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Small-amplitude oscillations of a viscous drop that is in a partial contact with a flat substrate are inves-
tigated computationally using a finite-difference/front-tracking method. Emphasis is placed on the first
mode resonance frequency response of the droplet for a wide range of contact angles. It is found that
numerical results converge to the theoretical predictions of Strani and Sabetta (Strani M, Sabetta F. J Fluid
Mech 1984;141:223–47) for high contact angles, whereas considerable discrepancy is observed as con-
tact angle decreases. However, the dependence of the frequency on the drop radius, drop density and sur-
face tension coefficient remains the same as predicted by the Strani and Sabetta theory. It is also found
that the effects of density and viscosity ratio become insignificant for the density and viscosity ratios lar-
ger than 10. The oscillations are found to be damped exponentially in time due to viscous dissipation sim-
ilar to the case of an isolated droplet and the damping rate decreases with increasing contact angle.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction agreement with the experimental results of Bisch et al. [3] for high
The free vibration of a liquid drop in partial contact with a solid
surface has received significant interest due to a range of applica-
tions including crystal-growth in space [20,3], ink-jet printing [2],
liquid lenses [14] and superhydrophobic surfaces [10]. Motivated
by the experimental studies of Rodot et al. [20] and Bisch et al.
[3], Strani and Sabetta theoretically analyzed the small-amplitude
oscillations of a sessile drop in partial contact with a spherical bowl
for both inviscid [23] and viscous [24] cases as an approximation to
the free vibration of a droplet on a solid substrate. They found that
there exists an additional low-frequency vibrational mode (n = 1)
for supported drops compared to the isolated drops where it is
zero. The lowest axisymmetric oscillation frequency predicted by
the Strani and Sabetta [23] theory is given by

xSS ¼ ð2pÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

qiR
3k1ðhcÞ

s
; ð1Þ

where c is the surface tension coefficient, qi is the density of the
droplet, R is the radius of the undisturbed droplet (Fig. 1) and k1

is the eigenvalue associated with the lowest frequency mode
(n = 1) that depends on the contact angle hc and the density ratio
of droplet and ambient fluids. Strani and Sabetta [23] calculated res-
onance frequencies for various contact angles and found a good
contact angles, i.e., hc > 150�. However, they also found that the the-
ory generally over predicts the frequency response of the con-
strained droplet and the discrepancy increases as the contact
angle decreases. They later extended the inviscid theory to include
the viscous effects and found out only a weak influence of viscosity
on oscillation frequency which becomes progressively weaker as
contact angle decreases [24].

On the computational side, Foote [5] used an extension of the
Marker-and-Cell method to investigate the small and large ampli-
tude oscillations of a freely vibrating drop. Basaran [1] used a
Galerkin/finite-element technique to simulate the moderate-to-
large amplitude axisymmetric oscillations of a liquid drop and
found consistent results with Prosperetti’s [16] linear predictions
for small-to-moderate-amplitude oscillations and Foote’s [5] pre-
dictions for large-amplitude oscillations. Later, using the same
method, Basaran and DePaoli [2] studied the nonlinear oscillations
of pendant drops from a solid rod that are surrounded by an ambi-
ent gas. They reported results on the effects of drop size, fluid prop-
erties and initial deformation, which was extended to forced
oscillations of pendant drops by Wilkes and Basaran [30]. James
et al. [8] used a volume-of-fluid (VOF) method to simulate forced
vibration of a sessile droplet on a vertically vibrating solid sub-
strate. They were able to capture the interfacial breakup as well
as the subsequent ejection of a smaller droplet. Note that the same
problem has also been studied experimentally by James et al. [9]
and Vukasinovic et al. [29]. More recently, Ramalingam and Basa-
ran [18] examined axisymmetric oscillations of a double droplet
system (DDS) consisting of a sessile and a pendant drop that are
coupled through a liquid filled cylindrical hole in a plate using a
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Fig. 1. Definition sketch. The solid and dashed lines represent the equilibrium and
perturbed shapes, respectively, for the axisymmetric mode of vibration (n = 1).
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Galerkin/finite-element method to determine the modal shapes
and modal frequencies of capillary switches. They found that,
while a single pendant (sessile) drop has one additional oscillation
mode compared to a free drop, a DDS exhibits roughly twice as
many oscillation modes as a pendant (sessile) drop.

Siekmann and Schilling [22] performed boundary element sim-
ulations and confirmed the Strani and Sabetta theory for the free
vibration of a droplet in partial contact with a rigid spherical cav-
ity. Ganan and Barrero [6] computationally studied the small
amplitude oscillations of a captive drop that is in partial contact
with a flat substrate using an analytical spectral method. They
found that the computational results are in a reasonable agree-
ment with the Strani and Sabetta theory for large contact angles.
Bostwick and Steen [4] considered a similar problem and studied
the free vibration of a liquid droplet that is pinned on a circle of
contact using a spectral method. They found that the pinning of
droplet introduces a new low-frequency mode similar to the linear
oscillations of a drop in partial contact with a spherical bowl. The
same problem has been also studied by Prosperetti [17] using a dif-
ferent approach that considerably simplifies the solution proce-
dure but the results are essentially the same as those of Bostwick
and Steen [4]. Ramalingam et al. [19] have more recently studied
the same problem using two separate analytical solution proce-
dures and showed some differences in the vicinity of the contact
point compared to the results of Bostwick and Steen [4].

The Strani and Sabetta theory has recently been utilized in sev-
eral experimental studies for various purposes such as measuring
contact angle [31,10,11], examining the effects of excitation signal
on the stable contact angle [21], and estimating size of sessile
droplets and their evaporation kinetics [26]. Here we draw inspira-
tion from a particular set of experimental study performed by
Jonas et al. [10] who used the Strani and Sabeta theory to deduce
the contact angle of micro-droplet on a superhydrophobic sub-
strate from the measured resonance oscillation frequency of the
droplets. When the density of the ambient fluid is much smaller
than that of the droplet, the effects of density ratio become negli-
gible and thus k1 in Eq. (1) is just function of the contact angle.
Based on this observation, Jonas et al. [10] determined contact
angles of sessile droplets on superhydrophobic surfaces by exam-
ining the vibrational resonances driven by the surface oscillations.
The accuracy of the measured contact angle is mainly determined
by the validity of the Strani and Sabetta theory since the resonance
frequencies are measured very precisely. They reported that the
deduced contact angles are consistently higher than those
measured using conventional methods for larger droplets on the
same superhydrophobic surface.
The present study is motivated by the increased use of Strani
and Sabetta theory in experimental measurements and aims to
assess the validity of the Strani and Sabetta theory and fully char-
acterize the problem for the range of contact angles between 90�
and 180�. For this purpose, axisymmetric vibrations of a droplet
that is in partial contact with a flat substrate are studied computa-
tionally using a direct numerical simulation within the framework
of a finite-difference/front-tracking method [28,15,25]. The com-
putational results are compared with the available experimental
data as well as with the Strani and Sabetta theory.
2. Problem statement, formulation and numerical method

We consider an axisymmetric liquid droplet of radius R that sits
on a flat substrate with a fixed contact angle of hc as sketched in
Fig. 1. The density and viscosity of the droplet and ambient fluids
are qi, li and qo, lo, respectively, and the surface tension is c. Note
that the properties of the droplet and ambient fluids are denoted
by subscripts i and o, respectively. The height of droplet measured
from the substrate is denoted by h and is used to monitor the sur-
face oscillations. The drop interface is initially perturbed using the
first mode shape obtained from the Strani and Sabetta [23] theory.
The droplet starts vibrating from the quiescent initial conditions.
Considering the experimental conditions of Bisch et al. [3] and
Jonas et al. [10], we assume that the contact line remains fixed at
the equilibrium position and the effects of gravity are negligible.

The fluid motion is assumed to be governed by the incompress-
ible Navier–Stokes equations which are solved inside and outside
of the droplet using a front-tracking method [28,15,25]. Following
Unverdi and Tryggvason [28], a single set of governing equations
can be written for the entire computational domain as long as
the jumps in material properties are treated correctly and the ef-
fects of surface tension are included. Assuming that the flow is axi-
symmetric, the Navier–Stokes equations can be written in the
framework of the front-tracking method as
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where vr and vz are the velocity components in the radial and axial
directions, respectively, p is the pressure, q and l are the discontin-
uous density and viscosity fields, respectively. The effect of surface
tension is included as a body force in the last term on the right hand
side of Eq. (2), where c is the surface tension, j is twice the mean
curvature, and n is a unit vector normal to the interface with com-
ponents of îr and îz in the radial and axial directions, respectively.
The surface tension acts only on the interface as indicated by the
three-dimensional delta function d, whose arguments x and xf are
the points at which the equation is evaluated and a point at the
interface, respectively. The Navier–Stokes equations are solved
together with the incompressible continuity equation

@rv r

@r
þ @rvz

@z
¼ 0: ð3Þ

It is also assumed that the material properties such as density and
viscosity remain constant following a fluid particle, i.e., Dq/Dt = 0
and Dl/Dt = 0, where D/Dt denotes the substantial derivative. Den-
sity and viscosity vary discontinuously across the interface and are
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specified based on the indicator function as q = qiI + (1 � I)qo and
l = liI + (1 � I)lo, respectively. The indicator function I is defined
such that it is unity inside the droplet and zero outside. The indica-
tor function is computed using the standard procedure as described
by Tryggvason et al. [27].

The flow equations are solved using the finite-difference/front-
tracking method developed by Unverdi and Tryggvason [28]. The
front-tracking method has been extended to treat the moving con-
tact lines by Muradoglu and Tasoglu [15] and successfully applied
to model the single cell epitaxy by Tasoglu et al. [25]. Note that,
although the treatment of moving contact line is readily available
in the present numerical method, we consider only the case of
fixed contact line since we are mainly interested in small ampli-
tude oscillations in the present study. It is emphasized here that,
for small amplitude oscillations, the deviation of the apparent con-
tact angle from the static contact angle is well within the experi-
mental uncertainties involved in the experimental correlations
(e.g., Kistler’s correlation [13]) that are usually employed to relate
the apparent contact angle to the static contact angle and the con-
tact line capillary number. It has been thus preferred to use the
fixed contact angle in all the results presented in this paper. The
flow equations are solved using a uniform Cartesian grid with a
projection method. The momentum and continuity equations are
discretized using second-order central difference approximation
for the spatial derivatives and an explicit second-order predictor–
corrector method for time integration. The discretized equations
are solved on a fixed staggered grid using the Marker-and-Cell
method of Harlow and Welch [7]. No slip and axis of symmetry
boundary conditions are applied on the substrate and at the sym-
metry line, respectively. Far-field (or full slip) boundary conditions
are applied at the lateral and top boundaries. Note that the influ-
ence of boundary treatment is found to be negligible even when
no-slip boundary conditions are used for these boundaries pro-
vided that the boundaries are sufficiently remote from the droplet,
e.g., for the computational domain employed here.

The governing non-dimensional numbers are the Bond number
Bo = g(qi � qo)R2/c where g is the gravitational acceleration, the
Ohnesorge number Oh ¼ li=

ffiffiffiffiffiffiffiffiffiffi
qicR

p
, the contact angle hc, density

ratio qi/qo and viscosity ratio li/lo. The Bond number represents
the gravitational forces relative to the interfacial forces while the
Ohnesorge number measures the relative importance of the viscos-
ity of drop and surface tension. Gravitational effects are neglected
in this study since Bo� 1 in the experimental study of Jonas et al.
[10] as well as in Rodot et al. [20] and Bisch et al. [3]. For a typical
liquid–gas system (e.g., silicone oil droplet in air), density and vis-
cosity ratios are of the order of 1000 and 100. However all compu-
tations are performed for much smaller density and viscosity ratios
to simulate a liquid–gas system, i.e., qi/qo = 10 and li/lo = 10 in the
present study mainly due to numerical considerations, i.e., conver-
gence rate of pressure Poission solver deteriorates significantly
when the density and viscosity ratios are much greater than 10.
Note that the effects of viscosity and density ratios are expected
to be small when qi/qo P 10 and li/lo P 10 for the kind of prob-
lems as studied here [15,25]. In addition, some further computa-
tions are performed here to confirm the validity of this
assumption as will be discussed in the results section below.
3. Results and discussion

Extensive computational simulations are performed to examine
the validity of Strani and Sabetta theory [23] and fully characterize
the small amplitude vibration of a micro-droplet in partial contact
with a flat solid substrate. The flow equations are solved in their
dimensional forms but the results are presented in terms of rele-
vant dimensionless quantities. The computational domain extends
2.5R in the radial direction and 3.75R in the axial direction. Compu-
tations are first performed to show the grid convergence as briefly
discussed in the Appendix. We’ve found that it is sufficient to use a
uniform Cartesian grid containing 384 � 576 grid points in the ax-
ial and radial directions, respectively, to reduce the spatial discret-
ization error below 1%. We thus employed this grid in all the
computational results reported here. The present numerical meth-
od is explicit so the time step is restricted to maintain numerical
stability. In the present study, the restrictions due to convection,
viscosity and surface tension are taken into account and the time

step is thus determined by Dt ¼min Dx2

4g ;
Dx
jUj ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqoþqiÞDx3Þ

4pc

q� �
where

Dx is the grid spacing, g is the kinematic viscosity and jUj is the
magnitude of the velocity. Note that, although not shown here
due to space considerations, the time stepping error is negligible
compared to the spatial discretization error in all the results pre-
sented in this paper.

First the results are presented in this section to show the accu-
racy of the numerical method. For this purpose, simulations were
performed for the case studied experimentally by Bisch et al. [3].
The material properties are taken from Strani and Sabetta [24]
and are specified as qi = qo = 1000 kg/m3, li = 0.005 kg/(m s),
lo = 0.0014 kg/(m s), c = 0.037 N/m and R = 4.44 cm. Simulations
were then performed for the contact angles in the range hc = 95�
and hc = 175� and the results are compared with the experimental
data of Bisch et al. [3] and the theoretical predictions of Strani and
Sabetta [23] in Fig. 2a where the frequency is plotted in the non-

dimensional form defined as x� ¼ x
ffiffiffiffiffiffiffi
qiR

3

c

q
. Note that the experi-

mental data are extracted from Strani and Sabetta [23]. This figure
shows that the Strani and Sabetta theory generally over predicts
the oscillation frequency and the discrepancy between the com-
puted and theoretical frequencies increases as the contact angle
decreases. More importantly, the computational results are in a
better agreement with the experimental data compared to the
Strani and Sabetta theory especially for small contact angles, i.e.,
hc < 140�, indicating the accuracy of the computational model.

After validating the computational results against the available
experimental data, extensive simulations were then performed in
order to examine the effects of governing non-dimensional param-
eters and fully characterize the small amplitude axisymmetric
oscillations of viscous droplets on a flat substrate. Based on the
experimental data of Jonas et al. [10] and considerations for the
numerical stability and convergence of the numerical algorithm,
we choose the set of non-dimensional parameters hc = 155�,
qi/qo = 10, li/lo = 10, Oh = 0.0465 and Bo = 0 as the base case. Note
that, for NaCl–Water droplet in air system studied by Jonas et al.
[10], typical values are qi = 1144.7 kg/m3, qo = 1.23 kg/m3, li =
1.36 � 10�3 kg/m s, lo = 1.79 � 10�5 kg/m s, c = 74.62 mN/m,
R = 10 lm and hc = 155�, which corresponds to qi/qo = 930,
li/lo = 76, Bo = 1.5 � 10�5 and Oh = 0.0465. It is emphasized here
that Jonas et al. [10] did not have any precise control on droplet
size as droplets were generated by an ultrasonic nebulizer result-
ing in highly poly-dispersed droplets with a wide range of sizes.
Therefore R = 10 lm is selected here as a representative droplet
size rather than the exact value used in the experimental study.
In the base case, the material properties of the droplet fluid, drop-
let radius and surface tension coefficient are set to the actual val-
ues of Jonas et al. [10] and the properties of the ambient fluid are
set such that qi/qo = li/lo = 10.

Computations were then performed for the base case in order to
test the validity of the Strani and Sabetta theory for a liquid–gas
system, e.g., NaCl–water droplet in air as studied experimentally
by Jonas et al. [10]. The computational and theoretical results are
plotted in Fig. 2b for the range of contact angles between hc = 95�
and hc = 175� as before. It is clearly seen in this figure that there
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Fig. 2. Variation of free oscillation frequency with the contact angle. (a) For the liquid–liquid system studied experimentally by Bisch et al. [3]. The big dots indicate the
experimental data taken form Bisch et al. [3] through Strani and Sabetta [24] (qi/qo = 1 and li/lo = 3.57). (b) For the liquid droplet in a gas system studied experimentally by
Jonas et al. [10], i.e., the base case.
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Fig. 3. Damped oscillations of the droplet height (solid line) for the base case. The
dashed lines represent exponential damping fitted to the computational results in

the form h�heq
hi�heq

¼ e�mt where heq is the equilibrium height, hi is the initial height and m

is the damping rate determined by approximately fitting to the computational
result (hc = 155�, qi/qo = 10, li/lo = 10).
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is a good agreement between the computational and theoretical
results for large contact angles but there is significant discrepancy
for small contact angles similar to the liquid–liquid system. Fig. 2
shows that the Strani and Sabetta theory generally over predicts
the oscillation frequency and difference between the computa-
tional and theoretical results increases as the contact angle
decreases.

The time history of height of droplet for the base case is plotted
in Fig. 3 to show the overall oscillatory behavior of the droplet. The
time is normalized by the period obtained from the Strani and Sab-
etta theory, i.e., sSS = 1/xSS where xSS is given by Eq. (1). In Fig. 3,
the dashed lines represent exponential damping fitted to the com-
putational results in the form

h� heq

hi � heq
¼ e�mt ; ð4Þ

where heq is the equilibrium height, hi is the initial height and m is
the damping rate determined by approximately fitting this expres-
sion to the computational data. This figure shows that the initial
perturbations decay exponentially in time due to viscous dissipa-
tion similar to the case of an isolated droplet [12]. It also shows that
the Strani and Sabetta theory over predicts the oscillation frequency
compared to the direct numerical simulation.

As can be seen in Eq. (1), Strani and Sabetta theory [23] predicts
that the frequency scales as x � R�3=2c1=2q�1=2

i . We next examine
the accuracy of these scalings through extensive simulations.
Quantities are scaled using respective reference values of the base
case to keep the quantities in a range since we’re interested in sca-
lings rather than the exact values. For this purpose, computations
are first performed for a range of drop radii while keeping the other
variables the same as in the base case and the results are plotted in
Fig. 4a where a line is fitted to the numerical results using linear
least squares method. The fitted line indicates that the slope is
about �1.495 that is close to �1.5 showing the validity of scaling
x � R�3/2. Next surface tension is varied while keeping the other
variables the same as the base case and the results are plotted in
Fig. 4b where the linear least squares fit indicates a slope of
0.505 showing the validity of the scaling x � c1/2. Finally normal-
ized frequency is plotted against normalized droplet density in
Fig. 4c. The line fitted to the numerical data using a linear least
squares method indicates approximate slope of �0.493 showing
the validity of the scaling x � q�1=2

i .
In the experimental study of Jonas et al. [10], NaCl–water drop-

let was excited in air to deduce the contact angle. In this system,
the density and viscosity ratios are about 930 and 76, respectively.
Therefore it is important to investigate effects of density and vis-
cosity ratios on the free oscillation frequency of droplet in partial
wetting with the substrate since the computational simulations
have been performed for much smaller density and viscosity ratios
to simulate a liquid droplet-gas system mainly due to numerical
concerns. Fig. 5a and b respectively show the effects of the density
and viscosity ratios on the oscillation frequency for the base case. It
is seen in these figures that the effects of both density and viscosity
ratios decrease rapidly and become insignificant after qi/qi P 10
and li/lo P 10 verifying the assumption that free vibrations of a
liquid droplet in a gas can be simulated using smaller density
and viscosity ratios.

We finally examine the rate of damping due to viscous dissipa-

tion. The damping rate is normalized as m� ¼ m
ffiffiffiffiffiffiffi
qiR

3

c

q
. Fig. 6a shows

the variation of the normalized damping rate with the contact an-
gle. It is emphasized here that computing damping rate involves
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Fig. 5. Variation of free oscillation frequency with (a) the density and (b) the viscosity ratios.
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likely more numerical error than the other quantities since it is
computed indirectly by fitting an exponential function (Eq. (4))
to the time histories. The numerical error is expected to be signif-
icant especially for large contact angles, i.e., hc P 160�. Neverthe-
less, Fig. 6a shows that the damping rate decreases with
increasing contact angle, which is consistent with the theoretical
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128 � 192 and 512 � 768. (b) Variation of normalized free oscillation frequency with (Dx/R)2. The solid line is the linear least squares fit to the computational results
indicating the expected second order accuracy of the method.
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predictions of Strani and Sabetta [24]. Computations are also per-
formed to examine the effects of droplet size and the viscosity of
ambient fluid on the viscous damping for over a range of droplet
radii and two different viscosity ratios while keeping the other
parameters the same as the base case. The results are plotted in
Fig. 6b on a log–log scale. The lines are fitted to the computational
results using linear least squares. This figure consistently shows
that the damping rate scales as m � R�1.87 for both viscosity ratios.
In addition, the damping rate is larger for the smaller viscosity ra-
tio mainly due to larger contribution of the ambient fluid.
4. Conclusions

Small amplitude free oscillations of a viscous droplet in partial
contact with a flat substrate have been studied computationally
using a front-tracking method. Extensive direct numerical simula-
tions have been performed to examine the validity of Strani and
Sabetta theory [23,24] and fully characterize the axisymmetric free
surface oscillations of a supported droplet in an immiscible fluid. It
is found that the Strani and Sabetta theory is valid for large contact
angles but significantly deviates from the computational results as
the contact angle decreases while the dependence of the oscillation
frequency remains the same as predicted by the theory, i.e.,
x � R�3=2q�1=2

i c1=2. The effects of viscosity and density ratios
decrease rapidly and become insignificant when qi/qo P 10 and
li/lo P 10. It is also found that the oscillations decay exponentially
in time due to viscous dissipation similar to the case of an isolated
droplet [12]. Viscous damping rate decreases with increasing
contact angle and approximately scales with the droplet size as
m � R�1.87 irrespective of the viscosity ratio.
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Appendix A. Grid convergence

We briefly discuss here the grid convergence and accuracy of
the computational results presented in the paper. For this purpose,
series of simulations are performed for the base case using succes-
sively refined computational grids ranging between 128 � 192 and
512 � 768. The time histories of the normalized height of the drop-
let are plotted in Fig. 7a where the inset shows a blow out view of
the results at about t/sSS = 4. As can be seen in this figure, the dif-
ference between the results gets smaller as the grid is refined dem-
onstrating the grid convergence. The normalized frequency is
plotted in Fig. 7b as a function of (Dx/R)2 where Dx is the grid size.
Note that the grid sizes in the radial and axial directions are the
same since uniform Cartesian grids are used in all the results pre-
sented in this paper. The linear least squares fit in Fig. 7b shows the
expected second order spatial accuracy of the method. It also
shows that it is sufficient to use a 384 � 768 grid to reduce the spa-
tial discretization error below 1% for this case.
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