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We numerically investigate the effects of bulk fluid viscoelasticity on droplet forma-
tion and dynamics in an axisymmetric flow focusing configuration. Viscoelasticity
is modeled using the finitely extensible nonlinear elastic-Chilcott-Rallison (FENE-
CR) model. Extensive simulations are performed to examine droplet formation and
breakup dynamics for a wide range of parameters including flow rate ratio, Weis-
senberg number, polymeric viscosity ratio, and extensibility parameter. It is found
that these parameters have a significant influence on the droplet size and size distribu-
tion (dispersity). Three different regimes are observed in the sequence of squeezing,
dripping, and jetting modes as the flow rate ratio is increased. It is also found that the
viscoelasticity has a similar effect as decreasing flow rate ratio and acts to delay tran-
sition from squeezing to dripping and from dripping to jetting regimes. The strain-rate
hardening occurs at a critical Weissenberg number resulting in an abrupt increase in
droplet size and this effect is more pronounced as the polymeric viscosity ratio is
increased. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4971841]

I. INTRODUCTION

Flow focusing devices are widely used in microfluidics to generate droplets with precisely
controlled size and dispersity. Formation of monodispersed droplets finds applications in a wide
range of areas such as chemical engineering,1 biotechnology,2 and drug delivery systems.3 Very
often, these applications involve complex fluids exhibiting a viscoelastic behavior. Viscoelastic
liquids demonstrate various exotic behaviors like die-swell, Weissenberg, and tubeless siphon ef-
fects.4 These complicated rheological behaviors have been exploited in microfluidic applications
such as a microfluidic memory and control device,5 a microfluidic rectifier,6 a nonlinear viscoelastic
flow resistor,5 synthesis of non-spherical particles,7 and enhanced mixing.8 All these functional-
ities rely on viscoelasticity of working fluids. Therefore, understanding the rheological behavior of
viscoelastic fluids is of both fundamental and practical importance.9

Formation of Newtonian droplets in another Newtonian medium (NN system) has been exten-
sively studied both experimentally10–14 and numerically.15–17 However, effects of viscoelasticity on
droplet formation have received less attention. In particular, effects of viscoelasticity in a flow
focusing geometry have been subject of a few experimental18,19 and numerical15,20 studies.

Droplet formation in two-phase viscoelastic systems has been often investigated experimen-
tally. The early studies considered the formation of viscoelastic droplets in a Newtonian medium
(VN system). Husny and Cooper-White21 found that the presence of elasticity produces elongated
filaments in T-shaped microchannels resulting in the formation of secondary droplets. The number
and polydispersity of these droplets were found to be dependent on the viscosity ratio of the phases.
Steinhaus et al.18 studied the effects of fluid elasticity and channel dimensions on droplet formation
in a flow focusing device. Their results show that higher molecular weight of polymers brings about
larger extensional viscosity, longer thread, and longer pinch-off time. Arratia et al.22 conducted
extensive experiments to investigate the effects of polymer molecular weight on filament thinning
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and droplet formation in a cross-slot microchannel. They observed that the liquid filament becomes
longer and breakup time increases as the molecular weight is increased. They also found that exten-
sional viscosity decreases non-monotonically with decreasing molecular weight. Later, Lee et al.19

investigated competition between viscoelasticity and surfactant dynamics in a flow focusing device.
They identified a region in the parameter space where the viscoelasticity couples with the surfactant
dynamics to form a long thread before the breakup. They suggested that the synergy between these
two properties can be used as a tool to manipulate droplet formation in these devices. Recently,
Li et al.23 studied the dynamics of viscoelastic droplets under very low interfacial tension in a
T-junction device. They found that an unstable tail fragmentation occurs at the rear of the droplet
after a critical value of Weissenberg number and this phenomenon can be controlled by adjusting
flow rate ratios and viscoelasticity.

In recent years, the formation of Newtonian droplets in a viscoelastic medium (NV system)
has received more attention. Derzsi et al.24 experimentally investigated the effects of viscoelas-
ticity on droplet formation in various cross slot and flow focusing geometries. They found that the
viscoelasticity can lower polydispersity of emulsions and reduce droplet size by careful adjustment
of the viscosity ratio. Chiarello et al.25 compared the formation of oil drops in Newtonian and
shear-thinning fluids in a T-junction device. Their experiments showed a negligible difference be-
tween these two systems. Fu et al.26 also conducted an experimental study on T-shaped microchan-
nels and found that the concentration of polymers and the size of a microfluidic device are the
two important factors influencing the flow regime. More recently, Fu et al.27 investigated breakup
dynamics of silicone oil droplets in a shear thinning fluid using a flow focusing geometry. They
studied and characterized different stages of the breakup process and found that the breakup process
can be divided into a non-universal collapse stage followed by a universal fast pinch-off stage.

The effects of viscoelasticity have been also studied computationally using various viscoelastic
fluid models and numerical approaches. The viscoelastic multiphase systems exhibit very rich
dynamics mainly due to the strong interactions between viscoelasticity and interfaces and thus
pose a challenging problem for computational fluid dynamics. Strong nonlinear interactions be-
tween viscoelasticity, fluid-fluid interface, and channel walls make the problem even more difficult
in microchannels. In addition, the Weissenberg number is usually high in microfluidic applica-
tions due to small length scales and high deformation rates, which makes the viscoelastic model
equations stiff and thus more difficult to solve numerically. The early numerical study was per-
formed by Zhou et al.15 They used a diffuse-interface method and performed extensive simulations
mainly to examine the Newtonian droplet formation in another Newtonian fluid (NN system) in an
axisymmetric flow focusing geometry. As a part of this investigation, they also performed a few
simulations to examine the effects of viscoelasticity contained in the droplet phase (VN system)
using the Oldroyd-B model. They concluded that the viscoelasticity suppresses the formation of
satellite droplets and may increase or decrease the final droplet size depending on the flow regime.
They also found that the viscoelasticity in the droplet phase increases/decreases the droplet size
in a dripping/jetting regime. Recently, Gupta and Sbragaglia20,28 performed comprehensive three
dimensional simulations in both planar T-junction and flow focusing geometries using a lattice
Boltzmann method. The viscoelasticity was modeled using the finite extensible nonlinear elastic
dumbbells with the closure proposed by Peterlin (FENE-P model).29,30 They considered both the
NV and the VN systems and found that the effects of viscoelasticity in the continuous phase are
more pronounced than those in the dispersed phase for both geometries. They also found that
increasing viscoelasticity of outer phase decreases droplet size and filament length and shifts the
breakup location closer to the junction.

In the present study, we numerically examine the effects of viscoelasticity contained in the bulk
fluid on droplet formation and breakup dynamics in an axisymmetric flow focusing configuration.
The numerical method is based on the finite-difference/front-tracking algorithm developed by Izbas-
sarov and Muradoglu.31 The viscoelasticity is accounted for using the finitely extensible nonlinear
elastic-Chilcott-Rallison (FENE-CR) model.32 Extensive simulations are performed to investigate
droplet formation for a wide range of parameters including flow rate ratio (Γ), Weissenberg num-
ber (Wi), polymeric viscosity ratio (β), and extensibility parameter (L) in the range of 1 ≤ Γ ≤ 8,
0 ≤ Wi ≤ 100, 0 ≤ β ≤ 0.8, and 5 ≤ L < ∞.
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II. FORMULATION AND NUMERICAL METHOD

The governing equations are briefly described in the framework of the finite-difference/front-
tracking method.33 The flow is assumed to be incompressible. Following the work of Tryggvason
et al.34 and Izbassarov and Muradoglu,31 a one-field formulation is used in which a single set
of governing equations is solved in the entire computational domain including the dispersed and
the continuous phases. The effects of surface tension are fully accounted through the body forces
distributed near the interface. In this formulation, the continuity and momentum equations can be
written as

∇ · u = 0, (1)
∂ρu
∂t
+ ∇ · (ρuu) = −∇p + ∇ · µs(∇u + ∇uT) + ∇ · τ +


A

γκnδ(x − xf)dA, (2)

where µs, ρ, p, u, and τ denote the solvent viscosity, the density, the pressure, the velocity vector,
and the viscoelastic extra stress tensor, respectively. The last term in Eq. (2) represents the body
force due to surface tension where γ is the surface tension coefficient, κ is twice the mean curvature,
and n is the unit vector normal to the interface. The surface tension acts only on the interface as
indicated by the three-dimensional delta function, δ, whose arguments x and xf are the points at
which the equation is being evaluated and a point at the interface, respectively.

The FENE-CR model is adopted as the constitutive equation for the viscoelastic extra stresses.
This model can be written as

∂A
∂t
+ ∇ · (uA) − (∇u)T · A − A · ∇u = −FA

λ
(A − I),

FA =
L2

L2 − trace(A) , (3)

where A, λ, L, FA, and I are the conformation tensor, the relaxation time, the extensibility param-
eter defined as the ratio of the length of a fully extended polymer dumbbell to its equilibrium length,
the stretch function, and the identity tensor, respectively. The extra stress tensor τ is related to the
conformation tensor as

τ =
FAµp

λ
(A − I), (4)

where µp is the polymeric viscosity.
It is also assumed that the material properties remain constant following a fluid particle, i.e.,

Dρ

Dt
= 0,

Dµs

Dt
= 0,

Dµp

Dt
= 0,

Dλ

Dt
= 0, (5)

where D
Dt
= ∂

∂t
+ u · ∇ is the material derivative. The density, polymeric and solvent viscosities, and

the relaxation time vary discontinuously across the fluid interface and are given by

µp = µp, iφ + µp,o(1 − φ), µs = µs, iφ + µs,o(1 − φ),
ρ = ρiφ + ρo(1 − φ), λ = λiφ + λo(1 − φ), (6)

where the subscripts i and o denote the properties of the droplet and the bulk fluids, respectively. In
Eq. (6), φ is the indicator function defined such that it is unity inside the droplet and zero outside.

The flow equations (Eqs. (1)–(2)) are solved fully coupled with the viscoelastic model equa-
tions (Eq. (3)) by the finite-difference/front-tracking method developed by Izbassarov and Mu-
radoglu.31 The front-tracking method has proven to be a viable tool for the simulation of visco-
elastic interfacial flow systems.31,35,36 A complete description of the front-tracking method and the
treatment of the viscoelasticity can be found in the works of Tryggvason et al.34 and Izbassarov and
Muradoglu,31 respectively.
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FIG. 1. Schematic illustration of the flow focusing geometry.

III. PROBLEM STATEMENT

The physical problem and computational domain are sketched in Fig. 1. The flow is assumed
to be axisymmetric. Therefore, only one half is used as the computational domain. The outer tube
contains a short concentric pipe at the inlet and a 4:1:4 contraction/expansion section in the further
downstream. The radii of the inner and the outer pipes, and the contraction are 2a, 4a, and a,
respectively. The total length of the tube is 28a. The thickness and the length of the inner pipe are
0.25a and 2.5a, respectively. A sudden contraction of width 2a is located at 5.5a from the inlet
as shown in Fig. 1. The interface is initially flat at the exit of the inner pipe. The flow is initiated
instantaneously by imposing fully developed velocity profiles in the inner pipe and the annulus.37

At the inlet, the flow rates are fixed and denoted by Qi and Qo in the inner pipe and the annulus,
respectively. The flow rate ratio is then defined as Γ = Qo/Qi. The pressure is fixed at the outlet.
Symmetry and no-slip boundary conditions are used at the centerline and on the wall of the tubes,
respectively. The viscoelastic stress tensor is specified at the inlet based on the analytical solution
assuming a fully developed flow.31 The Neumann boundary conditions are used for all viscoelastic
stress components at the other boundaries.

The governing equations are solved in their dimensional forms but the results are expressed
in terms of relevant non-dimensional quantities. The average velocity in the annulus U = Qo/Ao,
where Ao is the cross-sectional area of the annulus, is used as the velocity scale. The radius of
the orifice is used as the length scale (L = a). Thus the time scale is defined as T = aAo/Qo. In
addition to the extensibility parameter (L), the other governing non-dimensional numbers are then
defined as

Wi =
λU

a
,Ca =

µoU
γ

,Re =
ρoUa
µo

,Γ =
Qo

Qi
,α =

ρo
ρi

, θ =
µo
µi

, β =
µp

µp + µs
, (7)

where Wi, Ca, and Re are the Weissenberg, the capillary, and the Reynolds numbers, respectively.
The other parameters α, θ, and β denote the density, total, and polymeric viscosity ratios, respec-
tively. Density and total viscosity ratios are fixed at the values of α = 1 and θ = 2 in all the results
presented in this paper. Simulations are then performed by varying only one parameter while keep-
ing all the other constants in order to demonstrate the sole effects of the parameter on flow. To
facilitate this, we define a base case as Wi = 1, Re = 0.75, Ca = 1.5 × 10−3, Γ = 2, β = 0.5, and
L = 5. The base case is determined to be representative of the experimental values used by Derzsi
et al.24

IV. RESULTS AND DISCUSSIONS

Extensive simulations are performed to study the effects of viscoelasticity on droplet generation
in the flow focusing configuration. In particular, the effects of the flow rate ratio, the Weissenberg
number, the polymeric viscosity ratio, and the extensibility parameter are investigated. A uniform
Cartesian grid is employed in the computations. A grid convergence study is done to determine the
minimum grid size required to reduce the spatial discretization error below a threshold value. As
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FIG. 2. Effects of flow rate ratio (Γ) on formation of Newtonian droplets in a viscoelastic ambient fluid. The contours
represent the average polymer extension


trace(A). The droplet formation patterns are shown for the range of 1 ≤ Γ ≤ 8

corresponding to 7.5×10−4 ≤Ca ≤ 6×10−3 and 0.375 ≤ Re ≤ 3. The other parameters are Wi= 1, β = 0.5, and L = 5.

detailed in the supplementary material, it is found that a computational grid containing 128 × 896
cells in the radial and axial directions, respectively, is sufficient to reduce the spatial error below 2%
for all the flow quantities. Therefore this grid resolution is used in all the results presented in this
paper unless specified otherwise.

First, the effects of the flow rate ratio (Γ) are investigated. For this purpose, we performed
simulations for various flow rate ratios in the range of 1 ≤ Γ ≤ 8. Note that the inner flow rate is
fixed and the outer flow rate is changed to alter the flow rate ratio. The relaxation time is adjusted
to keep the Weissenberg number constant for different flow rate ratios. The square root of the trace
of conformation tensor (trace(A)) is also used as a measure of average polymer extension. The
droplet formation patterns are shown in Fig. 2 for various flow rate ratios. As can been seen in this
figure, droplet formation occurs in three main regimes: squeezing (Γ ≤ 1), dripping (Γ = 2 − 3), and
jetting (Γ ≥ 4). These regimes are qualitatively similar to those observed for all Newtonian systems
(NN).14 In the squeezing regime, a low amount of outer flow passing through the orifice allows
the inner flow to easily occupy the entire cross section of the orifice resulting in the formation of
thick filament and thus large droplets. Viscoelastic stresses are mainly generated around the orifice
region and convected further downstream as seen in Fig. 2. As Γ increases, droplet formation shifts
to the dripping regime in which the breakup process starts to be significantly influenced by the
shear forces of the outer fluid resulting in the formation of a thinner filament and smaller droplets.
Similar to the squeezing regime, the viscoelastic stresses accentuate in the vicinity of the orifice and
around the filament. The breakup occurs just at the exit of the orifice in both squeezing and dripping
regimes. After the breakup, the tip of the liquid filament becomes sharp and retracts back leaving
the orifice completely in the squeezing regime. As the flow rate ratio is increased from Γ = 3 to
Γ = 4, a transition occurs from the dripping to the jetting regime with a dramatic increase in droplet
size. In addition, the droplets become polydispersed. In this regime, breakup mechanism is mainly
driven by the Rayleigh-Plateau instability but gets highly complicated due to strong interactions
of interface with the viscoelastic co-flowing fluid stream and confinement. After formation of the
main large droplet, the remaining liquid filament has a sharp edge which rapidly retracts backward
creating a bulb at the tip and eventually leads to the formation of a secondary smaller droplet.
This is qualitatively similar to the experimental observations of Derzsi et al.24 except for that they
also observed a few satellite droplets that are much smaller than the secondary droplet. Note that
the size of satellite droplets observed by Derzsi et al.24 is much smaller than our grid resolution,
which is most likely the reason why we do not observe them in the present simulations. By further
increasing Γ, the jetting regime occurs in which the filament becomes longer before it breaks up into
droplets in the further downstream of the orifice. In this regime, the viscoelastic stresses built up
in the orifice and around the filament in the downstream of the orifice due to extreme stretching of
polymers. It is also observed that droplets become less polydispersed as Γ increases.

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-28-022612
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FIG. 3. Effects of flow rate ratio (Γ) on droplet size in both the NN and NV systems. The droplet size is normalized by
Vref = a

3. The error bars represent the coefficient of variation of droplet size indicating the polydispersity. In the inset, the
droplet size is normalized by that obtained for the corresponding NN system. Normalized droplet size is plotted for the range
of 1 ≤ Γ ≤ 8 corresponding to 7.5×10−4 ≤Ca ≤ 6×10−3 and 0.375 ≤ Re ≤ 3. The other parameters are β = 0.5 and L = 5.

Next, the effects of flow rate ratio on droplet size are quantified. We take average volume
of droplets as a measure of droplet size (V ) and normalize it by the reference volume defined as
Vref = a3. Note that first few droplets are usually much larger than the average droplet size obtained
in the steady state. Therefore we disregarded first eight droplets in computing average droplet size
and its variance. Normalized droplet size for both the NN and NV systems is plotted against the
flow rate ratio in Fig. 3 for Wi = 0 (Newtonian) and Wi = 1 (viscoelastic) cases. The error bars
represent the coefficient of variation defined as CV(%) = 100 × σ/V , where σ is the standard devi-
ation of droplet size and is used as a measure of polydispersity. Note that the error bars are not
shown and the droplets are assumed to be uniform in the case of small coefficient of variation,
i.e., CV ≤ 5%. It is observed that in both the NN and NV systems, droplet size usually decreases
with Γ except for the transition between the dripping and the jetting regimes, where droplet size
increases abruptly and droplets become highly polydispersed. The trends for both the NN and NV
systems are similar, which is consistent with the experimental observations of Derzsi et al.24 It is
also observed that polydispersed droplets are mainly produced in the jetting regime. The polydis-
persity increases in the transition from the dripping to the jetting regime and slightly decreases as
the flow rate ratio is further increased in the jetting regime. The inset of Fig. 3 shows the average
droplet size obtained in the viscoelastic system (solid line) normalized by the corresponding droplet
size in the all Newtonian system (dashed line). The error bars are not shown in the inset for the
sake of clarity. As can be seen in the inset, the effects of the viscoelasticity on the droplet size are
non-monotonic and depend on the flow rate ratio. It is also seen that the viscoelasticity increases
droplet size in the dripping regime but decreases it in the jetting regime with a transition in between.
Note that similar observations were also made by Zhou et al.15 for the VN system.

We next examine the effects of the Weissenberg number on droplet formation. Simulations are
performed for the range of 0.1 ≤ Wi ≤ 100 and for the flow rate ratios of Γ = 1,2,4, and 8. The
droplet formation patterns are plotted in Fig. 4 where the constant contours of the average polymer
extension (trace(A)) are also shown. For the case of Wi = 0.1, the polymer stretching is mainly
confined in the vicinity of the orifice with little influence on droplet dynamics. As Wi increases,
the viscoelastic stresses expand further downstream and eventually cover the entire cross section
of the channel. The Weissenberg number does not have large effects on the average droplet size
and size distribution except for the case of Γ = 4 in which the droplet formation occurs in the
jetting regime at low Wi and shifts to the dripping regime as Wi increases. In the case of Γ = 4, the
droplets are large and monodispersed at low Wi (Wi < 1), get polydispersed at moderate Wi = O(1),
and become uniform with a smaller size for Wi ≥ 10. In the jetting regime, as Wi increases, highly
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FIG. 4. Effects of Weissenberg number on droplet formation for different flow rate ratios. The contours represent the average
polymer extension


trace(A). For Γ= 1,2,4,8, the corresponding capillary and Reynolds numbers are Ca= 7.5×10−4,1.5×

10−3,3×10−3,6×10−3 and Re= 0.375,0.75,1.5,3, respectively. The other parameters are β = 0.5 and L = 5. (a) Γ= 1. (b)
Γ= 2. (c) Γ= 4. (d) Γ= 8.

stretched polymers induce high extensional viscosity in the contraction region, which reduces the
filament length and moves the breakup point closer to the orifice. These results are consistent with
the findings of Gupta and Sbragaglia.20 Due to the finitely extensible nature of the FENE-CR model,
a further increase in Wi number results in only a minor change in the flow field for Wi ≥ 10 as
seen in Fig. 4(d). The effects of Wi are quantified in Fig. 5 where the average droplet size and size
distribution are plotted against Wi for different flow rate ratios. As seen, the average droplet size
and size distribution are most sensitive to Wi for Γ = 4. For this case, the average droplet size gets
significantly smaller as Wi increases.

In a typical experimental study, the fluid viscoelasticity is usually increased by adding more
polymers into the solvent increasing both the polymeric viscosity and the relaxation time. To mimic
this, further simulations are performed to examine the combined effects of Weissenberg number
(Wi) and the polymeric viscosity ratio (β) in the range of 0 ≤ Wi ≤ 100 and 0 ≤ β ≤ 0.8 while
keeping all other parameters fixed at their values in the base case. Figure 6 shows the varia-
tion of droplet size and size distribution as a function of Wi for the polymeric viscosity ratios
of β = 0,0.2,0.5, and 0.8. As seen, the viscoelasticity does not have a significant influence on
the droplet size until a critical Weissenberg number (Wicr) is reached, i.e., Wi . Wicr. When the
Weissenberg number exceeds the critical value, the droplet size increases abruptly reaching another
nearly constant value. The critical Weissenberg number weakly depends on the polymeric viscosity
ratio and varies in the range of 0.6 . Wicr . 1 for 0.2 ≤ β ≤ 0.8 in the present case. The crit-
ical Weissenberg number slightly decreases as the polymeric viscosity ratio increases, which is
consistent with the experimental observations of Arratia et al.22 The polymeric viscosity ratio has a
negligible influence on the droplet size when Wi < Wicr but the droplet size increases rapidly with
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FIG. 5. Effects of Weissenberg number on droplet size for different flow rate ratios. The droplet size is normalized by
Vref = a

3. The error bars represent the coefficient of variation of droplet size indicating the polydispersity. For Γ= 1,2,4,8, the
corresponding capillary and Reynolds numbers are Ca= 7.5×10−4,1.5×10−3,3×10−3,6×10−3 and Re= 0.375,0.75,1.5,3,
respectively. The other parameters are β = 0.5 and L = 5.

β after Wi > Wicr. We attribute this sudden increase in droplet size to the well known strain-rate
hardening effects of polymeric fluids.22,38–40 As discussed by Arratia et al.,22 rapid stretching of
polymer molecules results in a sharp increase in the extensional viscosity of polymeric fluids and
this phenomenon is known as the strain-rate hardening. Tamaddon-Jahromi et al.40 demonstrated
that the FENE-CR model qualitatively captures the main features of the strain-rate hardening
behavior. For the FENE-CR model, the steady extensional viscosity (µe) can be expressed for a
uniaxial extensional flow as40

µe = 3µs + 3µp



FA

F2
A
− FAWi − 2Wi2


. (8)

FIG. 6. Combined effects of the Weissenberg number and the polymeric viscosity ratio on the average droplet size and size
distribution in the range of 0 ≤Wi ≤ 100 and 0 ≤ β ≤ 0.8. The average droplet size in the NV system is normalized by that
obtained for the corresponding NN case (VNN � 3.97a3). The error bars represent the coefficient of variation of droplet size
indicating the polydispersity. The other parameters are Re= 0.75, Ca= 1.5×10−3, Γ= 2, and L = 5.
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Tamaddon-Jahromi et al.40 showed that the extensional viscosity grows sharply around Wicr = 0.7
which is in good agreement with the present results shown in Fig. 6. In the present configuration, the
elongational viscosity increases rapidly due to stretching of polymers in the vicinity of the orifice
resulting in large resistance to stretching of liquid filament. Once the polymers are fully stretched,
the extensional viscosity becomes independent of the Weissenberg number, which may explain
the nearly constant droplet size after Wi > Wicr as seen in Fig. 6. It is interesting to see that the
droplets become highly polydispersed for the case of very large polymeric viscosity ratios and large
Weissenberg numbers (i.e., β ≥ 0.8 and Wi > 5) as indicated by the error bars in Fig. 6.

Further simulations are performed to examine the breakup process around the critical Weis-
senberg number. The polymeric viscosity ratio is set to be β = 0.8 to enhance the effects of the
viscoelasticity on the droplet formation. The droplet breakup processes for Wi = 0.6 and Wi = 0.7
are depicted in Fig. 7 where the enlarged snapshots are shown in the vicinity of the orifice at
various times. The mode of breakup is determined by the competition between the viscoelastic and
viscous effects. In the case of Wi = 0.6, the viscous effects are still dominant over the viscoelasticity,
and thus the breakup occurs in the dripping regime. On the other hand, the extensional viscosity
increases rapidly as Wi increases from 0.6 to 0.7 due to the strain-rate hardening effects and makes
the liquid filament to fully obstruct the entire cross section of the orifice. As a result, the breakup
occurs in the squeezing regime producing larger droplets as seen in Fig. 7(b).

Finally, the effects of the extensibility parameter (L) are examined by varying the extensibility
parameter in the range of 5 ≤ L < ∞ while keeping the other parameters the same as the base
case. Note that the Oldroyd-B fluid model is used for the case of L → ∞. The droplet forma-
tion patterns are shown in Fig. 8 where the constant contours of the average polymer extension
(trace(A)) are also plotted to demonstrate the evolution of viscoelastic stresses. The effects of

FIG. 7. Droplet formation process in the vicinity of the orifice computed for (a) Wi= 0.6 (dripping) and (b) Wi= 0.7 (squeez-
ing). The contours represent the average polymer extension


trace(A). The other parameters are Re= 0.75, Ca= 1.5×10−3,

Γ= 2, β = 0.8, and L = 5.
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FIG. 8. Effects of the extensibility parameter (L) on droplet formation. The contours represent the average polymer extension
trace(A). The other parameters are Wi= 1, Re= 0.75, Ca= 1.5×10−3, Γ= 2, and β = 0.5.

the extensibility parameter are also quantified in Fig. 9 where the average droplet size is plotted
against L. As mentioned before, the error bars indicate the variation of droplet size or polydispersity
in Fig. 9. As seen in Figs. 8 and 9, the extensibility parameter has a non-monotonic effect on
the average droplet size and size distribution. Viscoelasticity generally increases the droplet size
and polydispersity compared to the corresponding all Newtonian system as seen in Fig. 9. Highly
monodispersed droplets are generated at low values of the extensibility parameter (L ≤ 5). As L is
increased, the monodispersity is first lost and then partly recovered resulting in highly polydispersed
and nearly uniform droplets for 5 < L ≤ 200 and L → ∞, respectively. At low L, all the polymers
are fully stretched to their maximum extensibility resulting in nearly uniform viscoelastic stresses
in the orifice region. Thus the viscoelasticity essentially increases the effective extensional viscosity
uniformly in the orifice. As L is increased to the moderate values, the viscoelastic stresses become
more non-uniform and complex making the breakup process highly irregular and unpredictable.
Further increase in L confines viscoelastic stresses in a thin boundary layer near the orifice wall.
As a result, the viscoelastic effects on the droplet breakup process are reduced making the droplets
again more monodispersed. For example, in the case of L = 15 in Fig. 8, the viscoelastic stresses
are nearly uniform in the constriction region, which acts to stabilize the liquid filament and results

FIG. 9. Effects of the extensibility parameter (L) on the average droplet size normalized by that obtained for the correspond-
ing NN case (VNN � 3.97a3). The error bars represent the coefficient of variation of droplet size indicating the polydispersity.
The other parameters are Re= 0.75, Ca= 1.5×10−3, Γ= 2, and β = 0.5.
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in a larger main droplet compared to the corresponding all Newtonian case. After the creation of
the main large droplet, the tip of the interface retracts rapidly towards the inlet of the constriction
and significantly perturbs the viscoelastic boundary layer on the wall of the constriction. Until the
viscoelastic boundary layer is restored, a few much smaller droplets are generated. This process
repeats as seen in Fig. 8. For larger L values, e.g., L = 25, the mechanism is very similar but the
restoring time gets shorter as L increases. Therefore the size of the secondary droplets gets larger
as L increases and eventually the droplet production becomes monodispersed. Although not shown
here, simulations are also performed and a very similar trend is observed for the case of Wi = 100.

V. CONCLUSIONS

The effects of viscoelasticity are examined numerically for droplet formation in an axisym-
metric flow focusing configuration. The viscoelasticity is contained only in the continuous phase
and comprehensive simulations are performed for a wide range of flow parameters including flow
rate ratio (Γ), the Weissenberg number (Wi), the polymeric viscosity ratio (β), and the exten-
sibility parameter (L). Squeezing, dripping, and jetting regimes are identified depending on the
non-dimensional parameters.

We found that the droplet formation occurs in the squeezing regime at low flow rate ratios in
which the liquid filament occupies the entire orifice cross section and breakup occurs at the exit of
the orifice. As the flow rate ratio increases, the liquid filament gets thinner and breakup occurs in the
dripping mode at the exit of the orifice. Further increase in the flow rate ratio shifts breakup mode
from the dripping to the jetting regime in which a long threat forms in the expansion region before
the breakup takes place. These three breakup modes are very similar to the all Newtonian case but
the viscoelasticity delays transition from the squeezing to the dripping and from the dripping to the
jetting regimes. The average droplet size generally decreases as the flow rate ratio increases except
for the transition from the dripping to the jetting regime in which both average droplet size and
polydispersity increase.

Viscoelasticity influences the average droplet size and size distribution in a complicated way
depending on the working conditions. It is found that increasing Weissenberg number has a similar
effect as decreasing the flow rate ratio mainly due to the strain-rate hardening effect of viscoelas-
ticity. The average droplet size and size distribution are found to be the most sensitive to Wi in the
dripping regime. In this regime, an abrupt increase in the average droplet size occurs at a critical
Weissenberg number at which droplet formation shifts from the dripping to the squeezing regime.
This effect is more pronounced at higher polymeric viscosity ratios. The critical Weissenberg num-
ber is found to weakly depend on the polymeric viscosity ratio and be closely related to the critical
strain rate at which the “strain-rate hardening” occurs. The average droplet size and size distribution
remain nearly constant after the critical Weissenberg number except for the case of very high poly-
meric viscosity ratio in which the average droplet size decreases while polydispersity increases at
high Weissenberg numbers, i.e., about Wi > 5.

We also found that the extensibility parameter influences the droplet size and size distribution
non-monotonically in the dripping regime. Highly monodispersed droplets are generated at low
values of the extensibility parameter. As the extensibility parameter is increased, the monodispersity
is first lost and then partly recovered resulting in highly polydispersed and then nearly uniform
droplets for 5 < L ≤ 200 and L → ∞, respectively.

SUPPLEMENTARY MATERIAL

See supplementary material for the grid convergence study.
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