
finite-volume solver. The continuity and momentum equa-
tions are solved on a curvilinear grid using a finite-volume
method. The spatial derivatives are approximated by a finite-
volume method that is equivalent to second-order finite dif-
ferences on a regular mesh. A dual �or pseudo� time-stepping

FIG. 1. �Color online� Schematic illustration of a two-bubble system �top
figure� and a bubble train �lower figure�.
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method is employed to achieve time accuracy and an alter-
nating direction implicit �ADI� method is used to perform
integration in pseudo time. Fourth-order numerical dissipa-
tion terms are added to the discrete version of the flow equa-
tions to prevent the odd-even decoupling. Preconditioning,
local time-stepping, and multigrid methods are used to
accelerate the convergence rate of the ADI method in the
pseudo time. Details of the FV method can be found in Refs.
26 and 29.

A large number of passive tracer particles are used to
visualize and quantify mixing in the continuous fluid. The
molecular mixing is modeled by a random walk of tracer
particles, which are advected with the local fluid velocity
interpolated from the Eulerian grid. The details of the gov-
erning equations for the evolution of the tracer particles and
the numerical solution procedure are provided in the Appen-
dix. The result of this approach is a full numerical solution of
the Navier-Stokes equations and the corresponding
convective-diffusive mass transfer equation, while simulta-
neously determining the bubble shapes.

III. PROBLEM STATEMENT

The axial dispersion in gas-liquid segmented flow is
studied in a two-dimensional setting to facilitate extensive
computational simulations. We consider a long straight chan-
nel of length L and width w. A portion of the channel that
contains gas bubbles and a liquid segment is sketched in Fig.
2. The flow rate is specified at the inlet assuming a fully
developed velocity profile with an average velocity of Vc. A
steady single-phase flow is computed first using the liquid
properties and is then used as the initial conditions. The
bubbles are instantaneously placed in the channel close to the
entrance section. The bubbles are much longer than the chan-
nel width and are initialized with an approximate shape con-
sisting of a straight middle and semicircular front and back
sections.

The distance between the centers of gas bubbles is de-
noted by Lc and the equivalent slug length Ls is defined as
Ls=As /w, where As is the area of the liquid slug. The prop-
erties of gas bubble and liquid are denoted by subscripts b
and o, respectively. The governing nondimensional numbers
are defined as the channel Reynolds number Re=�oVcw /�o,
the capillary number Ca=�oUb /�, the Peclet number
Pe=Ubw /D, viscosity ratio �=�b /�o, and the density ratio

�=�b /�o. Also, the normalized initial separation between the
bubbles is denoted by 	=Lis /w, where Lis is defined as the
minimum distance between two successive bubbles when
they are initialized in the channel. All the computations are
performed at Re=0.64, �=0.1, and �=0.1. The film thick-
ness h between the bubbles and the channel walls is initially
much smaller than the value obtained from the theoretical
estimate12,14

h

w
=

1.3375Ca2/3

1 + 3.344Ca2/3 . �1�

Subsequently, the film thickness relaxes to the value given by
Eq. �1� as the bubbles approach their steady shapes. The
tracer particles are introduced when the bubbles reach their
steady shapes. The tracers are initially distributed at random
in the liquid slug between the centroids of the leading two
bubbles as shown in Fig. 2.

The average tracer concentration in the nth slug is de-
fined as

�C�n =
Nn

Asn
, �2�

where Nn is the total number of particles and Asn is the area
of the liquid slug. Since Asn remains essentially constant af-
ter the initial transient, the concentration is computed simply
as the total number of particles in the slug in all the results
presented here. The results are nondimensionalized using the
length scale L=w, the velocity scale U=Ub, and the time
scale T=w /Ub, and the nondimensional quantities are de-
noted by superscript “*.”

Extensive numerical simulations are performed for a
two-bubble and a six-bubble systems using nonuniform
Cartesian grids. The grids are stretched to better resolve the
thin liquid films adjacent to the channel walls, and care is
taken to have at least five grid points within the film regions
in all the results presented in this paper. Since extensive grid
convergence and other numerical accuracy tests have been
performed earlier for this kind of two-phase flow
problem,13,14 a similar study is not repeated here and instead
the numerical accuracy is assessed by comparing the film
thickness with Eq. �1�. The difference between the computed
film thickness and Eq. �1� is found to be less than 6% in all
the results presented here.

IV. RESULTS AND DISCUSSION

A. Two-bubble system

Computations are first performed for a two-bubble sys-
tem and effects of the governing nondimensional numbers on
the axial dispersion are examined. For this purpose, the chan-
nel length is set to L=30w and the computational domain is
resolved by a 768
64 nonuniform Cartesian grid. About
30000 tracer particles are used in the simulations of transport
for the two-bubble system.

First, the effects of the Peclet number on the axial dis-
persion are examined. For this purpose, the Peclet number is
varied in the range between Pe=10 and Pe→� while keep-
ing the other nondimensional numbers fixed at Ca=0.01,

FIG. 2. �Color online� A schematic illustration of the portion of a two-
dimensional channel containing two bubbles and one liquid segment. A large
number of tracer particles are distributed at random in the liquid segment
after gas bubbles reach their steady shapes.
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	=0.75, Re=0.64, �=0.1, and �=0.1. Note that, for the case
of quantum dot synthesis in microchannels,22 the Peclet
number approximately ranges between Pe=2000 and 6000.
The viscosity ratio, �=0.1, is larger than typical values used
in microfluidic applications, i.e., ��0.001 for ethanol/air or
water/air systems. However, the effects of viscosity ratio are
expected to be small when ��0.1 for these kind of problems
as discussed by Muradoglu and Stone.13,14 Since the numeri-
cal method is fully implicit in time, the time step is solely
determined by the accuracy considerations. The nondimen-
sional time step is set to 
t*=0.005 for Pe�100 and is re-
duced to 
t*=0.002 for Pe�50 to keep the numerical error
small. The time accuracy was tested for two extreme cases
�not presented here� of Pe=10 and Pe→� �by setting D=0�,
and in both cases it is found that the time-stepping error was
negligible.

The scatter plots of tracer particles in the liquid slug are
shown in Fig. 3 for Pe=10, 103, 104, and � at nondimen-
sional time t*=11.2 to provide a visual aid to illustrate the
effects of Peclet number on the mixing and the diminished
concentration in the liquid plug as a consequence of fluid
draining through the liquid films. Note that the tracers that
initially occupy the upper and lower halves of the liquid plug
are colored differently in order to visualize the mixing in the
liquid segment. As can be seen, all the tracer particles that
were initialized in the recirculating region are trapped in the
liquid region in the absence of molecular diffusion, i.e., Pe
→�, and mixing increases as Pe decreases. Note that the
case of Pe→� is also useful to identify the recirculating
liquid and the film regions.

These results are quantified in Fig. 4, where the average
tracer concentration in the liquid slug is plotted as a function
of the nondimensional time for various Peclet numbers. In
this figure, the average concentrations are normalized by the
initial concentration in the slug, �C�i. After a transient period,
the concentration remains constant in the case of Pe→�;
during the transient, the concentration is reduced simply be-
cause the tracer particles originally in the film region are
convected downstream �relative to a reference frame fixed to
a bubble� and in the absence of diffusion no additional par-

ticles migrate to the wall region. On the other hand, at finite
Peclet numbers, the average concentration decreases mono-
tonically as time progresses. Figure 4 also illustrates that the
axial dispersion increases as the Peclet number decreases and
for Pe=10 approaches the predictions of an asymptotic re-
gime as Pe→0. As shown by Pedersen and Horvath,15 for
Pe→0, the average concentration in the liquid slug ap-
proaches a convection-controlled regime and is described by

�C�
�C�i

= e−�t*, �3�

where �=2hw /As. Equation �3� is plotted as a dashed curve
in Fig. 4. Note that the area of the slug As is computed
approximately from the snapshot shown in Fig. 3�a�. As can
be seen in Fig. 4, the theoretical result is in good agreement
with the computational result obtained for Pe=10. We thus
see that the low Peclet number theory is actually applicable
at moderate Peclet numbers �Pe=10�.

To better understand the finite Peclet number effects on
the axial dispersion, it is necessary to describe transport into
the regions near the wall. Thus, we consider a model of the
liquid slug flow near the wall, as sketched in Fig. 5. In the
reference frame moving with the bubbles, the flow is as-
sumed to be one-dimensional in the liquid slug and the ve-
locity varies linearly with position normal to the wall as
sketched in Fig. 5�b�. In the local coordinate system in Fig.
5�b�, the velocity profile is approximated by

u = U0 + Gy , �4�

where U0= �hb / �hb+hf��Ub and the shear rate G=Ub / �hb

+hf�. The length scales hf and hb can be approximated as the
liquid film thickness and the distance between the center of
the vortex in the slug and the film region, respectively. Thus,
in the steady state, the tracer concentration C�x ,y� in the near
wall region is governed by

FIG. 3. �Color online� Scatter plots of tracer particles for various Peclet
numbers at nondimensional time t*=11.2. Different colors are used for the
particles initially located in the lower and upper portions of the liquid seg-
ment to show mixing patterns �Ca=0.01, Re=0.64�.

FIG. 4. �Color online� Evolution of tracer concentration in the liquid seg-
ment as a function of nondimensional time for various Peclet numbers rang-
ing between Pe=10 and Pe→�. The dashed curve indicates the theoretical
result as Pe→0.
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�U0 + Gy�
�C

�x
= D

�2C

�y2 , �5�

where we have assumed that convective transport dominates
diffusion in the x direction. Assuming that the concentration
boundary layer remains thinner than the liquid films and the
concentration at the center of the recirculating liquid region
is approximately equal to the average concentration in the
plug, the boundary conditions are specified as

�C�y=−hb
= Cb, �C�y→� = Cf, �C�x=0 = 	Cf if y � 0,

Cb if y � 0,



�6�

where Cf and Cb are the concentration in the film region at
x=0 and the average concentration in the recirculating liquid
region, respectively. Letting z=U0+Gy, Eq. �5� becomes

z
�C

�x
= DG2�2C

�z2 . �7�

Equation �7� is in the same form as the Leveque problem30,31

and admits a similarity solution. Let

� =
z

�3DG2x�1/3 , �8�

so Eq. �7� becomes

d2C

d�2 + �2dC

d�
= 0, �9�

which can be integrated to yield

C = c1 + c2�
0

�

e−1/3�3
d� . �10�

In Eq. �10�, c1 and c2 are the integration constants that can be
determined from the boundary conditions as

c1 = Cb, c2 =
32/3�Cf − Cb�

��1/3�
, �11�

where � is the Gamma function. The flux of tracer particles,
q, from the recirculating bulk region to the film region �i.e.,
across y=0�, accounting for the films on the two sides, is
computed as

q = 2�
0

Lf �− D
 �C

�y



y=0
�dx ,

=
2U0

2�Cb − Cf�
3��1/3�G �

�

�

t−5/3e−tdt , �12�

where Lf is the length of the boundary between the film and
recirculating regions �see Fig. 3�a�� and

� =
U0

3

9DG2Lf
=

hb
3

9D�hb + hf�
Ub

Lf
. �13�

Equation �12� gives the flux of tracer particles from the re-
circulating liquid region to the wall region and these particles
are subsequently lost through the films. Thus, similar to the
convection-controlled regime15 �see also Eq. �3��, one can
easily show that the average concentration in the liquid slug
evolves according to

�C�
�C�i

= e−�1t*, �14�

where the decay rate �1 is given by

�1 =
w

UbAs�Cb − Cf�
q =

2wU0
2

3��1/3�UbAsG
�

�

�

t−5/3e−tdt .

�15�

Equation �15� is complicated and difficult to interpret. How-
ever, the decay rate approaches asymptotically to

�1 = �1.46Pe−2/3Ca−2/9�Lf

Ls
�2/3� w

Ls
�1/3

as hb/hf → 0,

1.13Pe−1/2� w

Ls
�1/2

as hb/hf → � ,�
�16�

where the width of the film region has been approximated
using the Bretherton’s approximation hf =1.3375wCa2/3.11

The length scale Lf can be approximated as the length of the
interface between the bulk and film regions as shown in Fig.
3�a�. Therefore, it is reasonable to assume that the decay rate
scales as �1�Pe−n, where 1/2�n�2/3. By expanding Eq.
�14� into a Taylor’s series, we obtain

FIG. 5. �Color online� The schematic
illustration of the model based on the
decomposition of the liquid slug into
the film and recirculating regions. �a�
The film and recirculating regions.
The velocity vectors plotted in the
lower portion of the channel are taken
from our computational simulations.
�b� The idealized velocity profile near
the film regions.
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�C� − �C�i

�C�i
� Pe−nt* + O�Pe−2nt*2� . �17�

This power-law scaling is verified for Pe�103 in Fig. 6,
where the relative average concentration is plotted as a func-
tion of Peclet number at time t*=10 and 20. The results
clearly show the scaling given by Eq. �17� and also indicate
three different regimes, namely the convection-controlled re-
gime when Pe�103, the diffusion-controlled regime when
Pe�102, and transition regime when 102�Pe�103. A simi-
lar behavior and scaling are also observed for a larger liquid
slug size, i.e., 	=1.5, as shown in Fig. 7. We thus see that a
model of boundary-layer mass transfer predicts the Peclet
number dependence very well in the diffusion-controlled
regime.

However, the numerical value of the exponent n�0.65
corresponds to the limiting case of hb /hf →0, which is

clearly not the case since the center of the recirculation zone
is always below the boundary between the film and bulk
regions. This may be explained by the fact that the velocity
profile is not really linear but it is rather in between linear
and quadratic, as shown in Fig. 8. In this figure, the velocity
profile at the center of the liquid slug is plotted near the wall
region in the same coordinate system as defined in Fig. 5 and
a general power-law velocity profile is defined as

u

Ub
= � hb

hb + hf
�m�1 +

y

hb
�m

, �18�

where m is a real number. A similarity solution can be found
for this general power-law velocity profile in the same way
as discussed above for the linear velocity profile. In particu-
lar, the similarity solution yields n=1/2 and n= m+1

m+2 for the
cases of hb /hf →� and hb /hf →0, respectively. As can be
seen in Fig. 8, m=1.4 yields a very good approximation to
the computational velocity profile. Therefore, it is reasonable
to expect that 0.5�n�0.71, which agrees well with the
computational value of n�0.65. To the best of our knowl-
edge, no model has been offered until this time for the Peclet
number dependence of dispersion in the segmented systems.

We next examine the effects of capillary number on the
axial dispersion. The simple model given above predicts a
very weak dependence of axial dispersion on the capillary
number in the diffusion-controlled limit. However, in the
convection-controlled limit, axial dispersion depends
strongly on the capillary number since the film thickness
increases rapidly with increasing capillary number, as can be
seen in Eq. �1�. This effect is verified in Fig. 9, where the
average concentration in the slug is plotted as a function of
nondimensional time for Ca=0.02, 0.01, and 0.005, and for
Pe=102 and 104. As can be seen in this figure, there is a
strong dependence of average concentration on capillary
number in the convection-controlled regime �e.g., Pe=102�
while in the diffusion-controlled regime �e.g., Pe=104�, after
a transient period of time, the decay rates are about the same

FIG. 6. �Color online� Variation of the average tracer concentration as a
function of the Peclet number for a small liquid segment, i.e., 	=0.75, at
nondimensional times t*=10 and 20. �Ca=0.01 and Re=0.64.�

FIG. 7. �Color online� Variation of the average tracer concentration as a
function of the Peclet number for a large liquid segment, i.e., 	=1.5, at
nondimensional times t*=10 and 20. �Ca=0.01 and Re=0.64.�

FIG. 8. �Color online� A typical velocity profile at the center of the liquid
slug in the near wall region. The coordinate system is the same as that in
Fig. 5. The symbols denote the computational result and lines denote differ-
ent power-law approximations in the form u /Ub= �hb /hb+hf�m�1+y /hb�m.
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for all capillary numbers, indicating a very weak dependence
of the average concentration on the capillary number as pre-
dicted by the model �see, e.g., Eq. �16��.

B. Bubble trains

We now consider a six-bubble system to mimic bubble
trains widely used in monolith reactors3 and micromixers.9,21

In this case, the channel length is L=60w and the computa-
tional domain is resolved by a 1200
64 nonuniform grid.
The liquid slug between the first two leading bubbles is la-
beled by “0” and the slugs following the zeroth slug are
labeled by “1,” “2,” “3,” and “4,” respectively. About 105

tracer particles are introduced in the zeroth liquid slug when
the bubbles reach their steady shapes in the same way as the
two-bubble system. Not surprisingly, the simulations for
bubble trains take much longer than for the two-bubble prob-
lems. The Reynolds number, the capillary number, the vis-
cosity ratio, and the density ratio are fixed at Re=0.64,
Ca=0.01, �=0.1, and �=0.1, respectively. The average

tracer concentration in each slug is computed in the same
way as the two-bubble case and the average concentration in
the nth slug is denoted by �C�n. These mean concentrations
evolve in time.

The time evolution of average tracer concentrations
in the liquid slugs is plotted in Fig. 10�a� and 10�b� for
Pe=102 and 104, respectively, as typical examples for
convection-controlled and diffusion-controlled regimes. As
discussed by Pedersen and Horvath,15 in the convection-
controlled regime, i.e., as Pe→0, the normalized concentra-
tion in the nth segment evolves according to

�C�n

�C�0i
=

��t*�n

n!
e−�t*, �19�

where �=2hw /As as before and �C�0i is the initial average
concentration in the zeroth segment. This theoretical result is
verified in Fig. 11, where the average concentration in each
segment is plotted as a function of the segment number at

FIG. 9. �Color online� Effects of the capillary number on evolution of the
average tracer concentration in the liquid segment as a function of nondi-
mensional time for Pe=102 and 104. �Ca=0.01 and Re=0.64.�

FIG. 10. �Color online� Time evolution of average tracer concentration in each liquid segment in a bubble-train flow involving six bubbles. �Ca=0.01,
	=0.75, and Re=0.64.�

FIG. 11. �Color online� Average tracer concentration as a function of seg-
ment number at various time frames for Pe=102. The symbols are the nu-
merical simulations and solid lines are theoretical results. �Ca=0.01,
	=0.75, and Re=0.64.�
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time frames t*=7.5, 15, and 35, and is compared with the
theoretical result given by Eq. �19�. Note that n! in Eq. �19�
is replaced by the Gamma function using the relation
n!=��n+1� to obtain a continuous variation. As can be seen
in this figure, there is good agreement between the compu-
tational and theoretical results. The small discrepancies be-
tween the numerical and theoretical results are partly attrib-
uted to the finite value of the Peclet number used in the
simulations.

The relative concentration in the nth segment is given by

�n�t� �
�C�n

�C�0
=

��t*�n

n!
, �20�

where Eq. �19� has been used. This result is verified in Fig.
12, where the relative concentration in each segment is plot-
ted as a function of nondimensional time and is compared
with the theoretical result. Note that, since Eq. �20� is valid
only in a steady state, the transient time needed for particles
to reach each segment is taken into account in Fig. 12 by
simply starting the time after the transient period for each
segment. In the present results, the transient period of time
for the nth segment is taken as Tn

*=nTshift
* , where Tshift

* =0.9.
As can be seen in Fig. 12, there is a good agreement between
the computational and theoretical results for all segments.

V. CONCLUSIONS

Axial dispersion of a tracer in a two-dimensional seg-
mented gas-liquid flow is studied computationally using a
finite-volume/front-tracking method. The tracer is simulated
by a large number of Lagrangian particles, and molecular
diffusion is modeled by the random walk of the tracer par-
ticles. A perfect elastic collision model is used to treat the
boundary conditions for the tracer particles both at the
liquid-solid and gas-liquid interfaces. An efficient and robust
method is developed for reflecting the tracer particles from

the gas-liquid boundary by utilizing the indicator function
that is also used to set the material properties in different
phases in the FV/FT method.

The effects of the Peclet number, the capillary number,
and segment size are examined. Three different Peclet num-
ber regimes are identified and quantified by extensive com-
putational simulations. For small Peclet numbers, the axial
dispersion is essentially controlled by convection through the
liquid films between the gas bubble and the channel walls,
and it becomes independent of the Peclet number in the limit
as Pe→0. On the other hand, when the Peclet number is
sufficiently large, the axial dispersion is mainly controlled by
the molecular diffusion of the tracer across the boundary
between the recirculating bulk region and the film region.
In between, there is a transition regime where both the mo-
lecular diffusion and convection are important. In the
convection-controlled regime, the computational results are
found to be in very good agreement with the theory devel-
oped by Pedersen and Horvath.15 For the diffusion-controlled
regime, a new model is proposed based on the division of the
liquid segment into a film and recirculating regions similar to
most of the previous models.15,20 However, unlike the earlier
models, the new model accounts for both the convection and
the molecular diffusion and provides explicit dependence on
the Peclet and capillary numbers. The model is found to be in
reasonably good agreement with the computational results. It
is also found that, while the axial mixing is weakly depen-
dent on the capillary number in the diffusion-controlled re-
gime, it depends strongly on the capillary number in the
convection-controlled regime. The effects of the length of the
liquid slugs on the Peclet number regimes are also examined,
and it is found that the three Peclet number regimes are per-
sistent in different segment sizes. Finally, simulations are
performed using six bubbles to mimic the bubble-train flows,
and the results are found to be in very good agreement with
the theory developed by Pedersen and Horvath15 at low
Peclet numbers.
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APPENDIX: MATHEMATICAL FORMULATION
AND NUMERICAL ALGORITHM

Flow equations

The flow equations are described here in the form suit-
able for the finite-volume/front-tracking method.26,32 In the
Cartesian coordinates, the two-dimensional incompressible
continuity and Navier-Stokes equations can be written in
conservation form as

�q

�t
+

�f

�x
+

�g

�y
=

�fv

�x
+

�gv

�y
+ fb, �A1�

where

FIG. 12. Time evolution of relative average tracer concentration in each
liquid segment in the bubble-train flow for Pe=102. The symbols are the
numerical simulations and solid lines are the theoretical results. �Ca=0.01,
	=0.75, and Re=0.64.�
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q = � 0

�u

�v
�, f = � u

�u2 + p

�uv
�, g = � v

�uv

�v2 + p
� , �A2�

and

fv = � 0

�xx

�xy
�, gv = � 0

�xy

�yy
� . �A3�

In Eqs. �1�–�3�, x and y are the Cartesian coordinates and t is
time; �, �, and p are the fluid density, the dynamic viscosity,
and pressure, respectively, and u and v are the velocity com-
ponents in x and y coordinate directions, respectively. The
first row in Eq. �1� simply states that the velocity field is
solenoidal since the density is taken as constant following a
fluid particle, while the last two rows represent the momen-
tum conservation equations in the x and y directions, respec-
tively. The viscous stresses appearing in the viscous flux vec-
tors are given by

�xx = 2�
�u

�x
, �yy = 2�

�v
�y

, �xy = �� �u

�y
+

�v
�x
� . �A4�

The last term in Eq. �1� represents the body forces resulting
from surface tension and is given by

fb = �
S

��n��x − x f�ds , �A5�

where �, x f, �, �, n, S, and ds denote, respectively, the Dirac
delta function, the location of the interface, the surface ten-
sion coefficient, twice the mean curvature, the outward unit
normal vector on the interface, the surface area of the inter-
face, and the surface area element of the interface.

Tracking the interface

The interface boundary between the drop phase and the
ambient fluid are represented by connected Lagrangian
marker points moving with the local flow velocity interpo-
lated from the neighboring curvilinear grid points. The com-
munication between the curvilinear grid and the interface
marker points is maintained efficiently using an auxiliary
regular Cartesian grid cast on the curvilinear grid.26 An indi-
cator function is defined such that it is unity inside the drop-
let and zero outside. Based on the locations of the interface
marker points, unit magnitude jumps are distributed in a con-
servative manner on the regular grid points near the interface
and are integrated to compute the indicator function every-
where. This procedure involves solution of a separable Pois-
son equation on a regular grid and yields a smooth transition
of the indicator function across the interface. The indicator
function is then interpolated from the regular Cartesian grid
onto the curvilinear grid using bilinear interpolations. Once
the indicator function distribution is determined, the material
properties such as viscosity, density, and molecular diffusiv-
ity are set as a function of the indicator function. The inter-
face marker points are also used to compute the surface ten-
sion forces at the interface, which are then distributed on the
neighboring curvilinear grid cells in a conservative manner

and added to the discrete momentum equations as source
terms. The details of the FV/FT method can be found in
Refs. 26 and 32.

Tracer particles

A large number of passive tracer particles are used to
visualize and quantify mixing in the continuous fluid. The
molecular mixing is modeled by a random walk of tracer
particles. Using a Lagrangian description, the location of the
mth tracer particle Xm evolves by

dXmi
= Umi

dt + �2DdWi, �A6�

where Um is the mean velocity interpolated from the Eulerian
curvilinear grid onto the location of the marker point, dt is
the time increment, D is the molecular diffusion coefficient
for the tracer, and dW is a vector valued Wiener process33

with properties �dW�=0 and �dWidWj�=�ijdt, where �·� de-
notes the mean and �ij is the Kronecker delta. Equation �A6�
is approximated using a predictor-corrector method and is
solved together with the flow equations. In the first step, the
locations of tracer particles are predicted using an explicit
Euler method as

Xmi

* = Xmi

n + Umi

n 
t + �2D
t�i
�1�, �A7�

where superscripts n denote the nth time level and �i
�1� is a

normally distributed random number. Second, the flow equa-
tions are integrated in time using the FV/FT method. Finally,
the locations of the tracer particles are corrected as

Xmi

n+1 = Xmi

n + 1
2 �Umi

n + Umi

* �
t + �2D
t�i
�2�, �A8�

where �i
�2� is an independent random number and U* is the

velocity interpolated from the velocity field Un+1 onto the
predicted particle locations X*. The method is weak second-
order accurate in time. Note that the particle tracking and
interpolation schemes employed for the tracer particles are
the same as those used for the Lagrangian marker points in
the FV/FT method.26

The tracer particles may cross the channel walls as well
as the gas-liquid interface mainly due to the random walk
and also due to numerical errors. Any particles crossing the
boundaries are reflected assuming a perfect reflection as
sketched in Fig. 13. Although the reflection from the channel
walls is straightforward, it is not easy to reflect the tracer
particles from the gas-liquid boundary since a straightfor-
ward reflection is computationally too expensive, especially
when a large number of tracer particles is used in the simu-
lations at low Peclet numbers. To circumvent this difficulty,
the indicator function is utilized to determine the tracer par-
ticles that have crossed the gas-liquid interface as well as to
reflect them from the interface. The indicator function is de-
noted by I and is the same as the one computed in the FV/FT
method in order to set the material properties smoothly in-
side and outside of the bubbles. As mentioned before, the
indicator function is zero outside of the bubble and is unity
inside the bubble. The width of the transition layer is ap-
proximately four grid sizes and the contour line of I=0.5 is a
very good approximation to the location of the interface. The
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boundary conditions at the gas-liquid and liquid-wall inter-
faces are applied both at the predictor and corrector steps,
but the procedure is explained here only for a single explicit
Euler step. In advancing the location of the mth tracer par-
ticle from time level n to time level n+1 using a single
explicit Euler method, we assume that the tracer particle ini-
tially resides in the liquid phase, i.e., I�Xm

n ��0.5, where
I�Xm

n � denotes the value of the indicator function interpolated
on the particle location Xm

n , and it moves to the location Xm
* .

It is assumed that the particle has not crossed the gas-liquid
interface if I�Xm

* ��0.5 and the particle location is updated as
Xm

n+1=Xm
* . Otherwise the particle has crossed the interface

and is reflected from the interface as follows. The distance
between the initial particle location Xm

n and the location
where the particle has crossed the interface XQ is computed
by using a simple interpolation scheme based on the indica-
tor function as

�AQ� =
0.5 − Im

n

max��I,Im
* − Im

n �
�AB*� , �A9�

where, for instance, Im
n is the value of the indicator function

interpolated onto the location Xm
n and �I is a small number

taken as �I=0.01 in the present study. Then XQ is computed
as

XQ = Xn + �AQ�v , �A10�

where v=AB*� / �AB*�. The unit normal vector at the interface
is approximated as

n = −
�I

��I�
. �A11�

In the present implementation, the normal vectors are first
computed at all four vertices of the regular grid cell sur-
rounding the intersection point Q by using central differ-
ences and a bilinear interpolation is used to compute the
normal vector nQ at point Q. Finally, Xn+1 is computed by a
perfect reflection about the normal vector nQ as

Xn+1 = XQ − �2�v · nQ�nQ − v��QB*� . �A12�

This procedure is found to be very robust even for the cases
of very large molecular diffusivities, e.g., Peclet numbers as
small as 10. However, some tracer particles may still escape
into the gas bubble due to numerical errors mainly arising
from Lagrangian grid restructuring,27 and such particles are
simply disregarded in the present study. We emphasize here
that the total number of disregarded particles was found to be
less than 1% throughout the simulations in all of the results
presented in this paper.
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