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a b s t r a c t

A finite-difference/front-tracking method is developed for computational modeling of impact and spread-
ing of a viscous droplet on dry solid walls. The contact angle is specified dynamically using the empirical
correlation given by Kistler (1993). The numerical method is general and can treat non-wetting, partially
wetting and fully wetting cases but the focus here is placed on the partially wetting substrates. Here the
method is implemented for axisymmetric problems but it is straightforward to extend it to three dimen-
sional cases. Grid convergence of the method is demonstrated and the validity of the dynamic contact
angle method is examined. The method is first tested for the spreading and relaxation of a droplet from
the initial spherical shape to its final equilibrium conditions for various values of Eotvos number. Then it
is applied to impact and spreading of glycerin droplets on wax and glass substrates and, the results are
compared with experimental data of Sikalo et al. (2005). The numerical results are found in a good agree-
ment with the experimental data. Finally the effects of governing non-dimensional numbers on the
spreading rate, apparent contact angle and deformation of the droplet are investigated.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Impact and spreading of a viscous droplet on solid wall is of fun-
damental importance in many engineering and natural processes
including ink-jet printing, spray coating, DNA microarrays, spray
cooling and fuel injection in engines [27]. It also finds applications
in emerging technologies such as single cell epitaxi [8]. The three-
phase moving contact line is a notoriously difficult problem involv-
ing highly complicated physical processes and offers a challenge
for computational models. During the collision and till the equilib-
rium, droplet passes various phases in which inertial, viscous, cap-
illary and contact line forces are dominant. It is well known that
the no-slip boundary condition yields stress singularity at the con-
tact line since the fluid velocity is finite at the free-surface but zero
on the wall [21–23]. This singularity is usually removed by relaxing
the no-slip boundary condition with a slip model. Although
numerous models and solutions to this problem have been pro-
posed, we are still far from reaching a consensus for a definitive an-
swer [27].

Direct numerical simulation of interfacial flows is a formidable
task mainly due to the presence of moving and deforming interface.
The existence of the contact line makes the problem even more com-

plicated. A successful numerical modeling of the impact and spread-
ing of a viscous droplet on a partially wetting substrate should
address: (i) tracking the interface between the droplet and ambient
fluid undergoing extreme deformation in a short time, (ii) account-
ing for the effects of the interfacial tension, (iii) resolving the contact
line singularity and (iv) incorporating the effects of the substrate
wettability [12]. Various numerical approaches have been devel-
oped to model the impact dynamics of a liquid drop on a solid surface
including volume-of-fluid (VOF) method [4,11,16,19,20], level-set
method [7,24,28], lattice-Boltzmann method [14], diffuse-interface
method [7,12] and immersed boundary method [10]. The common
problem in these approaches is the specification of the boundary
conditions at the moving contact line. Fukai et al. [11] resolved the
contact line singularity by employing a slip model [9]. This method
was then extended to include heat transfer and solidification [2,29].
Pasandinideh-Fard et al. [16] employed measured values of dynamic
contact angles as a boundary condition in the framework of volume-
of-fluid method. Renardy et al. [19] investigated two methods to re-
move the stress singularity at the moving-contact line. In the first
method, the volume-of-fluid function is extrapolated beyond the
flow domain. In the second approach, the problem is treated as a
three-phase situation mimicking the classical equilibrium condi-
tions at the interface. They found the first method preferable as
the second method results in artificial localized flow near the con-
tact line. Later this method was extended to three dimensional flows
including solidification by Bussmann et al. [3] and Pasandideh-Fard
et al. [17]. Francois and Shyy [10] used an immersed boundary
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method and treated the contact line boundary condition by setting
the contact angle dynamically. In their approach, the contact angle
is allowed to vary linearly between the prespecified advancing and
receding angles as a function of slip velocity. They compared the re-
sults obtained using the static and dynamic contact angles in order
to assess the importance and implications of modeling aspect. Spelt
[24] took the hysteresis effects into account in specifying the contact
angle in the framework of a level-set method but used either con-
stant value of the advancing or receding contact angle based on
the sign of the contact line velocity. Once the contact angle is deter-
mined, the level-set function is extrapolated to the ghost cells in the
solid wall accordingly. A similar approach was also used by Yu et al.
[28] again in the framework of a level-set method. Sikalo et al. [20]
used a volume-of-fluid method and specified the contact angle
dynamically. They imposed the dynamic contact angle indirectly
by including a body force on the contact line which was determined
from the empirical correlation relating the dynamic contact angle to
the capillary number based on the contact line velocity given by Kis-
tler [13]. Mukherjee and Abraham [14] used a lattice-Boltzmann
method to study the impact of a viscous droplet on a dry solid sub-
strate and specified the contact angle dynamically again using the
Kistler’s correlation function. Khatvakar et al. [12] used a diffuse-
interface model based on the Cahn-Hilliard theory and studied drop-
let impact in a wide parameter range. Chen et al. [5] have recently
examined two different methods for the treatment of the contact
line and found that the stick-slip model (Model-B) is capable of pro-
viding parameter independent predictions while the results ob-
tained using the contact line velocity dependent model (Model-A)
greatly depend on the prescribed maximum contact line velocity.

In this study, we present a front-tracking method for direct sim-
ulations of interfacial flows involving moving contact lines. The
front-tracking method developed by Unverdi and Tryggvason [26]
has been successfully applied to study a wide range of multiphase
flow problems as reviewed by Tryggvason et al. [25]. The front-track-
ing method has many advantages such as its conceptual simplicity,
small numerical diffusion and its ability to incorporate multiphysic
effects such as thermocapillarity, electrical field and soluble surfac-
tants [25,15]. In spite of all these advantages, to our knowledge, it has
not been applied to the multiphase flow problems involving a mov-
ing contact line. In the present method, the contact line is specified
dynamically using the empirical correlation given by Kistler [13].
The method is general and can be used to treat non-wetting, partially
wetting and fully wetting cases. The method is implemented for axi-
symmetric problems but it is straightforward to extend it to simulate
three dimensional cases. The method is first tested for the spreading
and relaxation of a droplet from the initial spherical shape to its final
equilibrium conditions for various values of Eotvos number and the
results are compared with the analytical solutions in the limiting
cases of very small and very large Eotvos numbers. It is then applied
to impact and spreading of glycerin droplets on wax and glass sub-
strates and, the results are compared with experimental data of Sik-
alo et al. [20]. The grid convergence of the method is demonstrated.
After validating the computational model against the experimental
data, further computations are performed to study effects of govern-
ing non-dimensional numbers on the drop spreading.

The paper is organized as follows: The mathematical formulation
is briefly described in the next section and the numerical method is
presented in Section 3. The results are presented and discussed in
Section 4 and some conclusions are drawn in Section 5.

2. Mathematical formulation

The mathematical formulation is briefly described in this sec-
tion in the context of the finite-difference/front-tracking method
for an axisymmetric incompressible flow of Newtonian fluids.

Following Unverdi and Tryggvason [26], a single set of governing
equations can be written for the entire computational domain pro-
vided that the jumps in material properties such as density and vis-
cosity are correctly accounted for and surface tension is included.
In an axisymmetric coordinate system, the Navier–Stokes equa-
tions are given by
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where u and v are the velocity components in the radial and axial
directions, respectively, p is the pressure, g is the gravitational accel-
eration, and q and l are the discontinuous density and viscosity
fields, respectively. The effects of surface tension is included as a body
force in the last term on the right hand side, where r is the surface
tension, j is twice the mean curvature, and n is a unit vector normal
to the interface, ir and iz are the radial and axial components of the
unit normal vector pointing outward from the drop. The surface ten-
sion only acts on the interface as indicated by the delta function,
whose arguments x and xf are the point at which the equation is eval-
uated and the point at the interface, respectively. The Navier–Stokes
equations are supplemented by the incompressibility condition,

1
r
@ru
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@z
¼ 0: ð2Þ

We also assume that the material properties remain constant fol-
lowing a fluid particle, i.e., Dl=Dt ¼ Dq=Dt ¼ 0 where D=Dt ¼ @

@tþ
u � r is the material derivative. The density and viscosity vary dis-
continuously across the fluid interface and are given by

q ¼ qdIðr; z; tÞ þ qoð1� Iðr; z; tÞÞ;
l ¼ ldIðr; z; tÞ þ loð1� Iðr; z; tÞÞ; ð3Þ

where the subscripts d and o denote properties of droplet and the
ambient fluid, respectively. I (r, z, t) is the indicator function defined
as zero in the bulk fluid and unity in the drop fluid. The indicator func-
tion is computed following the procedure described by Tryggvason
et al. [25] as follows: The discontinuity is spread onto the Eulerian
grid points near the interface resulting in the gradient field

GðxÞ ¼ rI ¼
Z

A
ndðx� xf ÞdA; ð4Þ

which is zero everywhere except at the interface. Taking the diver-
gence of both sides of Eq. (4) results in

r2I ¼ r � GðxÞ: ð5Þ

Eq. (5) is a separable Poisson equation and can be solved efficiently
in the vicinity of the droplet.

3. Numerical method

The numerical method is based on the front-tracking/finite-dif-
ference method developed by Unverdi and Tryggvason [26]. In this
method, a Lagrangian grid is used to track the interface between
the droplet and ambient fluid. The Lagrangian grid consists of
linked marker points (the front) that move with the local flow
velocity interpolated from the stationary Eulerian grid as sketched
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in Fig. 1. The piece of the Lagrangian grid between two marker
points is called a front element. The Lagrangian grid is used to find
the surface tension, which is then distributed onto Eulerian grid
points near the interface by using Peskin’s cosine distribution func-
tion [18], and added to the momentum equations as body forces as
described by Tryggvason et al. [25]. At each time step, the indicator
function is computed by solving Eq. (5) and is used to set the fluid
properties inside and outside the droplet. To do this, unit magni-
tude jumps are distributed in a conservative manner on the Euleri-
an grid points near the interface by using Peskin’s cosine
distribution function [18] and are then integrated to compute the
indicator function everywhere. The computation of the indicator
function requires solution of a separable Poisson equation (Eq.
(5)) and yields a smooth transition of the indicator function across
the interface. Then, the fluid properties are set as a function of the
indicator function according to Eq. (3). The Lagrangian grid is
restructured at every time step by deleting the front elements that
are smaller than a prespecified lower limit and by splitting the
front elements that are larger than a prespecified upper limit in
the same way as described by Tryggvason et al. [25] to keep the
front element size nearly uniform and comparable to the Eulerian
grid size. Restructuring the Lagrangian grid is crucial since it avoids
unresolved wiggles due to small elements and lack of resolution
due to large elements. The details of the front-tracking method
can be found in the works of Unverdi and Tryggvason [26] and Try-
ggvason et al. [25].

3.1. Flow solver

The governing equations (Eqs. (1) and (2)) are solved on the sta-
tionary staggered uniform Cartesian grid as sketched in Fig. 1. The
spatial derivatives are approximated using second order finite-dif-
ferences and time integration is achieved using a projection meth-
od developed by Chorin [6]. The method is briefly described here
for completeness. The momentum and mass conservation equa-
tions are written in the form

qnþ1unþ1 � qnun

Dt
¼ An �rhp; ð6Þ

rh � unþ1 ¼ 0; ð7Þ

where u is the velocity vector, superscript n denotes the time step,
rh is the discrete version of the nabla operator, Dt is the time step.
A represents the advective, diffusive and body force terms in Eq. (1)
and is given by
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Eq. (6) is then decomposed as

qnþ1u� � qnun

Dt
¼ An

; ð9Þ

qnþ1unþ1 � qnþ1u�

Dt
¼ �rhp; ð10Þ

where u� is a provisional (unprojected) velocity ignoring the effect
of pressure field. The unprojected velocity field is computed from
Eq. (9). Taking the divergence of Eq. (10) and using the incompress-
ibility condition given by Eq. (7), a non-separable Poisson equation
is obtained for the pressure field and is given by

rh �
1

qnþ1rhp ¼ � 1
Dt
rh � u�; ð11Þ

which is solved on the fixed Eulerian grid using a multigrid method
as described by Tryggvason et al. [25]. After obtaining the pressure
field from Eq. (11), the velocity field at the new time level is com-
puted as

unþ1 ¼ u� � Dt
qnþ1rhp: ð12Þ

In the present study, we use a first order explicit time integration as
described above but second order time accuracy can be easily
achieved by a predictor corrector method as described by Tryggva-
son et al. [25]. Note that the second order scheme is computation-
ally about twice as expensive as the first order scheme and,
although not shown here, the first order scheme yields sufficient
time accuracy for the problems studied in this paper, i.e., the time
stepping error remains smaller than the spatial discretization error.

3.2. Treatment of the contact line

The key ingredient of the present method is the treatment of the
boundary conditions at moving contact lines. As mentioned before,
the no-slip boundary condition yields stress singularity near the
contact line so it requires a special treatment. In the framework
of the front-tracking method, the drop interface must be connected
to the solid wall explicitly when the droplet gets sufficiently close
to the wall since the interface is tracked explicitly by marker
points. For this purpose, we assume that the drop interface con-
nects to the wall when the distance between the drop interface
and solid wall gets shorter than a prespecified threshold value hth

as sketched in Fig. 2. To achieve this, the interface is monitored
and the front element crossing the threshold line is detected. Then
this element is connected to the solid wall such that the contact
angle between the wall and droplet is equal to the apparent con-
tact angle hD. In the present method, the apparent contact angle
is specified dynamically using Kistler’s correlation [13,20] that re-
lates the apparent contact angle to the capillary number defined as
Cacl ¼ ldVcl=r where Vcl is the speed of the contact line. Since the
Kistler’s correlation is valid for small capillary numbers, it is
slightly modified here as follows:

hDi
¼ fHoffðCaclm þ f�1

HoffðheÞÞ; ð13Þ

where f�1
Hoff is the inverse function of the Hoffman’s function fHoff de-

fined as

Fig. 1. Schematic illustration of the computational setup. The interface is repre-
sented by connected Lagrangian marker points and the flow equations are solved on
the stationary uniform Eulerian Cartesian grid. The droplet is initialized near the
wall with a spherical shape and uniform collision velocity Vcol .
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fHoffðxÞ ¼ arccos 1� 2 tanh 5:16
x

1þ 1:31x0:99

� �0:706
" #( )

: ð14Þ

In Eq. (13), he is the equilibrium (static) contact angle and Caclm is
defined as Caclm ¼minðCamax;CaclÞ where Camax is the cut-off capil-
lary number introduced to avoid too large or too small values of
the apparent contact angle. The apparent contact angle is then com-
puted in the advancing and receding phases as

hD ¼
hDi

if Vcl P 0 ðadvancingÞ
2he � hDi

if Vcl < 0 ðrecedingÞ:

(
ð15Þ

The contact line velocity Vcl can be specified as the velocity of the
marker point on the solid wall. However the velocity of the marker
point on the solid wall is found to be too noisy especially when con-
tact line moves slowly, e.g., the droplet approaches static equilib-
rium conditions. In addition, the dynamic contact angle must be
determined iteratively if the velocity of the marker point on the
wall is to be used as the contact line velocity since the location
and thus the velocity of the marker point on the wall depends on
the dynamic contact angle that in turn is determined by the contact
line velocity. It is found that such an iteration suffers from lack of
convergence as the contact line velocity approaches zero. Therefore
the contact line velocity is specified as the velocity of the point
where the threshold crosses the droplet interface, which is found
to be very robust. Once the apparent contact angle is determined,
the front element crossing the threshold line is connected to the so-
lid wall as follows: First the distance between the front element
that is to be connected and the wall is predicted assuming that
the front element connects to the wall linearly. If this distance is
smaller than a prespecified threshold length, lth, then the front ele-
ment is connected to wall by fitting a cubic curve and imposing the
dynamic contact angle as sketched in Fig. 2. Otherwise the front ele-
ment is connected to the wall using a linear function and again

imposing the dynamic contact angle on the wall. The threshold
length is typically taken as lth ¼ 4Dx where Dx is the Eulerian grid
size. Note that we need three points for a cubic fit since one condi-
tion is imposed by the apparent contact angle. For this purpose, the
first point is selected as the marker point on the front element
crossing the interface and the other two are selected such that dis-
tance between the selected marker points are approximately equal
to the distance between the first marker point and the wall. Typical
marker points used in cubic fit are schematically shown in Fig. 2 as
big dots. After the front element on the threshold line is connected
to the solid wall, the interface is restructured in a similar way as de-
scribed by Tryggvason et al. [25]. In addition to specifying the con-
tact angle dynamically as explained above, the dynamic contact
angle is also used to compute the curvature at the center of the
front element adjacent to the solid wall.

3.3. Overall solution procedure

The front-tracking method is coupled with the finite-difference
method as follows. In advancing the solutions from time step n to
nþ 1, the unprojected velocity field is computed from Eq. (9) and
then the front marker points are moved using an explicit Euler
method as

Xnþ1
p ¼ Xn

p þ DtVn
p; ð16Þ

where Xp and Vp are the locations of the marker points and the
velocity interpolated from the Eulerian grid onto the location of
the marker point Xp using Peskin’s distribution function, respec-
tively. At this stage, the contact line boundary conditions are ap-
plied if the drop has passed the threshold line as discussed in the
previous section. Then the indicator function is computed based
on the new location of the marker points using the procedure de-
scribed by Tryggvason et al. [25] and the material properties are
computed from Eq. (3). After this step, the pressure field is com-
puted from Eq. (11) using the multigrid Poisson solver based on
the MUDPACK package [1] and finally the projected velocity field
is computed from Eq. (12). The front is restructured at every time
step in order to keep the Lagrangian grid nearly uniform by splitting
front elements that are larger than a prespecified upper limit and
deleting the front elements that are smaller than a prespecified
lower limit in the same fashion as described by Tryggvason et al.
[25]. As mentioned before, restructuring the front is of crucial
importance in order to avoid unresolved wiggles caused by small
elements and lack of resolution due to large elements.

4. Results and discussion

4.1. Static test

The method is first tested for relaxation of a viscous droplet
from a spherical initial conditions to its final equilibrium shape.
For this test, a spherical droplet of radius Ro is initialized near
the solid surface as shown in the inset of Fig. 3 and is allowed to
spread until its final static shape is reached for various values of
the Eotvos number ðEo ¼ ðqd � qoÞgR2

o=rÞ that represents the ratio
of gravitational force and surface tension force. Note that this test
case was recently used by Chen et al. [5]. The static shape of the
droplet generally depends on the equilibrium contact angle he

and the Eotvos number. In the limit of vanishing Eotvos numbers,
i.e., Eo� 1, the equilibrium shape of the droplet is determined by
the surface tension force and takes a shape of spherical cap with
the maximum height of the droplet, Ho, given by

Ho ¼ Roð1� cos heÞ
4

2þ cos3 he � 3 cos he

� �1=3

: ð17Þ

Fig. 2. Schematic illustration of the computational setup for slip contact line
method. The droplet is assumed to connect the substrate when it crosses the
threshold distance hth using either a linear or cubic extrapolation function as shown
in the inset. The contact angle is determined dynamically and imposed explicitly. In
the inset, diamonds indicate the marker points to be deleted, dots indicate the
marker points and big dots represent the marker points used to fit a cubic spline for
predicting the location of the marker point on the substrate.
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On the other hand, when Eo� 1, the shape of the droplet is con-
trolled mainly by the competition between the gravitational and
surface tension forces and, the maximum height of the droplet is
proportional to the capillary length [5], i.e.,

H1 ¼
2Ho cosðhe=2Þffiffiffiffiffiffi

Eo
p ; ð18Þ

where Ho is given by Eq. (17). Computations are performed for this
test case and the results are compared with the asymptotic solu-
tions given by Eqs. (17) and (18). For this purpose, the equilibrium
contact angle is set to he ¼ 93� and the dynamic angle is used at the
contact line. Focus here is placed on the static shape of the droplet.
The computational domain extends five drop radii both in the axial
and radial directions, and is resolved by a 256 � 256 uniform Carte-
sian grid. Fig. 3 shows the normalized steady-state droplet height as
a function of Eotvos number together with the steady shapes of
droplet in the range of Eo = 0.01 and 64. This figure clearly shows
that the computed normalized droplet height agrees well with the
asymptotic solutions given by Eqs. (17) and (18) for Eo� 1 and
Eo� 1, respectively. For the intermediate values of Eotvos number,
the transition between a spherical cap and a puddle shape occurs.

4.2. Comparison with the experimental data

The numerical method is then applied to impact and spreading
of a glycerin droplet and the results are compared with the
experimental data of Sikalo et al. [20]. The cases studied experi-
mentally by Sikalo et al. [20] and computationally here are sum-
marized in Table 1. The computational domain extends 5 drop
radii both in the radial and axial directions. A uniform Cartesian

grid is used in all the results presented in this paper. The droplet
is initially spherical and is placed near the wall with a uniform
impact velocity, Vcol, as shown in Fig. 1. The surrounding air is
initially quiescent. The viscosity and density ratios are set to
qd=qo ¼ ld=lo ¼ 20 in all the results presented here. Note that
the density and viscosity ratios are an order of magnitude larger
in the experiments than those specified here. However, although
not shown here, it is found that a further increase in the property
ratios does not affect the computational results significantly.
Therefore the property ratios are kept small in order to avoid
numerical instability and to reduce the computational time. Phys-
ical quantities are non-dimensionalized using the initial drop
diameter as length scale and dd=Vcol as the time scale. First the
evolution of droplets after impacting the solid surface is shown
in Figs. 4 and 5 for the Cases 1 and 2 in Table 1, respectively. A
512 � 512 grid resolution is used in the simulations. As will be
discussed below, this grid resolution is sufficient for the grid con-
vergence. The static contact angle is set to he ¼ 93�. Note that sta-
tic contact angles are reported by Sikalo et al. [20] as 90� and 97�
for advancing and receding contact angles, respectively. Here we
use a fixed value both for the advancing and receding contact an-
gles in order to avoid oscillations in the dynamic contact angle as
droplet approaches the final equilibrium conditions. In Figs. 4 and
5, the velocity vectors and pressure contours are plotted near the
droplet interface in order to demonstrate the overall quality of
computational results. It is seen that the interfaces are smooth
and there is no artificial localized flow near the contact lines in
both cases, which may qualitatively indicate the overall perfor-
mance of the present method. The performance of the method
is then quantified by comparing the computational results with
the experimental data for the Cases 1–3, i.e., glycerin droplet
impacting and spreading on a wax. The experimental and compu-
tational spread factors are plotted in Fig. 6a as a function of non-
dimensional time. The spread factor is defined as the radius of the
wetted spot normalized by the equivalent drop radius. This figure
shows that the spread factor is well predicted and the maximum
difference between the experimental and computational spread
factors is below 7%. The time evolution of the contact angle is
plotted in Fig. 6b for the same cases. The contact angle is calcu-
lated as an average of the contact angles computed at the centers
of the front elements that lie in the threshold (see, Fig. 2) by sim-
ply fitting a cubic spline to the marker points of the front element
and its immediate neighbors. The computational results are in a
reasonable agreement with the experimental results for all three
cases. There is an approximately 20� disagreement between com-
putational and experimental values just before reaching the equi-
librium contact angle. This can be partly explained by the fact
that it is not clear exactly where the contact angle is measured
in the experiments and there is about ±5% measurement error
in the experimental data [20]. Note that the contact angle varies
significantly from one element to its neighbors especially near the
solid wall. We emphasize here that the computed contact angle
correctly relaxes to the equilibrium contact angle in all the cases
presented in this paper as the droplet approaches to final static
conditions. The computations are repeated for the Case 1 using
static and dynamic contact angle models for a longer period of
time in order to show the performance of the present method
in the receding phase. The computations are performed using a
relatively coarser (384 � 384) grid in order to facilitate the long
time simulation. The results are plotted in Fig. 7 and compared
with the volume-of-fluid (VOF) simulation as well as the experi-
mental data of Sikalo et al. [20]. As can be seen in this figure,
the present method underpredicts the spreading rate while the
VOF model overpredicts. In addition, the dynamic contact angle
model performs better than the static contact angle model in
the receding phase but there is no significant difference in the
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Eq.(17)

Eq.(18)

g

Fig. 3. The normalized static droplet height versus Eotvos number in the range
Eo = 0.01 and Eo = 64. Solid and dashed lines denote the analytical solutions for the
limiting cases of Eo� 1 and Eo� 1, respectively. The inset shows the initial
conditions for the droplet relaxation test.

Table 1
List of cases studied experimentally by Sikalo et al. [20] and computationally here.

Cases Liquid Wall Impact velocity We Re (m/s) he ð�Þ

1 Glycerin Wax 4.1 802 106 93
2 Glycerin Wax 1.41 93 36 93
3 Glycerin Wax 1.04 51 27 93
4 Glycerin Glass 4.1 802 106 15
5 Glycerin Glass 1.41 93 36 15
6 Glycerin Glass 1.04 51 27 15
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advancing phase. Note that the difference between the present re-
sults and the experimental data is partly attributed to the rela-
tively coarse (384 � 384) grid used in the simulations and it
can be expected that a finer grid improves the agreement as
can be seen in Fig. 9. We next present computational results for
Cases 4–6, i.e., a glycerin droplet spreading on a glass substrate
(Table 1). For these cases, the static contact angle is set to
he ¼ 15� . As can be seen in Fig. 8a the spread factors are initially
underpredicted and are then overpredicted in all three cases.
However the computational results are overall in a good agree-
ment with the experimental data for all three cases. The contact
angles are also reasonably well predicted for these cases as can
be seen in Fig. 8b.

Simulations are then performed for Case 1 droplet using various
grid resolutions ranging between 128 � 128 and 768 � 768 and
the results are plotted in Fig. 9 both for the spread factor and the
contact angle. As can be seen in this figure, a 512 � 512 grid reso-
lution is sufficient to obtain grid independent results for this case.
The spatial error is quantified in Fig. 10. This figure confirms the
expected second order spatial accuracy of the numerical method.

Although not shown here, this grid resolution is also found to be
sufficient for a grid convergence in the other cases as well.

Next the effects of the cut-off capillary number, Camax, are
examined. For this purpose, simulations are performed for Cases
1 and 3 for the three different cut-off capillary numbers, e.g.,
Camax ¼ 0;0:15 and 0.3 for which the dynamic contact angle is re-
stricted to be hD ¼ he ¼ 93�;46� 6 hD 6 140� and 31� 6 hD 6 155�,
respectively. The results are plotted in Figs. 11 and 12 for Cases 1
and 3, respectively. These figures indicate that Camax ¼ 0:15 yields
the best agreement with the experimental data. We therefore use
this value in all the calculations presented in this paper unless sta-
ted otherwise.

Finally the effects of the threshold thickness, hth , are examined.
The threshold thickness must depend on the grid size in order to
satisfy consistency conditions as grid size approaches zero. Com-
putations are performed for Case 1 for various values of the thresh-
old thickness ranging between hth ¼ Dx and hth ¼ 4Dx, and the
results are plotted in Fig. 13. It is clear that the results are not very
sensitive when hth P 2Dx and the best agreement with the exper-
imental data is obtained for hth ¼ 2Dx.

Fig. 4. Evolution of glycerin droplet (Case 1 in Table 1) after impacting on the wax surface. The velocity vectors are plotted on the left and the constant pressure contours on
the right. Time evolves from left to right and from top to bottom, and the snapshots are taken at times t� ¼ 0:000016; 0:00134; 0:00835; 0:0167; 0:025; 0:1; 0:167 and 1
(We = 802, Re = 106, Eo = 0.285, Grid: 512 � 512, Camax ¼ 0:15; hth ¼ 2Dx).
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4.3. Effects of non-dimensional numbers

After validating the method against the experimental data, we
now study the effects of the non-dimensional numbers on the drop
impact and spreading. For this purpose, the effects of the parame-
ters such as equilibrium contact angle, Reynolds and Weber
numbers are examined by varying one parameter while keeping
the others constant. First Case 1 is selected as the base case and
computations are performed for a wide range of equilibrium

contact angles varying between 60� and 160� and the results are
plotted in Fig. 14. The equilibrium contact angle seems to have lit-
tle influence on the spread factor in the initial stage where inertial
effects are dominant but it has a significant influence both on the
spread factor and dynamic contact angle in the later stages. This
is an expected result since the droplet should eventually relax to
the final equilibrium conditions that are solely determined by
the static contact angle (assuming that gravity is negligible). We
then select Case 3 as the base case and examine the effects of

Fig. 5. Evolution of glycerin droplet (Case 2 in Table 1) after impacting on the wax surface. The velocity vectors are plotted on the left and the constant pressure contours on
the right. Time evolves from left to right and from top to bottom, and the snapshots are taken at times t� ¼ 0:00285; 0:230; 1:439; 2:877; 4:028 and 4.316 (We = 93, Re = 36,
Eo = 0.285, Grid: 512 � 512, Camax ¼ 0:15; hth ¼ 2Dx).
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Fig. 6. Glycerin droplet spreading on the wax substrate. Time evolution of (a) the spread factor and (b) the dynamic contact angle (he ¼ 93� , Grid: 512 � 512,
Camax ¼ 0:15; hth ¼ 2Dx).
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Fig. 8. Glycerin droplet spreading on the glass substrate. Time evolution of (a) the spread factor and (b) the dynamic contact angle (he ¼ 15� , Grid: 512 � 512,
Camax ¼ 0:15; hth ¼ 2Dx).
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Fig. 9. Grid convergence. (a) Spread factor and (b) contact angle computed using various grid resolutions ranging between 128 � 128 and 512 � 512 for Case 1 in Table 1
(Re = 106, We = 802 and he ¼ 93�).
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Weber number on the drop impact and spreading by varying the
Weber number between 10 and 1080 while keeping the other
parameters the same as those in Case 3. The results are plotted

in Fig. 15 for the spread factor and dynamic contact angle. The first
observation is that the maximum spread increases with increasing
Weber number. The second observation is that the droplet reaches
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Fig. 11. Effects of the cut-off capillary number, Camax, for Case 1 in Table 1 (Re = 106, We = 802, Eo = 0.285 and hD ¼ 93�).
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Fig. 12. Effects of the cut-off capillary number, Camax, for Case 3 in Table 1 (Re = 27, We = 51, Eo = 0.285 and he ¼ 93�).
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Fig. 13. Effects of the threshold thickness, hth , for Case 1 in Table 1 (Re = 106, We = 802, Eo = 0.285 and he ¼ 93�).
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equilibrium conditions faster as Weber number decreases. Finally
the effects of Reynolds number are shown in Fig. 16 where the
spread factor and dynamic contact angle are plotted as a function
of non-dimensional time for various Reynolds numbers ranging be-
tween Re = 20 and 80. It is observed that maximum spread rate in-
creases as Reynolds number increases until about Re = 60 but
further increase in the Reynolds number does not affect the
spreading significantly.

5. Conclusions

A finite-difference/front-tracking method is developed for com-
putational modeling of impact and spreading of viscous droplets
on a dry and smooth solid substrates. The method is general and
can treat non-wetting, partially wetting and fully wetting cases.
The contact angle is specified dynamically using the empirical cor-
relations given by Kistler [13]. The contact angle and the interfacial
force are imposed explicitly as boundary conditions at the contact
lines. The inertial effects that are dominant especially during the
early stages of the droplet impact are accounted for through defi-
nition of the threshold distance. Since Kistler’s correlation is valid
only for small capillary numbers, a cut-off is used to avoid having
too large or too small contact angles.

The method is implemented for axisymmetric problems but it is
straightforward to extend it to simulate three dimensional flows.
The method is first tested for the impact and relaxation of a droplet
from the initial spherical shape to its final equilibrium conditions
for a wide range of Eotvos numbers. It is found that the computa-
tional results are in a good agreements with the analytical solu-
tions for the limiting cases of Eo� 1 (negligible gravitational
effects) and Eo� 1 (dominant gravitational effects), and there is
a transition between a spherical cap and a puddle shape for the
intermediate values of Eotvos numbers. The method is then ap-
plied to impact and spreading of glycerin droplet on a wax and
glass substrates and, the results are compared with the experimen-
tal data of Sikalo et al. [20]. It is found that the computational re-
sults are in a good agreement with the experimental data. The grid
convergence of the method is demonstrated and the effects of
numerical parameters such as threshold distance and cut-off cap-
illary number are examined. It is found that the threshold distance
has little influence on the computational results as long as it is
equal or larger than two Eulerian grid size and the optimal value
of the cut-off capillary number is about Camax ¼ 0:15. After validat-
ing the numerical method, further computations are performed to
examine the effects of non-dimensional numbers on the drop im-
pact and spreading. It is found that the equilibrium contact angle

0 5 10 15 20 25 30 35 40 45
0

0.5

1

1.5

2

2.5

tVcol/D

R
/R

o

Exp. (Sikalo et al.)
θe = 60o

θe = 93o (base)

θe = 120o

θe = 140o

θe = 160o

0 5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

160

180

t Vcol/D

C
on

ta
nc

t A
ng

le

Exp. (Sikalo et al.)
θe = 60o

θe = 93o (base)

θe = 120o

θe = 140o

θe = 160o

a b

Fig. 14. Effects of the equilibrium contact angle on droplet impact and spreading. Equilibrium contact angle he ranges between 60� and 160� (Re = 106, We = 802 and
Eo = 0.285).
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Fig. 15. Effects of Weber number. Weber number varies in the range We = 10 and We = 1080 (Re = 27, Eo = 0.285 and he ¼ 93�).
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does not have significant influence in the early stages of the drop
impact and spreading since the droplet dynamic is essentially
determined by the inertial effects during this period. However,
the equilibrium contact angle has dominant effect during the later
stages. The maximum spreading and time to reach equilibrium
conditions are found to be influenced significantly by Weber num-
ber, i.e., both the maximum spreading and time to reach the equi-
librium conditions increase as the Weber number increases. Finally
the effects of the Reynolds number are also examined and it is
found that the maximum spreading increases as the Reynolds
number increases until about Re = 60 but further increase in the
Reynolds number does not affect the spreading significantly.
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Fig. 16. Effects of Reynolds number. reynolds number varies in the range Re = 20 and Re = 80 (We = 51, Eo = 0.285 and he ¼ 93�).
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