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Mixing in a drop moving through a serpentine channel:

A computational study
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The chaotic mixing in a drop moving through a winding channel is studied computationally in a
two-dimensional setting. The molecular mixing is ignored and only the mixing due to the chaotic
advection is considered. Passive tracer particles are used to visualize the mixing patterns and mixing
is quantified by two distinct methods. It is found that both the quantification methods are consistent
with visual observations as well as with each other. The effects of various non-dimensional
parameters on the quality of mixing are studied and it is found that the capillary number, the ratio
of the drop phase fluid viscosity to that of the ambient fluid and the relative size of the drop
compared to the average channel width are the most critical parameters influencing the mixing. The
mixing is found to be weakly dependent on Reynolds number. © 2005 American Institute of

Physics. [DOI: 10.1063/1.1992514]

I. INTRODUCTION

Rapid mixing is of essential importance in many micro-
fluidic applications such as the homogenization of solutions
of reagents used in chemical reactions, drug delivery, se-
quencing or synthesis of nucleic acids, protein crystalliza-
tion, etc.'® However, it is difficult to mix fluids in micro-
channels since flows in these channels are generally laminar
and molecular diffusion is usually insufficient to mix fluids
across the channel on the time scale of the usual residence
time, especially in solutions containing macromolecules that
have diffusion coefficients one or two orders of magnitude
lower than that of ordinary small molecules.® To overcome
this difficulty, the fluids must be manipulated to increase the
interfacial surface area between initially distinct fluid regions
and to reduce the striation length, which is characteristic of
distinct chemical separation. The working principle of nearly
all approaches for increasing mixing in small channels is
essentially based on the concept of chaotic mixing.6_9 The
approach of chaotic mixing was first suggested in the early
1980s by Aref'” as a way to produce efficient mixing in
viscously dominated flows and has since been studied
extensively.g’ll One particular application that inspired the
present study is the use of chaotic advection to enhance the
mixing inside droplets in microchannels in order to perform
kinetic measurements with high temporal resolution and low
consumption of 521mples.1’12’13

The topic of chaotic mixing in a liquid droplet in a low-
Reynolds number flow was first studied theoretically by Ba-
jer and Moffat'* and then by Stone et al."® and Kroujiline and
Stone.'® These studies make clear that the three-dimensional
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flow in a spherical droplet may exhibit chaotic streamlines in
steady state conditions and other driving forces for fluid mo-
tion, either steady or unsteady, are capable of producing
three-dimensional mixing flows inside a droplet.

The mixing in a droplet by chaotic advection has re-
cently received significant attention and has been investi-
gated experimentally by Song et al."" 1t has been shown
that the reagents in a droplet (or plug) can be mixed rapidly
as the liquid drop moves through a winding channel and the
drop can be used as a chemical reactor to measure kinetics
and binding constants of the reagents over millisecond time
scales and also to measure the aspects of phase and reaction
diagrams of multicomponent system. The use of drops as
chemical reactors is very attractive due to lack of axial dis-
persion and low sample consumption. The experimental
studies on the chaotic mixing inside drops moving through a
winding channel have been reviewed by Bringer et al." Stone
and Stone'” have recently extended the theoretical studies by
considering time-periodic and nearly time-periodic flows in-
side a droplet to model the micro-mixer developed by Song
et al."”® Guenther er al.® have demonstrated experimentally
that the mixing of the continuous phase can also be enhanced
significantly by the motion of bubbles in a meandering chan-
nel. (See also Garstecki er al.'®).

In this study, the chaotic mixing in a drop moving
through a winding channel is studied computationally in a
two-dimensional setting using a direct numerical simulation
within the framework of a finite-volume(FV)/front-
tracking(FT) method developed by Muradoglu.18 The drop
shape is calculated self-consistently, molecular mixing is ig-
nored, and only the mixing by chaotic advection is consid-
ered. The mixing is visualized using passive tracer particles
and is quantified using two different methods suggested by
Krasnopolskaya et al.” and by Stone and Stone."”’

In Sec. II we present a brief description of the math-
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ematical formulation and computational method. The physi-
cal problem is discussed in Sec. III where the methods used
for visualization and quantification of mixing are summa-
rized. The results are presented and discussed in Sec. IV and
some conclusions are drawn in Sec. V.

We note that this work complements the recent investi-
gation of Stone and Stone'” who used an analytical descrip-
tion of the three-dimensional flow inside a spherical drop to
model the time-varying flows experienced by a drop in a
serpentine channel. In this paper, we build on the study of
Stone and Stone'” as we solve the two-dimensional problem
numerically, allow for drop deformation, and examine quan-
titatively the effect of capillary number, Reynolds number,
drop size, and viscosity ratio.

Il. FORMULATION AND NUMERICAL METHOD

The governing equations are described in this section in
the framework of the front-tracking method in which the
flow equations are written for the whole flow field, and dif-
ferent phases are treated with variable material properties.21
The effects of surface tension are treated as body forces and
added to the momentum equations as 6 functions at the phase
boundaries. In the Cartesian coordinates, the two-
dimensional incompressible continuity and Navier—Stokes
equations can be written in conservation form as

J o 9 of, o
—q+—+—g=—v+ﬁ+fb, (1)
Jdt  odx dy Jdx dy

where
0 u v
q=\pu(, f=1pu®+p(, g=y puv |, (2)
pU puv pv2+p
and
0 0
fy S T (> 8= ) Ty (- (3)
Txy Tyy

In Egs. (1)-(3), x and y are the Cartesian coordinates and  is
the physical time; p,u and p are the fluid density, the dy-
namic viscosity and pressure, respectively, and u and v are
the velocity components in x and y coordinate directions,
respectively. The first row in Eq. (1) simply states that the
velocity field is solenoidal while the last two rows represent
the momentum conservation equations in x and y directions,
respectively. The viscous stresses appearing in the viscous
flux vectors are given by

v du Jv
Ty}:Z,Ud@, Tey = b +—. (4)

) du
T =20, —
w =ty dy dx

The last term in Eq. (1) represents the body forces resulting
from surface tension and is given by
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f,= f oxknd(x — x')ds, (5)
S

where 8,x/,0,k,n,S and ds denote, respectively, the Dirac
delta function, the location of the interface, the surface ten-
sion coefficient, twice the mean curvature, the outward unit
normal vector on the interface, the surface area of the inter-
face, and the surface area element of the interface.

In Eq. (1), it is assumed that the density of a fluid par-
ticle remains constant, i.e.,

Dp

DY (©)
where the substantial derivative is defined as D/Dt=4/dt
+u-V.

The governing equations [Eq. (1)] are solved by the
finite-volume/front-tracking method developed by
Muradoglu.18 The method combines a finite-volume solver
with the front-tracking method developed by Unverdi and
Tryggvason.21 The continuity and momentum equations are
solved on a curvilinear grid using a finite-volume method.
The spatial derivatives are approximated by a finite-volume
method that is equivalent to second-order finite differences
on a regular mesh. A dual (or pseudo) time-stepping method
is employed to achieve time accuracy and an alternating di-
rection implicit (ADI) method is used to perform integration
in pseudo time. Fourth-order numerical dissipation terms are
added to the discrete version of the flow equations to prevent
the odd-even decoupling. Preconditioning, local time-
stepping, and multigrid methods are used to accelerate the
convergence rate of the ADI method in the pseudo time.
Details of the FV method can be found in Refs. 22 and 18.

The interface boundary between the drop phase and the
ambient fluid are represented by connected Lagrangian
marker points moving with the local flow velocity interpo-
lated from the neighboring curvilinear grid points. The com-
munication between the curvilinear grid and the interface
marker points is maintained efficiently using an auxiliary
regular Cartesian grid cast on the curvilinear grid.18 An indi-
cator function is defined such that it is unity inside the drop-
let and zero outside. Based on the locations of the interface
marker points, unit magnitude jumps are distributed in a con-
servative manner on the regular grid points near the interface
and are integrated to compute the indicator function every-
where. This procedure involves solution of a Poisson equa-
tion on a regular grid and yields a smooth transition of the
indicator function across the interface. The indicator function
is then interpolated from the regular Cartesian grid onto the
curvilinear grid using bilinear interpolations. Once the indi-
cator function distribution is determined, the viscosity is set
as a function of the indicator function. The interface marker
points are also used to compute the surface tension forces at
the interface which are then distributed on the neighboring
curvilinear grid cells in a conservative manner and added to
the discrete momentum equations as source terms. For the
details of the FV/FT method, see Muradoglu19 and Murado-
glu and Gokaltun.®
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FIG. 1. The sketch of the channel used in the computations. The volume
flow rate per unit width into the page is specified at the inlet based on a fully
developed channel flow and the pressure is fixed at the exit. The flow is
initialized as a single-phase steady flow using the ambient fluid properties
and a cylindrical drop is then placed instantaneously in the ambient flow.
The tracer particles are initially distributed uniformly in the drop at random
and the particles filling the upper part of the drop are used for visualization.

Although the flow is incompressible in all the cases stud-
ied here, the drop volume changes due to accumulation of
numerical errors especially when computations are per-
formed on a coarse grid over a long time. To overcome these
inevitable numerical errors, a correction algorithm is devised
to maintain the drop volume constant within a prescribed
error tolerance. The correction algorithm is essentially based
on the procedure described by Cruchaga et al. * and it itera-
tively corrects the positions of the interface marker points
until the global mass conservation in the drop is satisfied
within the specified error tolerance. It is found that the cor-
rection algorithm is very robust and converges after a few
iterations in all the cases presented in this paper. We note
that, when the correction algorithm is switched off, the total
change in drop volume is less than 10% in all the cases
presented in this study. Since correction is performed in each
time step and thousands of time steps are taken during a
typical simulation, the error due to the correction is expected
to be negligibly small.

lll. PROBLEM STATEMENT AND QUANTIFICATION
OF MIXING

A. Problem statement

The chaotic mixing inside a drop moving through a
winding channel is studied in a two-dimensional setting. Al-
though the flow is two-dimensional, it is time dependent and
so time acts as a third dimension, which makes it possible for
streamline patterns at one time to cross the streamline pat-
terns at a later time and so produce effective mixing via
chaotic trajectories. The channel consists of a straight en-
trance, a sinusoidal mixer and a straight exit section as
sketched in Fig. 1. The lower and upper walls of the mixing
section are defined by y,=a[l+cos(2mx/L)] and y,=a[l
+d./a+cos(2mx/L)], respectively, so the channel maintains
constant width. The parameters a,d,, and L correspond to the
scaling factor, the channel width at the inlet and the corru-
gation wavelength, respectively. The nondimensional param-
eter {=d./L is used to characterize the geometry. The
smaller the values of { the weaker is the winding of the
mixing section. The flow rate is specified at the inlet section
assuming a fully developed velocity profile and a steady
single-phase flow is computed first using the ambient fluid
properties and is then used as the initial conditions. The av-
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erage velocity at the inlet is denoted by U,. The drop is
instantaneously placed in the entrance section as sketched in
Fig. 1 in an initially steady flow. The drop is initialized as a
circle with diameter d;=2R,;. The properties of the drop
phase and ambient fluid are denoted by subscripts “d” and
“o0,” respectively. The governing nondimensional parameters
are defined as the channel Reynolds number Re=p,U;d./ i,
the capillary number Ca=pu,U;/o, the viscosity ratio A
=u,/ 1,, the density ratio y=p,/p,, and the ratio of the drop
size to the channel inlet width A=d,;/d, where p, and p, are
the ambient and drop phase fluid densities, and u, and w, are
the ambient and fluid viscosities, respectively. Based on the
inlet velocity and the corrugation wavelength, the nondimen-
sional physical time is defined as ¢ =tU,/L.

Passive tracer particles are initially distributed uniformly
at random within the drop and the particles occupying the
lower half of the drop are identified as “white” while the
other particles are “black.”® These particles are moved with
the local flow velocity interpolated from the neighboring
computational grid points using the same advection scheme
as used for moving the interface marker points.

Finally, we complete the specification of the geometry
by fixing L;, the length of the inlet portion of the channel, L,,
the length of the exit portion of the channel, and L, the
length of the mixing portion of the channel as sketched in
Fig. 1.

B. Quantification of mixing

The tracer particles are used to visualize the mixing pat-
terns inside the drop and two distinct methods are used to
quantify the quality of mixing. The first method developed
by Stone and Stone'” measures the quality of mixing in terms
of the “mixing number” defined as follows: Let tracer par-
ticles 1,...,N have locations x;, and let Opp(x;) be the set of
locations of all tracer particles of color opposite to the color
of the particle located at x;. Also, let d(x;,x;) denote the
Cartesian distance from particle i to particle j, S be a set of
tracer particles, and define d(x;,S)=mind{d(x;,s;)}, where
s; € § and min; indicates a minimum taken over all s;. Then

Y
the mixing number m(z) for the drop is defined as

N
m(t) — 2 d [Xl,Opp(X,)] ) (7)
i=1 N

In all the results presented here, the mixing number is scaled
by the initial (r=0) value of mixing number. The mixing
number is attractive since it is easy to compute and more
importantly it is grid independent.17 However, it does not
completely characterize the structure of the mixing patterns.
We also use the measures suggested by Krasnopolskaya et
al”® In this method, the drop area S, is divided into N
square pixels of width size o for a side and with an area of
Ss=6 so that the drop area can be written approximately as
S=N4Ss Then a coarse-grained probability density function
is defined as Dn:Nz")/ (NZ”)+N$ ), where NZ") and NE? are
the number of “black” and “white” tracer particles in the nth
pixel, respectively. The probability density function (PDF) is
then defined as
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Ns
1 Ns
Dy=—2,D,=——, 8
(D) N5n2=1 " N,+N,, ®

where N, and N,, are the total number of the “black” and
“white” particles, respectively. Note that the PDF remains
constant in the course of mixing so that it can be used as a
measure for the accuracy of the numerical computations. On
the other hand, the average of the square density, (Di), re-
sults in the following inequality:

Ns

1 N,
(D=2 Dy <

—’ (9)
N5n=l Nb+Nw

since D, =<1 and cannot be unity in all of the pixels unless all
the tracer particles have the same color. Based on the coarse-
grained density, the entropy of the mixtures is defined as

Ns

1
s=—(Dlog Dy=-—, D,logD,. (10)
Nﬁn:l

The entropy is always positive since 0 <D <1 and grows in
time to its maximum
s, =—1im(D log D) = — (D)log(D), (11)
t—oo
when the fluids in the drop are fully mixed. In all the results

presented in this study, the entropy is normalized by s,,. Fi-
nally, the intensity of segregation is defined as

(D=0
(D)1= (D))’

In the case of complete mixing, the intensity of segregation
tends to zero since the quantity {(D—(D))?) tends to zero.
The quality of mixing denoted by Q can be defined as the
inverse of the intensity of segregation, i.e., Q=1/1. In the
present study, we prefer to use the intensity of segregation
rather than the mixing quality since it varies between zero
and unity.

As mentioned above, the PDF is a good measure for the
accuracy of computations while the entropy and intensity are
very useful measures for the quality of the internal mixing
since they both account not only for the local structure of the

(12)
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FIG. 2. A portion of a typical (coarse) curvilinear grid containing 256
X 16 cells. Finer versions of this grid, i.e., with 1024 X 64 grid cells, are
used in the computations.
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FIG. 3. Snapshots of mixing patterns taken at the nondimensional times
from left to right £'=0, 0.42, 0.90, 2.32, 1.80, 2.22 and 2.64, respectively.
The top plots are the enlarged versions of the corresponding scatter plots
shown in the channel (bottom plots). (Ca=0.025,Re=6.6,A=1.0,A=0.76,
Grid: 1024 X 64.)

mixing but also for the overall mixing patterns. However,
both the entropy and intensity are strongly dependent on the
pixel size and the number of tracer particles in each pixel.
Therefore the mixing number, PDF, entropy and intensity
measures are used together to quantify the quality of mixing.

IV. RESULTS AND DISCUSSION

The computational results for the mixing by chaotic ad-
vection within a two-dimensional drop moving through a
winding channel are presented in this section. A portion of a
typical curvilinear (coarse) grid with 256 X 16 cells is plotted
in Fig. 2 to show the overall structure of the grid used in the
computations. Unless stated otherwise, a 1024 X 64 grid is
used in all of the computations presented in this paper. The
geometric parameter is set to {=0.33 and the density ratio is
kept constant at unity in all of the computations reported
here since density has no significant effect in low-Reynolds-
number flows. First the evolution of the mixing patterns in
the drop moving through the winding channel is presented.
Then the effects of the nondimensional parameters such as
the capillary number (Ca), the relative drop radius (A), the
viscosity ratio (\) and, the Reynolds number (Re) are stud-
ied. Scatter plots of the tracer particles are used to visualize
the mixing patterns and only the “black™ particles that ini-
tially occupy the upper half of the drop are used for visual
clarity in all of the scatter plots presented. The particles es-
caping from the drop interface due to numerical error are
disregarded. We emphasize that the total number of particles
escaping from the drop interface between the inlet and the
exit sections of the channel is less than 3% in all of the
results presented. In computing the intensity of segregation,
PDF and entropy, the total number of tracer particles is ini-
tially set to 40 000 and the pixel size is determined such that
there are about 10 particles in each pixel.

In Fig. 3, snapshots of the tracer particle distributions,

Ca 02 Ca 003 Ca  0.025 Ca  0.0123 Ca  0.00625

FIG. 4. The mixing patterns at the exit of the channel. (Re=6.6,A=1.0,A
=0.76, Grid: 1024 X 64.)
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FIG. 5. Effect of the capillary number on mixing. (a) Mixing number, (b) intensity of segregation, (c) PDF, (d) entropy. (Re=6.6,A=1.0,A=0.76, Grid:

1024 64.)

taken at the nondimensional times 7*=0, 0.42, 0.9, 1.32, 1.8,
2.22 and 2.64, are plotted to demonstrate the evolution of the
mixing patterns in the drop while it moves through the
model winding channel. The nondimensional parameters are

10 . .
c
o
®
o>
o
{2
Q
193
ks :
- o Numerical results
g ——Linear least-squares fit
=

10_1 L 1

2 1

10 10

Ca
FIG. 6. The intensity of segregation against the capillary number at the time
when the nondimensional component of drop centroid, x/L=3.5. The solid
line is linear least-squares fit to the numerical data. The linear-least squares
fit shows that the intensity of segregation asymptotically scales as [/
=1.66Ca"*" when Ca<0.1. (Re=6.6,\=1.0,A=0.76, Grid: 1024 X 64.)

Ca=0.025, Re=6.6, A=0.76, and A=1.0. This case is taken
as the base case and the effects of the nondimensional pa-
rameters are examined by systematically varying them one at
a time. Note that typical values used in experiments13 are
p,=1.6X10° kg/m?, p;=103 kg/m?3, Mo=5.1
X 1073 N-s/m?, u;=1073 N-s/m?, U;,=0.19 m/s, d.=5.0
X107 m, and ¢=0.013 N/m, which yields a Reynolds
number approximately Re==3, a capillary number Ca
=().07 and a viscosity ratio A =0.2. The mixing patterns are
enlarged in the top plots given in Fig. 3 to better show the
details of the mixing process. As can be clearly seen in this

o,

A=019 A=030 A=053 A=0.76

FIG. 7. The mixing patterns at the exit of the channel for nondimensional
drop sizes A=0.19, 0.30, 0.53, 0.76 and 0.99 from left to right, respectively.
(Re=6.6,Ca=0.025,\=1.0, Grid: 1024 X 80 for A=0.19, 0.3 and 0.53, and
1024 X 64 for the others.)

Downloaded 20 Mar 2006 to 212.175.18.6. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



073305-6

M. Muradoglu and H. A. Stone

Mixing Number

x/L

Phys. Fluids 17, 073305 (2005)

o
[}

o
J

Intensity of Segregation
o o
(%)) (2]

0.4f

0.3f

0.2 : : : : : .

FIG. 8. Effect of drop size on mixing. (a) Mixing number, (b) intensity of segregation, (c) PDF, (d) entropy. (Ca=0.025,Re=6.6,A=1.0.)

figure, chaotic advection occurs in a drop as it moves
through a winding channel and the mixing patterns qualita-
tively resemble the actual three-dimensional mixing
patterns. "

o o o
N [e2] @

Intensity of Segregation

o
o

OO 0.2 0.4 0.6 0.8 1

A
FIG. 9. The intensity of segregation against the relative drop size at the time
when the nondimensional component of drop centroid, x/L=3.5. The plot
shows that the best mixing occurs approximately for A=0.5. (Ca

=0.025,Re=6.6,A=0.76, Grid: 1024 X 64.)

We next study the effects of the capillary number on the
mixing patterns. For this purpose, the mixing patterns at the
exit of the channel are plotted in Fig. 4 for capillary numbers
Ca=0.2, 0.05, 0.025, 0.0125 and 0.00625. Note that the
other parameters are kept constant at the base values. As can
be seen in this figure, the mixing is increased dramatically as
the capillary number is decreased and the drop is closer to a
circular shape. The effects of the capillary number are quan-
tified in Fig. 5 where the mixing number, the intensity of
segregation, PDF and entropy are plotted as a function of the
nondimensional component of the drop centroid, x/L. As can
be seen in this figure, the mixing is very poor for Ca=0.2
and increases rapidly as Ca decreases. It is also observed in

FIG. 10. The mixing patterns at the exit of the channel as a function of the
viscosity ratio. (Ca=0.025,Re=6.6,A=0.76, Grid: 1024 X 64.)
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FIG. 11. Effect of viscosity ratio on mixing. (a) Mixing number, (b) intensity of segregation, (c) PDF, (d) entropy. (Ca=0.025,Re=6.6,A=0.76, Grid:

1024 X 64.)
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FIG. 12. The intensity of segregation against the viscosity ratio at the time
when the nondimensional component of drop centroid, x/L=3.5. The solid
line is linear least-squares fit to the numerical data. The linear-least squares
fit shows that the intensity of segregation asymptotically scales as [/
=0.6N\"2% when A >0.05. (Ca=0.025,Re=6.6,A=0.76, Grid: 1024 X 64.)

Fig. 5 that each of the scalar measures, i.e., the mixing num-
ber, the intensity of segregation and the entropy are consis-
tent in representing the quality of mixing and a nearly con-
stant value of PDF indicates the accuracy of the
computational results. The intensity of segregation is plotted
against Ca in Fig. 6 at the time when the nondimensional
component of drop centroid, x/L=3.5. The figure shows that
the intensity of segregation approximately scales as [
=1.66Ca’?" when Ca<0.1 and it remains roughly constant
at 1=0.9 if Ca>0.1. We do not have a quantitative expla-

v, 8

Re =066

Re =606

Re =66

FIG. 13. The mixing patterns at the exit of the channel as a function of the
Reynolds number. (Ca=0.025,\=1.0,A=0.76, Grid: 1024 X 64.)
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FIG. 14. Effect of the Reynolds number on mixing. (a) Mixing number, (b) intensity of segregation, (c) PDF, (d) entropy. (Ca=0.025,Re=6.6,\=1.0,A

=0.76, Grid: 1024 X 64.)

nation for this power-law scaling though it shows the strong
influence of drop deformability on the internal mixing.

It has been observed experimentally that the best mixing
occurs when the drop size is comparable to the channel
width, see for instance, Song et al."® and Bringer et al.' This
feature is verified in the numerical results presented in Figs.
7 and 8. Note that the channel width at the entrance for the
model winding channel used in this study is larger than the
average channel width and the average channel width in the
mixing section is roughly half of the entrance width so a
drop diameter equal to the mixing section of the channel is
A=0.5. In Fig. 7, the mixing patterns are shown in the exit
section of the channel for the nondimensional drop sizes of
A=0.19, 0.30, 0.53, 0.76 and 0.99. The effects of the drop
size on the quality of mixing are quantified in Fig. 8§ where
the mixing number, intensity of segregation, PDF and en-
tropy are plotted against the nondimensional coordinate x/L
of the drop centroid. As can be seen, the drop size has a
strong effect on the mixing and the best mixing is obtained
when the drop size is comparable to the channel width. To
better show the effects of the drop size, the intensity of seg-

regation is plotted as a function of the nondimensional drop
size in Fig. 9 at the time when the nondimensional compo-
nent of drop centroid, x/L=3.5. It is clear from these results
that among the 10 cases studied the best mixing occurs for
A=0.53.

The effects of the viscosity ratio on the mixing are
shown in Figs. 10 and 11. In Fig. 10, the mixing patterns at
the exit of the channel are plotted for the viscosity ratios A
=0.01, 0.1, 1.0, 2.5 and 5.0. As can be seen, the fluid inside
the drop is almost fully mixed in the case of A=0.01 while
the mixing is very poor when A=5.0. The results are further
quantified in Fig. 11. Mixing is increased dramatically when
the viscosity of the drop phase is decreased compared to the
ambient fluid viscosity but the increase in mixing slows
down when the viscosity ratio is smaller than A=0.1. On the
other hand, mixing is decreased rapidly in the case that the
viscosity of the drop phase is larger than the ambient fluid
viscosity and there is only weak, slow mixing after the vis-
cosity ratio is larger than 5. To better quantify the effects of
the viscosity ratio on the quality of mixing, the intensity of
segregation is plotted against the viscosity ratio in Fig. 12 at
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the time when the nondimensional component of drop cen-
troid, x/L=3.5. As can be seen in this figure, for the mixing
length used in the simulations, the intensity of segregation
approximately scales as 7=0.6\"?° when \=0.05 (recall
I<1 by definition) and remains roughly constant at
I=0.27 when A <0.05.

Finally, the effects of the Reynolds number on the mix-
ing are shown in Figs. 13 and 14. In Fig. 13, it is seen
qualitatively that the effects of the Reynolds number on the
mixing patterns are not dramatic but the mixing is better for
the lower Reynolds numbers. The quantitative results in Fig.
14 illustrate that mixing is only weakly dependent on the
Reynold number when Re is of order of unity or smaller.
Although not shown here, we note that flow separation oc-
curs in the bending sections of the channel for Re=66.

V. CONCLUSIONS

The chaotic mixing in a drop moving through a winding,
or serpentine, channel is studied computationally using the
FV/FT method.'® Tracer particles are used to visualize the
mixing patterns and two distinct methods are employed for
quantifying the quality of mixing. All of the mixing mea-
sures are found to be consistent with each other as well as
with the visual evaluations of mixing for all the cases pre-
sented. It is observed that a chaotic mixing occurs inside a
two-dimensional drop as it moves through a winding channel
and the mixing patterns resemble the experimentally ob-
served three-dimensional mixing patterns. Therefore we
studied the mixing in a two-dimensional setting and exam-
ined the effects of the various nondimensional parameters on
mixing. We found that the best mixing is obtained when the
drop size is comparable with the channel width. The capil-
lary number strongly influences the mixing process and the
smaller the capillary number, corresponding to smaller drop
deformation, the better is the mixing. We observed that the
viscosity ratio of the drop phase and the ambient fluid also
has a strong influence on the quality of mixing. The smaller
the viscosity of the drop phase fluid compared to the viscos-
ity of the ambient fluid, the better the quality of mixing. We
also found that there is a threshold value of the viscosity
ratio below which the influence of the viscosity ratio de-
creases rapidly. Finally, we observed that the Reynolds num-
ber has no significant influence on the mixing but the smaller
the Reynolds number, the better the quality of mixing.
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