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a b s t r a c t

The effects of insoluble and soluble surfactant on the motion of a long bubble propagating through a cap-
illary tube are investigated computationally using a finite-difference/front-tracking method. Emphasis is
placed on the effects of surfactant on the liquid film thickness between the bubble and the tube wall. The
numerical method is designed to solve the evolution equations of the interfacial and bulk surfactant con-
centrations coupled with the incompressible Navier–Stokes equations. A non-linear equation of state is
used to relate surface tension coefficient to surfactant concentration at the interface. Computations are
first performed for soluble cases and then repeated for the corresponding clean and insoluble cases for
a wide range of governing non-dimensional parameters in order to investigate the effects of surfactant
and surfactant solubility. The computed film thickness for the clean case is found to be in a good agree-
ment with Taylor’s law indicating the accuracy of the numerical method. We found that both the insol-
uble and soluble surfactant generally have a thickening effect on the film thickness, which is especially
pronounced at low capillary numbers. This thickening effect strengthens with increasing sensitivity of
surface tension to interfacial surfactant coverage mainly due to the enhanced Marangoni stresses along
the liquid film. It is also observed that film thickening shows a non-monotonic behavior for variations in
Peclet number. The validity of insoluble surfactant assumption is assessed for various non-dimensional
numbers and it is demonstrated that insoluble assumption is valid only when capillary number is very
low, i.e., Ca� 1 and when surface tension is highly sensitive to interfacial surfactant coverage, i.e., the
elasticity number is large.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The displacement of liquid by a long gas bubble (or semi-infi-
nite gas finger) moving through a capillary tube is a model widely
used to analyze a variety of complex multiphase flow problems.
This system was originally studied experimentally by Fairbrother
and Stubbs (1935), Taylor (1961) and theoretically by Bretherton
(1961). Using a lubrication analysis, Bretherton (1961) related
the interfacial pressure drop and liquid film thickness to capillary
number, Ca =lUb/r, where Ub is the bubble speed, l is the viscosity
of the liquid and r is the surface tension coefficient in the limit of
small Ca and for negligible inertia. His analysis showed that the
steady liquid film thickness, h1, is related to Ca as h1/R =
1.34Ca2/3, where R is the channel radius. This relation was later
extended to larger Ca numbers by Ratulowski and Chang (1989).
More recently, Aussillous and Quere (2000) fitted a curve to their
own and Taylor’s original experimental data and put up Taylor’s
law as h1/R = 1.34Ca2/3/(1 + 2.5 � 1.34Ca2/3), where the numerical
factor of 2.5 is empirical. Effects of inertia on the Bretherton prob-
lem were investigated for relatively higher Reynolds numbers

(Re > 1, non-creeping flow) by Giavedoni and Saita (1997) and Heil
(2001). The liquid–liquid system has been investigated by Hodges
et al. (2004) and more recently by Beresnev et al. (2011).

An important issue in multiphase systems is the role played by
surface-active agents (surfactants) that are present either as impu-
rities which are difficult to remove from the system or as additives
to manipulate the interfacial dynamics. It is well-known that sur-
factants largely affect the dynamic behavior of deforming inter-
faces (Levich, 1962; Clift et al., 1978). The presence of surfactants
in a fluid mixture can critically alter the motion and deformation
of bubbles moving through a continuous liquid phase (Clift et al.,
1978; Stone, 1994). Surfactant molecules attach to the interface
to form a buffer zone between the gas and liquid phases. They
interact with the cohesive forces between the fluid molecules,
and thus reduce the surface tension and stabilize the interface
(Halpern et al., 2008). The non-uniformity in interfacial surfactant
concentration leads to interfacial surface tension gradients and
thus Marangoni stresses. Surfactants particularly play a critical role
in pulmonary re-opening (Grotberg, 2001, 2011). Pulmonary sur-
factant is absorbed on the thin film of liquid that covers the surface
of the airways and the alveoli and reduces the surface tension on
the liquid–gas interface and the work required to expand the lung
at each breath. Due to surfactant-deficiency, surface tension on the
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air–liquid interface might get elevated and the airways might get
closed since the flexible structure of the tubes causes instable sup-
port for the airways (Heil et al., 2008). Interfacial surfactant
dynamics and effects of surfactant on liquid film are thus crucial
to understand the pulmonary re-opening process (Grotberg,
2001, 2011).

Influence of surfactants on the displacement of a confined gas–
liquid interface has been analyzed analytically (Ginley and Radke,
1989; Ratulowski and Chang, 1990; Park, 1992; Stebe and Bar-
thes-Biesel, 1995; Daripa and Pasa, 2009, 2010), experimentally
(Ramdane and Quere, 1997; Shen et al., 2002; Krechetnikov and
Homsy, 2005) and numerically (Severino et al., 2003, 2005; Gha-
diali and Gaver, 2003; Campana et al., 2010; Johnson and Borhan,
2003; Swaminathan et al., 2010). On the analytical side, Ginley
and Radke (1989) assumed a uniform bulk surfactant concentra-
tion and studied an adsorption-controlled surfactant transport
mechanism and observed higher interfacial concentrations on the
thin film compared to the bubble front, and a consequent decrease
in the film thickness. Ratulowski and Chang (1990), on the other
hand, showed that for trace amount of bulk surfactant, an increase
in film thickness occurs when surfactant transport in the bulk is
mass-transfer limited and the bulk concentration is not uniform.
In this case, if the diffusion of the surfactant from the bubble front
to the thin film is slow, lower interfacial concentration on the thin
film compared to the bubble front is observed, which leads to
development of Marangoni stresses that push more fluid into the
thin liquid film region and consequently increase the film thick-
ness. They found, for the first time, that through this mechanism,
surfactants could increase the film thickness by a maximum factor
of 42/3 compared with the surfactant-free case for infinitely long
bubbles. In the same surfactant transport regime, Park (1992) con-
firmed the maximum factor of 42/3 through a comprehensive
asymptotic analysis for finite length bubbles. Stebe and Barthes-
Biesel (1995)’s results support film thickening and the maximum
factor of 42/3 for elevated bulk surfactant concentrations, and iden-
tify the Marangoni stresses that result from hindered sorptive ex-
change in the thin film as the underlying cause. Daripa and Pasa
(2009, 2010) have recently studied the effects of surfactant on
the liquid film thickness in the drag-out coating problem and in
the long bubbles in capillary tubes problem, respectively, analyti-
cally using the lubrication theory and pointed out the thickening
effect of surfactant but without giving any explicit expression for
the thickening factor.

Experimental studies have mainly focused on the fiber coating
(Ramdane and Quere, 1997; Shen et al., 2002) and the plate coating
known as the Landau–Levich problem (Krechetnikov and Homsy,
2005). These problems are essentially the same as Bretherton’s
problem as they all correlate liquid film thickness with capillary
number. Ramdane and Quere (1997) performed an experimental
study on fibers that are drawn out of a solution containing surfac-
tants and showed that the liquid film that forms on the fiber at-
tains an increased thickness compared to the clean case. They
also showed that the thickening factor is dependent on the wire ra-
dius and is always smaller than the upper limit predicted theoret-
ically by Ratulowski and Chang (1990). Shen et al. (2002)
performed similar experiments using three different surfactants
and observed that surfactant generally increases the film thickness
until the critical micelle concentration (CMC). Beyond CMC, the
behavior is more complicated and depends on the dynamic surface
properties. Krechetnikov and Homsy (2005) examined the effects
of surfactant on the liquid film thickness for the plate coating.
Although their main motivation was to confirm their computa-
tional results that film thinning occurs in the presence of surfac-
tant (Krechetnikov and Homsy, 2006), their experimental results
showed the opposite (Krechetnikov and Homsy, 2005). They attrib-
uted this discrepancy to the fact that pure hydrodynamical model-

ing of surfactant effects is not sufficient to explain the film
thickening. However, Campana et al. (2010) accurately predicted
the film thickening for the Landau–Levich problem with numerical
solution of the full hydrodynamic problem and found that the
numerical results are quantitatively in agreement with the exper-
imental observations of Krechetnikov and Homsy (2005).

Severino et al. (2003, 2005) and Ghadiali and Gaver (2003) com-
putationally investigated the effects of soluble surfactants on the
displacement of liquid by a semi-infinite bubble. Severino et al.
(2003) considered a planar case while Ghadiali and Gaver (2003)
considered axisymmetric cylindrical tube. They both reported
results on the effects of various non-dimensional parameters.
Severino et al. (2003, 2005) observed film thickening in all situa-
tions whereas Ghadiali and Gaver (2003) reported that, depending
upon the range of dimensionless parameters, either film thickening
or film thinning responses are possible. Johnson and Borhan (2003)
and Swaminathan et al. (2010) performed detailed computational
analysis of the effects of soluble surfactant on the pressure-driven
motion of a gas bubble in a capillary tube using a boundary integral
and front-tracking methods, respectively. However they both
considered gas bubbles that are comparable to the channel size
so no steady liquid film forms between the bubble and the tube
wall.

The present study aims to numerically investigate the effects of
surfactant and surfactant solubility on the liquid film left on the
wall of a cylindrical capillary tube as a gas bubble that is much
longer than the tube radius slowly propagates through the tube.
For this purpose, the incompressible Navier–Stokes equations are
solved fully coupled with the evolution equations of the interfacial
and bulk surfactant concentrations using a finite-difference/front-
tracking method developed by Muradoglu and Tryggvason
(2008). The numerical method has been successfully applied to
buoyancy-driven motion of contaminated bubbles rising in a cylin-
drical tube (Tasoglu et al., 2008). A nonlinear equation of state
based on the Langmuir adsorption (Levich, 1962) is used to relate
surface tension coefficient to the interfacial surfactant concentra-
tion. Although all the computations are performed time-accu-
rately, the focus is placed on the steady-state solutions. A
comprehensive computational study is performed to assess the
validity of the insoluble surfactant models for this problem. To
the best of the authors knowledge, this is the first study that as-
sesses the validity of the insoluble surfactant model through direct
numerical simulations. In addition, extensive computations are
carried out to investigate the effects of non-dimensional numbers
such as elasticity number, Peclet number, Damkohler number
and dimensionless adsorption depth on the surfactant dynamics,
bubble deformation and film thickness.

The remainder of the paper is organized as follows: In the next
section, the mathematical formulation is presented and the numer-
ical method is briefly described. The physical problem is described
in Section 3. The results are presented and discussed in Section 4
and some conclusions are drawn in Section 5. Grid convergence
of the numerical results is discussed in the Appendix.

2. Formulation and numerical method

In this section the governing equations are described in the con-
text of the finite-difference/front-tracking method. We consider a
long gas bubble moving through a liquid filled cylindrical tube of
radius R as shown in Fig. 1. The flow is assumed to be incompress-
ible and symmetric about the axis of the tube. The gas bubble and
ambient liquid are assumed to be Newtonian fluids. Following
Unverdi and Tryggvason (1992), a single set of governing equations
can be written for the entire computational domain provided that
the jumps in the material properties such as density, viscosity and
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molecular diffusion coefficient are correctly accounted for and sur-
face tension is included.

In an axisymmetric coordinate system, the Navier–Stokes equa-
tions in conservative form are given by
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where u and v are the velocity components in the radial and axial
directions, respectively, and p, q and l are the pressure, and the dis-
continuous density and viscosity fields, respectively. The last term
on the right hand side is a body force that includes the effects of
surface tension, in which r is the surface tension coefficient that
is a function of the interfacial surfactant concentration C, t = trir +
tziz is a unit vector tangent to the interface and s is the arc length
along the interface. Note that the mathematical identity jn ¼ @t

@s
has been used in Eq. (1), where j is the curvature of 2D line and
n is the normal vector. The surface tension only acts on the interface
as indicated by the three-dimensional delta function d whose argu-
ments x and xf are the point at which the equation is evaluated and
the point at the interface, respectively. The treatment of surface
force as a body force was pioneered by Peskin (1977) with the
immersed boundary approach. The Navier–Stokes equations are
supplemented by the incompressibility condition,

1
r
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@r
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¼ 0: ð2Þ

We also assume that the material properties remain constant
following a fluid particle,

Dq
Dt
¼ 0;

Dl
Dt
¼ 0; ð3Þ

where D
Dt ¼ @

@t þ u � r is the material derivative. The density and vis-
cosity vary discontinuously across the fluid interface and are given
by

q ¼ qbIðr; z; tÞ þ qoð1� Iðr; z; tÞÞ;
l ¼ lbIðr; z; tÞ þ loð1� Iðr; z; tÞÞ;

ð4Þ

where the subscripts ‘‘b’’ and ‘‘o’’ denote properties of the bubble
and the ambient fluids, respectively, and I(r,z, t) is the indicator
function defined as

Iðr; z; tÞ ¼
1 in bubble fluid;
0 in ambient fluid:

�
ð5Þ

Concentration of surfactant on the interface C is defined as

C ¼ dMs

dA
; ð6Þ

where Ms is the adsorbed mass of surfactant and A is the surface
area. Surface tension decreases proportional to the surfactant con-
centration at the interface according to the equation of state derived
from Langmuir adsorption (Levich, 1962),

r ¼ rs þRTC1 ln 1� C
C1

� �
; ð7Þ

where R is the ideal gas constant, T is the absolute temperature, rs

is the surface tension of clean interface, and C1 is the maximum
packing concentration. Eq. (7) can also be written as

r ¼ rs 1þ bs ln 1� C
C1

� �� �
; ð8Þ

where bs ¼ RTC1=rs is the elasticity number. The physicochemical
parameter bs is a measure of the sensitivity of surface tension to
variations in interfacial surfactant coverage, C/C1. Following
Tasoglu et al. (2008), Eq. (8) is slightly modified to avoid negative
values of the surface tension at high interfacial coverage values
(C/C1 � 1.0):

r ¼ rs max er;1þ bs ln 1� C
C1

� �� �� 	
; ð9Þ

where er is taken as 0.05 in the present study. Fig. 2 illustrates the
change in surface tension with respect to interfacial surfactant cov-
erage for elasticity numbers employed in this study. Note that the
relationship between surface tension and surfactant concentration
expressed by Eq. (9) is similar to the experimental data obtained
for the pulmonary surfactant survanta by Otis et al. (1994). The sur-
factant concentration C evolves by Stone (1990); Muradoglu and
Tryggvason (2008),

1
A

DCA
Dt
¼ Dsr2

s Cþ _SC; ð10Þ

where the gradient operator along the interface is defined as

rs ¼ r� nðn � rÞ: ð11Þ

In Eq. (10), A is the area of the interface, Ds is the diffusion coef-
ficient along the interface and _SC is the source term given by

Fig. 1. Schematic illustration of the physical problem and the computational setup.
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Fig. 2. Sensitivity of surface tension coefficient to interfacial surfactant coverage for
a range of elasticity numbers between bs = 0.1 and bs = 0.7.
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_SC ¼ kaCsðC1 � CÞ � kbC; ð12Þ

where ka and kb are the adsorption and the desorption coefficients,
respectively, and Cs is the surfactant concentration in the fluid
immediately adjacent to the interface. The bulk surfactant concen-
tration C is governed by the advection–diffusion equation

@C
@t
þr � ðCuÞ ¼ r � ðDcorCÞ; ð13Þ

where the coefficient Dco is related to the molecular diffusion coef-
ficient Dc through the indicator function I as

Dco ¼ Dc½1� Iðr; z; tÞ�: ð14Þ

The source term in Eq. (10) is related to the bulk concentration
as

_SC ¼ �Dcoðn � rCjinterfaceÞ: ð15Þ

Following Muradoglu and Tryggvason (2008), the boundary
condition at the interface given by Eq. (15) is first converted into
a source term in a conservative manner by assuming that all the
mass transfer between the interface and the bulk takes place in a
thin adsorption layer adjacent to the interface. In this method, total
amount of mass adsorbed on the interface is distributed over the
adsorption layer and added to the bulk concentration evolution
equation as a negative source term in a conservative manner. Eq.
(13) thus becomes

@C
@t
þr � ðCuÞ ¼ r � ðDcorCÞ þ _Sc; ð16Þ

where _Sc is the source term evaluated at the interface and distrib-
uted onto the adsorption layer in a conservative manner. With this
formulation, all the mass of the bulk surfactant to be adsorbed by
the interface is already consumed in the adsorption layer before
the interface. Hence, the boundary condition at the interface simpli-
fies to be n � rCjinterface = 0.

The flow equations (Eqs. (1) and (2)) are solved fully coupled
with the evolution equations for interfacial concentration, Eq.
(10), and for bulk concentration, Eq. (16), by the finite-difference/
front-tracking method (Muradoglu and Tryggvason, 2008). A
first-order time integration method and a second-order centered
difference approximation for the spatial derivatives are used to dis-
cretize the momentum, the continuity and the bulk concentration
transport equations. A projection method (Unverdi and Tryggva-
son, 1992; Harlow and Welch, 1965) is used to solve the discret-
ized equations on a stationary, staggered Eulerian grid. Note that
it is straightforward to make the numerical method second order
accurate in time but the time stepping error is generally found to
be negligibly small compared to the spatial error mainly due to
small time steps imposed by the stability requirements.

The bubble-ambient fluid interface is tracked using a separate
Lagrangian grid which consists of linked marker points (the front)
moving with the local flow velocity interpolated from the station-
ary Eulerian grid. The piece of the Lagrangian grid between two
marker points is called a front element. The interfacial surfactant
concentration equation, Eq. (10), is solved on the Lagrangian grid
using second-order centered differences for the spatial derivatives
and a first-order Euler method for the time integration. The
Lagrangian grid is also used to calculate the surface tension, which
is then distributed onto the Eulerian grid points near the interface
by using Peskin’s cosine distribution function (Peskin, 1977), and
added to the momentum equations as body forces as described
by Tryggvason et al. (2001).

Front-tracking method is pioneered by Glimm and colleagues
(Chern et al., 1986; Glimm et al., 1998) and the readers are referred
to Chern et al. (1986), Glimm et al. (1998), Unverdi and Tryggvason
(1992), Tryggvason et al. (2001) for the details of the method. A

complete description of the treatment of the soluble surfactant
can be found in Muradoglu and Tryggvason (2008) and Tasoglu
et al. (2008).

3. Problem statement

The physical problem and computational domain are sketched
in Fig. 1. The computational domain is R in radial direction and Lz

in the axial direction. The lower boundary is the axis of symmetry
representing the centerline of the channel and the flow is in the ax-
ial direction. The bubble is initially located at the channel center-
line close to the inlet section. The bubble is much longer than
the channel width and is initialized with an approximate shape
of a straight middle portion and semi-circular front and back me-
nisci. The flow is initiated instantaneously by imposing a fully-
developed steady flow at the inlet and keeping the pressure con-
stant at the outlet. Symmetry and no-slip boundary conditions
are utilized at the centerline and at the wall of the tube, respec-
tively. The computational domain is set sufficiently long (e.g., up
to Lz/R = 40) to ensure steady-state motion of bubbles.

The governing equations given in Section 2 are solved in their
dimensional forms but the results are expressed in terms of rele-
vant non-dimensional quantities. Utilizing channel radius R and
average channel speed U as length and velocity scales, respectively,
and T ¼ R=U the time scale, the governing non-dimensional num-
bers can be summarized as

Re ¼ qoUR
lo

; Cac ¼
lU
r

; Pec ¼
UR
Dc

; Pes ¼
UR
Ds

;
qo

qb
;

k ¼ kaC1
kb

; Bi ¼ kbR
U

; Da ¼ C1
RC1

; bs ¼
RTC1

rs
;

lo

lb
; ð17Þ

where Re, Cac, Pec, Pes, k, Bi, Da, bs are the Reynolds number, the cap-
illary number based on average channel velocity, the Peclet number
based on bulk surfactant diffusivity, the Peclet number based on
interfacial surfactant diffusivity, the dimensionless adsorption
depth, the Biot number, the Damkohler number and the elasticity
number, respectively. Note that C1 in Eq. (17) is the bulk concentra-
tion at the inlet that is kept constant throughout the computation
and is also used as the initial condition in the bulk fluid.

Extensive computations are performed for the soluble, insoluble
and clean cases in order to demonstrate the effects of surfactant
and surfactant solubility on the liquid film thickness between the
wall and the bubble interface. The computations are first per-
formed for the soluble case and then repeated for the correspond-
ing insoluble and clean cases as discussed below. The effects of
governing non-dimensional parameters are studied through exten-
sive numerical simulations. For this purpose, we define a base case
with nominal parameters and vary only one non-dimensional
number at a time while keeping the rest the same as the base case
to observe its sole effect on the problem. The non-dimensional
numbers for the base case are chosen as qo/qb = 10, lo/lb = 10,
Re = 1, Cac = 0.01, Pec = 100, Pes = 1000, k = 2, Bi = 2, Da = 0.05 and
bs = 0.5. The Reynolds and capillary numbers are usually smaller
than those specified here as base case in some applications such
as microfluidics (Stone et al., 2004) but these relatively large values
are selected mainly to relax the time step restriction and thus facil-
itate extensive computational simulations. In the present numeri-
cal method, the time step is restricted by the CFL condition, i.e.,
CFL ¼ UDt

Dx 6 1 where U is the flow speed, Dt is the time step and
Dx is the grid size, and by the von Neumann condition, i.e.,
mDt
Dx2 6

1
4 where m is the kinematic viscosity. Note that the time step

is also restricted by the surface tension but it is less severe com-
pared to CFL and von Neumann conditions, see Muradoglu and Try-
ggvason (2008) for details. It is emphasized here that the effects of
Reynolds number are negligible when Re < 10 as discussed by Aus-
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sillous and Quere (2000). As shown in the appendix, the relative
change in film thickness becomes negligible (below 0.6%) when
density and viscosity ratios qo/qb P 10, lo/lb P 10. Therefore
computations are performed with qo/qb = lo/lb = 10 in order to re-
lax the time step restriction in all the results presented in this pa-
per. The adsorption depth k is set to 2 to have a reasonable
interfacial equilibrium concentration, Ceq. In the equilibrium,
adsorption rate is equal to the desorption rate so the surfactant
source term is zero. Assuming that there is constant supply of sur-
factant to the interface (Cs = C1) and surfactant source term van-
ishes, Ceq can be derived from Eq. (12) as

Ceq

C1
¼ k

kþ 1
; ð18Þ

which gives Ceq/C1 = 2/3 for k = 2. The non-dimensional parame-
ters related to the properties of surfactant are chosen compatible
with the physical properties of pulmonary surfactant given by Fu-
jioka and Grotberg (2005) and the references therein (Otis et al.,
1994; Schurch et al., 1989) except for the Biot number that is in-
creased up to 2 to achieve a rapid steady-state interfacial surfactant
distribution. Elasticity number is taken as 0.5 following Ghadiali
and Gaver (2003) and Pec and Pes are taken as Pec = 100 and
Pes = 1000 as suggested by Fujioka and Grotberg (2005).

With the above-given non-dimensional parameters, the base
case matches the convective-adsorption model suggested by Ratu-
lowski and Chang (1990). In this model: (1) Convection is as impor-
tant as axial diffusion (Pe � O(Ca�2/3)) and hence bulk transport
equation must be solved in its full form accounting for both diffu-
sion and convection. (2) Adsorption is in balance with interfacial
convection (St � O(Ca1/3)), where St = kaC1/U is Stanton number
relating the adsorption to the surface convection. Note that St = k
Da Bi in our non-dimensionalization. Therefore the interfacial con-
vection cannot be neglected and interfacial transport equation must
be solved coupled with the bulk surfactant concentration and flow
equations. Similar conditions were described as mixed kinetics case
by Ghadiali and Gaver (2003), for which bulk and adsorptive trans-
port rates are comparable and bulk and surface transport equations
are coupled and must be solved simultaneously.

For the soluble case, the initial bulk surfactant concentration is
specified uniformly as the far field surfactant concentration, C1,
and the initial interfacial surfactant concentration, C0, is specified
to be 40% of the interfacial equilibrium surfactant concentration,
Ceq. The total amount of interfacial surfactant defined as CT ¼RR

CdA is evaluated numerically over the bubble surface at each
time step and is monitored to decide if steady-state conditions
are reached, i.e., the computations are terminated when the change
in CT is less than 0.1% for a period of non-dimensional time t⁄ = 1.0.
At the end of each simulation, the effective surface tension coeffi-
cient, reff, is calculated as

reff ¼ rs max er;1þ bs ln 1� Cave

C1

� �� �� 	
; ð19Þ

where Cave is the steady-state average interfacial surfactant con-
centration. Then computations are performed for the insoluble
and clean cases as follows: For the clean case, both the bulk fluid
and the interface are surfactant-free and the surface tension coeffi-
cient is taken uniformly as r = reff. For the insoluble case, the bulk
fluid is surfactant-free and adsorption and desorption are switched
off. The initial interfacial surfactant concentration is specified uni-
formly as C0 = CT/A0 where CT is the total mass of the steady-state
interfacial surfactant computed in the soluble case and A0 is the ini-
tial bubble surface area for the insoluble case. Therefore the effec-
tive surface tension coefficient reff is approximately the same in
the soluble, insoluble and clean cases in order to isolate the effects
of the Marangoni stress-related mechanisms on the liquid film

thickness as much as possible. In all the results presented in this pa-
per, the capillary number is calculated based on this effective sur-
face tension coefficient, i.e., Ca = lUb/reff.

4. Results and discussion

Extensive computational simulations are carried out to examine
the effects of surfactant and surfactant solubility on the liquid film
thickness in Bretherton problem. A uniform regular Cartesian grid
is employed in all the results presented here. A comprehensive grid
convergence study is performed to determine the minimum grid
size required to reduce the spatial discretization error below a
threshold value. As detailed in the Appendix, we found that a grid
containing about 64 grid cells in the radial direction is sufficient to
reduce the spatial discretization error in the film thickness below
5%. Thus computations are performed using a uniform grid con-
taining at least 64 grid cells in the radial direction in all the results
presented in this paper except for the low capillary number cases,
i.e., Ca < 0.004, for which a twice finer grid containing 128 grid cells
in the radial direction is utilized in order to resolve the thin liquid
film region.

Extensive computational simulations are performed to examine
the effects of the governing non-dimensional parameters. First
computations are performed for a range of capillary numbers while
keeping the other parameters the same as the base case. Fig. 3
shows the steady distribution of the interfacial and bulk surfactant
concentrations for various capillary numbers. It is seen that inter-
facial surfactant distribution becomes less uniform as the capillary
number increases mainly due to enhanced convection. The liquid
film gets thicker as Ca increases and thus more liquid is pumped
into the film region. The surfactant is absorbed onto the interface
and convected towards the stagnation point on the trailing edge
of the bubble where it is accumulated and eventually desorbed
back into the bulk fluid when the concentration exceeds the equi-
librium value as can be seen in Fig. 3c and d. On the other hand, at
low Ca, the film is very thin and bulk surfactant transport from the
leading to the trailing edge is poor. This results in a relatively more
uniform interfacial surfactant distribution. This is better seen in
Fig. 4 where the interfacial surfactant concentration, the surface
tension coefficient, the Marangoni stress and the film thickness
are plotted for various capillary numbers. Note that the Marangoni
stress, sM ¼ dr

ds , is non-dimensionalized and is expressed in terms of
the Marangoni number defined as Ma ¼ sM

svis
where svis ¼ lo

U
R repre-

sents the viscous stresses. It is interesting to observe that, in the
limit of very low capillary number, i.e., Ca = 0.0015, the interfacial
surfactant distribution is nearly uniform and the bubble assumes
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Fig. 3. Soluble model: steady-state interfacial surfactant concentration (left side)
and bulk surfactant concentration (right side) for various Ca numbers. (a)
Ca = 0.0015, (b) Ca = 0.016 (base case), (c) Ca = 0.044 and (d) Ca = 0.097.
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essentially the same shape of a clean interface mainly due to small
Marangoni stresses (see Fig. 6a for comparison with the clean
case). As Ca increases, the film thickens and thus surfactant is more
easily convected to the trailing edge as shown in Fig. 4a. This re-
sults in sharper gradients in interfacial surfactant distribution
and thus leads to elevated Marangoni stresses (Fig. 4a and c). For
moderate Ca values (Ca = 0.004 � 0.016), the Marangoni stress over
the liquid film is more uniform and has approximately the same
magnitude as the opposing Marangoni stress on the leading front,
which results in a more uniform film thickness. For high capillary
numbers (Ca = 0.044 and 0.097), the Marangoni stress over the li-
quid film is no more uniform and is less than the opposing stress
on the leading front, which pushes more liquid into the film region
resulting in further non-uniform thickening. Fig. 5 shows the vari-

ation of the film thickness as a function of capillary number for the
soluble, insoluble and clean cases. The film thickness is evaluated
at the mid-point of the bubble (defined as the middle point of
the two tip points of the bubble on axis) for all the cases so it rep-
resents somewhat average film thickness for large capillary num-
bers for which the film thickness is no more uniform for the
contaminated cases as seen in Fig. 4d. Note that, although it is also
plotted in Fig. 5, the film thickness computed using the insoluble
model becomes unphysical when the capillary number is large as
will be discussed later. Taylor’s law (Aussillous and Quere, 2000)
and the maximum thickening predicted by Ratulowski and Chang
(1990) are also shown in Fig. 5. As can be seen, the numerical re-
sults for the clean cases are in a good agreement with Taylor’s
law, which indicates the accuracy of the computational results.
Note that the maximum difference between the computed clean
film thickness and Taylor’s law is less than 8% for the range of cap-
illary numbers studied here. In the soluble case, the film thickness
increases considerably for low Ca and assumes approximately the
same values as the clean cases for high Ca mainly because viscous
forces become dominant over the surface tension forces as Ca in-
creases. This is in qualitative agreement with the experimental re-
sults of Krechetnikov and Homsy (2005) who reported a similar
trend that the presence of surfactants generally leads to film thick-
ening which is pronounced at low Ca (thin films) and gets weaker
as Ca increases (thick films). Similarly, Severino et al. (2003) also
found computationally that the effects of surfactant on the film
thickness are no longer noticeable when Ca is larger than a certain
value. Fig. 5 also shows that the computed film thickness is always
below the upper limit that is predicted by Ratulowski and Chang
(1990) and is obtained by multiplying Taylor’s law with the maxi-
mum increase factor of 42/3. The insoluble model predicts slightly
smaller film thickness compared to the soluble model for the small
capillary numbers, i.e., Ca < 0.025. Comparison for larger values of
the capillary number is not meaningful since the insoluble model
gives unphysical solutions especially at the back of the bubbles
as mentioned before.
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Fig. 4. Soluble model: the steady-state distributions of (a) interfacial surfactant concentration, (b) surface tension coefficient, (c) Marangoni stress and (d) film thickness for a
range of capillary numbers.
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Fig. 5. Film thickness computed using the clean, insoluble and soluble models for
various capillary numbers. Solid line represents Taylor’s law (h1/R = 1.34Ca2/3/
(1 + 1.34 � 2.5Ca2/3)) Aussillous and Quere (2000) and solid-dotted line represents
the upper limit of the film thickness achievable with the introduction of surfactants
as suggested by Ratulowski and Chang (1990).
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We then examine the effects of surfactant solubility in more de-
tail for the same range of capillary numbers. For this purpose, the
interfacial surfactant concentration, surface tension coefficient,
Marangoni stress and film thickness are plotted in Fig. 6 for solu-
ble, insoluble and clean cases. It is observed that, for low Ca, i.e.,
Ca = 0.0015, the discrepancy between the soluble and insoluble
cases is negligibly small whereas the discrepancy gets more pro-
nounced as Ca increases. This is mainly due to the lack of surfactant
supply at the leading meniscus and excessive surfactant accumula-
tion at the trailing edge of the bubble in the insoluble case. As Ca

increases, the liquid film becomes thicker and the interfacial sur-
factant at the leading meniscus is easily convected to the trailing
edge of the bubble. In the base case of Ca = 0.016 (Fig. 6b), the film
thickness is predicted slightly thinner in the insoluble case than
that in the soluble case. At higher Ca, e.g., Ca = 0.044 (Fig. 6c), in
the insoluble case, there occurs a surfactant-free region after the
stagnation point on the leading edge of the bubble resulting in ele-
vated Marangoni stresses and thus a thicker film prediction com-
pared to the soluble case. At even higher Ca, e.g., Ca = 0.097
(Fig. 6d), in the insoluble case, this trend is more pronounced

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Arc Length (s/R)

Γ /
Γ ∞

Γ /
Γ ∞

Γ /
Γ ∞

Γ /
Γ ∞

Soluble
Insoluble

0 2 4 6 8
0.5

1

1.5

σ /
σ ef

f

Arc Length (s/R)

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

zb/R

zb/R

zb/R

zb/R

h ∞
/R

h ∞
/R

h ∞
/R

h ∞
/R

Soluble
Insoluble
Clean

0 2 4 6 8
−10

0

10

20

M
a

Arc Length (s/R)

(a)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Arc Length (s/R)

Soluble
Insoluble

0 2 4 6 80.5

1

1.5

σ/
σ ef

f

Arc Length (s/R)

(b)

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Soluble
Insoluble
Clean

0 2 4 6 8
−20

0

20

40
M

a

Arc Length (s/R)

(b)

τMτM

τM
τM

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

Arc Length (s/R)

Soluble
Insoluble

0 2 4 6 8
0

0.5

1

1.5

σ /
σ ef

f

Arc Length (s/R)

(c)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
Soluble
Insoluble
Clean

0 2 4 6 8
−20

0

20

40

M
a

Arc Length (s/R)

(c)

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

Arc Length (s/R)

Soluble
Insoluble

0 5 10
0

0.5

1

σ /
σ ef

f

Arc Length (s/R)

(d)

−1 0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
Soluble
Insoluble
Clean

0 5 10
−50

0

50

100

M
a

Arc Length (s/R)

(d)

Fig. 6. The interfacial surfactant distribution and surface tension (inset) for soluble and insoluble cases (left side), and the film thickness and Marangoni stress (inset) for
soluble, insoluble and clean cases (right side) for various Ca numbers. (a) Ca = 0.0015, (b) Ca = 0.016 (base case), (c) Ca = 0.044 and (d) Ca = 0.097.
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and the leading half of the bubble behaves like a clean interface
and thus yields a thinner film prediction whereas the liquid film
becomes thicker than that of soluble case in the trailing half of
the bubble due to the elevated Marangoni stresses resulting from

sharp surfactant concentration gradient, resembling the stagnant-
cap observed in buoyancy-driven gas bubbles (Tasoglu et al.,
2008). In summary, the insoluble surfactant model predicts slightly
thinner films compared to the soluble model at low capillary num-
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Fig. 7. The effects of the elasticity number for the soluble case. (a) Interfacial surfactant concentration, (b) surface tension coefficient, (c) the Marangoni stress and (d) film
thickness computed for a range of bs.
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Fig. 8. The interfacial surfactant distribution and surface tension (inset) for soluble and insoluble cases (left side), and the film thickness and Marangoni stress (inset) for
soluble, insoluble and clean cases (right side) for the elasticity number of (a) bs = 0.1 and (b) bs = 0.7.
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bers. As Ca increases, the insoluble model first assumes a thicker
film and then leads to ambiguous predictions in film thickness
with further increase in Ca.

Computations are then performed to examine the effects of
elasticity number. For this purpose, the elasticity number bs is var-
ied between 0.1 and 0.7 while other parameters are kept the same
as the base case. The surface tension decreases more abruptly with
increasing interfacial surfactant coverage as bs increases (see
Fig. 2). Increasing bs results in larger Marangoni stresses which op-
pose to the viscous shear stresses and act to reduce the mobility of
the interface. Therefore the interfacial surfactant concentration is
expected to become more uniform due to reduced mobility of
the interface as bs increases (see Fig. 7). Conversely, as bs decreases,
surface tension gets less sensitive to interfacial surfactant concen-
tration leading to lower Marangoni stresses and higher mobility of

the interface. As a result, the surfactant adsorbed on the leading
meniscus are easily advected along the interface and accumulated
at the trailing meniscus of the bubble (see Fig. 7). At the very low
elasticity numbers, i.e., bs = 0.1, the bubble behaves like a clean
bubble except for the trailing edge (see Fig. 8a for comparison with
the clean case). Although the surface tension is less sensitive to
interfacial surfactant coverage for bs = 0.1, the sharp gradient in
surfactant concentration due to the accumulated mass of surfac-
tant at the trailing edge is sufficient to produce the highest
Marangoni stress at this location among all cases. This Marangoni
stresses push liquid into the film and deform the interface at the
trailing edge as demonstrated in Fig. 7d. For bs = 0.3, the Marangoni
stress over the liquid film is non-uniform resulting in a non-uni-
form film thickness as shown in Fig. 7c and d. As bs increases, the
liquid film becomes more uniform as a result of enhanced Marang-
oni stresses. The interfacial surfactant concentration and liquid
film thickness are plotted for the clean, insoluble and soluble cases
in Fig. 8 for bs = 0.1 and bs = 0.7. It is seen that film thickening is
negligible for bs = 0.1 for most part of the interface except for the
trailing edge of the bubble whereas significant thickening is ob-
served for bs = 0.7. Fig. 8 also shows that the effect of surfactant sol-
ubility is small at high elasticity numbers while the solubility
becomes more important as the elasticity number decreases. It is
seen that there is significant discrepancy between the soluble
and insoluble cases at low elasticity number, i.e., bs = 0.1, as can
be clearly seen especially in the interfacial surfactant concentra-
tion. When the elasticity number is small, the surfactant is con-
vected easily towards the trailing edge and accumulated near the
stagnation point both for the soluble and insoluble cases. The sur-
factant is desorbed back into the ambient fluid when the concen-
tration exceeds the equilibrium value in the soluble case.
However, in the case of insoluble model, the surfactant continues
to accumulate near the stagnation point until the surfactant gradi-
ent becomes sufficiently large so that the resulting Marangoni
stresses can balance the viscous shear stresses. This results in stag-
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Fig. 9. The effects of the Peclet number in the soluble case. The steady-state
interfacial surfactant concentration (left side) and bulk surfactant concentration
(right side) for the Peclet numbers of (a) Pec = 1, Pes = 10, (b) Pec = 10, Pes = 100, (c)
Pec = 100, Pes = 1000 (base case) and (d) Pec = 1000, Pes = 10000.
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Fig. 10. The effects of the Peclet number in the soluble case. The steady-state distributions of (a) the interfacial surfactant concentration, (b) surface tension coefficient, (c)
Marangoni stress and (d) film thickness.
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nant-cap like surfactant distribution at the interface in the insolu-
ble case when the elasticity number is small. However, unlike the
stagnant-cap, some surfactant remains at the leading edge due to
the existence of the stagnation point there. We thus conclude that
the solubility becomes more important and insoluble models result
in inaccurate predictions at low bs.

Next the effects of Peclet number are studied by varying Pec and
Pes in the range (1–103) and (10–104), respectively, while keeping
the other parameters the same as the base case. Bulk and surface
Peclet numbers are varied together proportionally. Fig. 9 demon-
strates the interfacial and bulk surfactant distribution for various
Pe numbers. When Pe is small, i.e., Pec = 1, diffusion dominates over
convection and the iso-concentration lines are almost perpendicu-
lar to the tube wall suggesting that the convection plays a very
minor role in bulk surfactant distribution. On the other hand, when
Pe increases, e.g., Pec = 1000, convection dominates and we observe
a thin boundary layer over the interface with sharp gradient of

bulk surfactant concentration. Fig. 10 shows the interfacial surfac-
tant concentration, surface tension coefficient, Marangoni stress
and film thickness for various Pe numbers. It can be seen in this fig-
ure that Peclet number has significant influence on the steady mo-
tion of the bubble but, although not shown here, its effects are
more pronounced in the transient period. At low Pe, i.e., Pec = 1,
the diffusion dominates over the convention as also mentioned
above so a large amount of bulk surfactant is carried onto the inter-
face by diffusion resulting in elevated surfactant concentration at
the interface. When Pec is increased to 10, the interfacial surfactant
concentration drops homogeneously as convection hinders diffu-
sive transport to the near-interface region. Further increase in Pe
results in a lower bubble-tip concentration and a sharper surfac-
tant distribution along the liquid film. Although the influence of
the Peclet number is not very large in the range of Peclet numbers
studied here, it is interesting to see that Marangoni stress at the
leading edge first increases and then decreases as Peclet number
increases. This non-monotonic behavior is also reflected on the li-
quid film thickness response as demonstrated in Fig. 10d. Further
computations are performed to more accurately quantify the ef-
fects of the Peclet number on the film thickness and the results
are plotted in Fig. 11. This figure clearly shows the non-monotonic
behavior and the film thickness assumes its peak value about
Pec = 10. Note that this peak value is still smaller than the upper
limit predicted theoretically by Ratulowski and Chang (1990). It
is emphasized here that the non-monotonic behavior in film thick-
ness is qualitatively in agreement with the results obtained for the
case of semi-infinite gas finger by Ghadiali and Gaver (2003) and
for the plate coating by Severino et al. (2005) where the peak film
thickness is predicted at about Pec = 10 and 30, respectively.

The bulk surfactant concentration can be easily changed in
experimental studies. Therefore we finally perform extensive com-
putational simulations to examine the effects of the bulk surfactant
concentration on the liquid film thickness instead of the related
non-dimensional parameters of Damkohler number and adsorp-
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Fig. 11. Variation of the film thickness as a function of the Peclet number for the
soluble case.
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Fig. 12. The effects of the bulk surfactant concentration in the soluble case. The steady-state distributions of (a) the interfacial surfactant concentration, (b) surface tension
coefficient, (c) Marangoni stress and (d) film thickness computed for a range of the Damkohler number and the adsorption depth.
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tion depth. For this purpose, Da and k are varied in such a way that
the net effect is to change the bulk surfactant concentration while
keeping the other parameters the same as the base case. Computa-
tions are performed for Da and k in the range 0.02–0.5 and 5–0.2,
respectively. Note that Ceq correspondingly deviates from its base
case value as C1 changes according to Eq. (18). Fig. 12 illustrates
the interfacial surfactant concentration, surface tension coefficient,
Marangoni stress and film thickness for various values of C1. The
liquid film thickness is also plotted in Fig. 13 for three values of
C1 for clean and contaminated (soluble) cases. For small values
of C1, e.g., Da = 0.5 and k = 0.2, only scarce amount of surfactant
is accumulated at the trailing edge of the bubble and the bubble as-
sumes nearly the same shape of a clean bubble (see Fig. 13a). In
this case, the sharp gradient of surfactant concentration at the
trailing edge results in enhanced local Marangoni stresses that
cause significant deformation in the trailing edge of the bubble
as seen in Fig. 12c and d. When C1 increases, the interfacial con-
centration increases non-uniformly resulting in a non-uniform film

thickness. With further increase in C1, Marangoni stress becomes
more uniform over the liquid film resulting in a more uniform film
thickness. The thickening effect is most obvious for the intermedi-
ate values of C1, i.e., Da = 0.1 and k = 1, as seen in Fig. 13b. In this
case, the amount of bulk surfactant is sufficient to cause significant
Marangoni stress at the interface but small enough to avoid the
complete saturation of the interface. In the limit of very high bulk
surfactant concentration, i.e., Da = 0.02 and k = 5, the interface is
covered with the surfactant almost uniformly. As a result, the sur-
face tension reduces nearly uniformly over the interface leading to
very small Marangoni stresses. In this case, the bubble behaves like
a clean bubble with small surface tension coefficient and the
Marangoni-induced thickening effect is less pronounced as can
be seen in Fig. 13c.

5. Conclusions

The effects of soluble and insoluble surfactants on the motion
and deformation of a gas bubble in a horizontal axisymmetric
channel are computationally studied by using a finite-difference/
front-tracking method. The Navier–Stokes equations are solved
fully coupled with the bulk and interfacial surfactant concentration
evolution equations, and the surface tension is related to the inter-
facial surfactant concentration using a nonlinear equation of state
based on the Langmuir kinetics.

The liquid film thickness is first compared with Taylor’s law
(Aussillous and Quere, 2000) for the clean cases and it is found that
the computational results are in a good agreement with Taylor’s
law for a wide range of capillary numbers. Then extensive compu-
tations are performed to study the effects of insoluble and soluble
surfactants on the steady-state liquid film thickness between the
bubble and the tube wall. It is found that the presence of surfac-
tants generally increases the liquid film thickness due to the
Marangoni stresses that develop on the interface. Thickening effect
of surfactants is more pronounced at low capillary numbers and
diminishes as capillary number increases. The surfactant-induced
thickening of the liquid film is found to be within the theoretical
limits predicted by Ratulowski and Chang (1990). Elasticity num-
ber, bs, significantly changes the surfactant concentration distribu-
tion on the interface. As bs increases, the surface mobility decreases
due to increasing Marangoni stresses along the liquid film leading
to more uniform interfacial surfactant distribution. It is found that
the film thickening effect is pronounced as bs increases. The effects
of the Peclet number are also examined. It is found that the Peclet
number has a non-monotonic influence on the film thickness and
the maximum film thickness is obtained at about Pec = 10. Chang-
ing far field bulk surfactant concentration, C1, also affects the bub-
ble dynamics significantly and the maximum thickening effect
occurs at intermediate values of C1. Excessive increase in C1 re-
sults in complete saturation of the interface with the surfactant,
which leads to nearly uniform interfacial surfactant concentration
and thus diminishing the Marangoni stresses.

Further computations are performed to evaluate the validity of
the insoluble surfactant models. It is found that the insoluble mod-
els are only valid for very-low capillary and high elasticity num-
bers. It is also found that the insoluble models may lead to
qualitatively inaccurate results especially when the mobility of
the bubble interface is high, i.e., in the high capillary number and
low elasticity number limits.
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Appendix A. Grid convergence and effects of density and
viscosity ratios

A.1. Grid convergence

Extensive computations are first performed in this section to
show the grid convergence and determine the minimum grid size
required to reduce the spatial discretization error below 5%. For
this purpose, computations are performed for the base case using
four sets of uniform regular Cartesian grids containing 16, 32, 64
and 128 grid cells in the radial direction, respectively. Fig. 14
shows the film thickness computed using these four different grids.
The vertical lines in Fig. 14 indicate the locations where the spatial
error is quantified, see the inset. For a grid with size of Dx, the rel-
ative error eDx is defined as

eDx ¼
hDx!0 � hDx

hDx!0










; ð20Þ

where hDx is the computed film thickness and hDx?0 is the spatial
error free film thickness predicted using Richardson’s extrapolation.
As can be seen in the inset of Fig. 14, the numerical method is for-
mally first order in space in spite of the fact that central differences
are used to approximate the spatial derivatives. This reduced order
of accuracy is mainly attributed to the smoothing of the quantities
at the interface. It is found that the grid with 64 grid cells in the ra-
dial direction is sufficient to resolve the film thickness within a rel-
ative error margin of 5% for the base case. Thus the computations
are performed using this grid for all the results presented in the pa-
per except for the low capillary number cases, i.e., Ca < 0.004. In the
low Ca cases, a twice finer grid containing 128 grid cells in the radial
direction is utilized in order to better resolve the thin liquid film re-
gion. Note that the finer grid with 128 grid cells in the radial direc-
tion reduces the error margin below 3% for the base case. It is
emphasized here that 5% error is the largest error in the film thick-
ness that is usually highly localized and the relative error is much
smaller in the other parts.

A.2. Effects of density and viscosity ratios

Computations are then performed to show the effects of the
density and viscosity ratios in the range 1 6 qo/qb,lo/lb 6 100 for
the clean and soluble cases. All other parameters are set to the val-
ues in the base case. As can be seen in Fig. 15, the relative change in

the film thickness becomes negligible (below 0.6%) when the den-
sity and viscosity ratios qo/qb P 10, lo/lb P 10. Therefore compu-
tations are performed with qo/qb = lo/lb = 10 in order to relax the
time step restriction in all the results presented in this paper.
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