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a b s t r a c t 

A front-tracking/immersed-boundary (FT/IB) method is developed for direct numerical simulations of vis- 

coelastic two-phase flow systems in complex geometries. One set of governing equations is written for 

the whole computational domain and different phases are treated as a single fluid with variable material 

and rheological properties. The interface is tracked explicitly using a Lagrangian grid while the flow equa- 

tions are solved on a fixed Eulerian grid. An immersed boundary method is used to impose the boundary 

conditions on arbitrarily-shaped solid walls. The surface tension is computed at the interface using the 

Lagrangian grid and included into the momentum equations as a body force. The viscoelasticity is ac- 

counted for using the FENE-CR model. The viscoelastic model equations are solved fully coupled with 

the flow equations within the front-tracking framework. The FT/IB method is first validated for a single- 

phase and a two-phase Newtonian flow problems. Then it is applied to study motion and deformation of 

a viscoelastic drop in a pressure-driven flow through a capillary tube with a smooth and a sharp-edged 

constrictions. It is shown that the FT/IB method is robust, second order accurate in space and suitable to 

simulate viscoelastic two-phase flows interacting with a complex geometry. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Multiphase flows interacting with complex geometries are ubiq-

uitous in a wide range of scientific and engineering applications

such as microfluidic processes [2,22,23,47] , biological cells in mi-

crocirculation [12,21,56,59] , emulsions and particle-laden flows in

colloids and interface science [46,48] and hydrocarbon recovery

processes [38,54] . Viscoelasticity plays a significant role in these

applications often in the presence of confinement. In particular,

viscoelasticity can be used to manipulate multiphase flows in mi-

crofluidics for various unconvential functionalities such as synthe-

sis of non-spherical particles [10] , microfluidic rectifier [17] , mi-

crofluidic memory and control device [16] and enhanced mixing in

microchannels [18] . Among these, viscoelastic two phase systems

in complex geometries have recently gained more interest due to

the outgrowth of droplet based microfluidic devices [11,13,28] . 

Dynamics of Newtonian two-phase systems involving com-

plex geometries has been extensively studied both experimentally

[20,39,40] and numerically [30,35,36,41,50,52] . However, effects of

viscoelasticity on drop dynamics in complex geometries have re-
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eived less attention and have been subject of a few experimental

5,7,26,31,40] and numerical studies [25,59,60] . 

The knowledge about the effects of viscoelasticity on drop dy-

amics in variable cross-section capillaries is incomplete and even

ontradictory in some cases. For example, conflicting observations

ave been reported about the effects of viscoelasticity on drop

eformation in converging and diverging channels. Olbricht and

eal [40] studied the creeping motion of drops through a sinu-

oidally constricted tube. Their experimental study revealed that

iscoelasticity in the matrix phase hinders the drop deformation.

hin and Han [7] and Mighri et al. [31] experimentally investigated

he creeping motion of a drop in a converging conical channel.

hey found that the polymers in the drop phase hinder while that

n the matrix enhances deformation. Later, Kim and Han [27] made

imilar observations in their numerical simulations. These results

re consistent with the heuristic idea that viscoelasticity in dis-

ersed/continuous phase opposes/enhances drop deformation [60] .

n the other hand, computational study of Khayat [25] demon-

trated that viscoelasticity in drop phase increases whereas that

n the continuous phase decreases drop deformation. Zhou et al.

60] claimed to clear up these contradictory results in the liter-

ture. They numerically demonstrated that viscoelasticity in ei-

her phases may assist or impede drop deformation depending on

he capillary number and the drop-to-matrix viscosity ratio. Re-

ently, Khobdeh [26] investigated dynamics of viscoelastic two-

hase systems in capillary with a periodically-varying cross-section

http://dx.doi.org/10.1016/j.compfluid.2017.05.026
http://www.ScienceDirect.com
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nd found that viscoelasticity enhances drop deformation irrespec-

ive of which phase is viscoelastic. 

Several studies have considered viscoelastic two-phase flow

ystems in a capillary with various contraction/expansion geome-

ries. Harvie et al. [19] numerically studied deformation of a vis-

oelastic droplet moving through a planar channel with a sud-

en contraction/expansion. They reported qualitative agreement

etween the computational simulations and their own experimen-

al results including the forked tail formation at the back of a vis-

oelastic droplet as it passes through the constriction. Chung et al.

8,9] numerically investigated the effects of viscoelasticity on drop

ynamics in a planar sudden contraction/expansion microchannel.

heir work showed that viscoelasticity enhances drop deformation

nd the effects are the most pronounced when it is contained in

he continuous phase and viscosity ratio is high. Recently, Izbas-

arov and Muradoglu [22,23] have performed extensive numerical

imulations to investigate the effects of viscoelasticity on drop dy-

amics and deformation in a capillary tube with a sudden contrac-

ion/expansion. They found that viscoelasticity interacts with drop

nterface in a non-monotonic and complicated way, and the two-

hase viscoelastic systems exhibit very rich dynamics especially in

he expansion region. More recently, Nooranidoost et al. [37] per-

ormed numerical simulations to examine effects of viscoelasticity

n droplet formation in a flow focusing geometry. 

In the context of the present work, the most relevant numeri-

al studies have been done about motion of a viscoelastic droplet

n a capillary tube with a smooth protrusion [3,42–45,59] . Bathe

t al. [3] and Shirai et al. [43,44] subsequently used a Maxwell

uid droplet as a model for a neutrophil and studied its motion

nd deformation in a cylindrical capillary tube with a smooth pro-

rusion using a finite element method. It was shown that the tran-

it time initially increases with the shear modulus and eventually

elaxes to reach a plateau as the shear modulus is further increased

3,43] . It was also found that the transit time is proportional to

he viscosity of the cell and to the square root of the curvature

f the constriction [43] . Later, Zhou et al. [59] investigated transit

ime and deformation of a neutrophil in an axisymmetric capil-

ary tube using a Newtonian and an Oldroyd-B fluid models. Their

eometry consisted of two different tubes smoothly connected by

n arc of 90 o . They observed a qualitatively similar viscoelastic re-

ponse as in Shirai et al. [43] and Bathe et al. [3] at moderate flow

ates, i.e., the transit time decreases with viscoelasticity. However

hey observed that the effects of viscoelasticity are reversed when

he flow rate exceeds a critical value. Recently, Shirai and Masuda

45] studied motion of a neutrophil through a rectangular channel

ith a moderate constriction. They found that the transit time is

overned by the hydraulic diameter of the throat and the curva-

ure of the constriction. Moreover, they suggested that a rectangu-

ar channel can be employed as a model for an axisymmetric tube

ith an appropriate hydraulic diameter and curvature. 

Nearly all the previous studies regarding drop dynamics in a

ariable cross-section channels have focused on flows in a creep-

ng flow regime. This is a limiting factor since flow is inher-

ntly unsteady and inertial effects might be important especially in

everely constricted channels. In fact, the Reynolds number might

e significantly larger in the constriction region resulting in sig-

ificant deformation and even breakup of a droplet in constricted

apillaries [23,38,41] . Izbassarov and Muradoglu [23] have recently

tudied the motion of pressure-driven two-phase viscoelastic sys-

ems through a constricted channel with finite Reynolds numbers

ut their geometry involved only sharp constrictions. They demon-

trated significant influence of inertia even at moderate Reynolds

umbers when the constriction is severe. 

In the present work, a front-tracking/immersed-boundary

FT/IB) method is developed for direct numerical simulations of

iscoelastic interfacial flow systems in a complex geometry. The
ethod is general in the sense that viscoelasticity can exist in

ither or both phases with different rheological properties. How-

ver the results are presented here only for the case in which

he viscoelasticity is contained in the drop phase. The fluid-solid

oundary is handled using a sharp interface immersed boundary

ethod [14,15,33] , generally known as a discrete forcing approach

ith direct imposition of the boundary conditions [34] . Viscoelas-

icity is accounted for using the FENE-CR model of Chilcott and

allison [6] but the method can accomodate virtually any version

f Oldroyd-B and FENE type models [22] . The immersed boundary

ethod is first validated for a benchmark single-phase problem,

.e., Newtonian fluid flow in a pipe with a semicircular constric-

ion. For this case, the numerical results are compared and found

o be in good agreement with the results obtained by the com-

ercial software Fluent TM . Then the method is applied to simu-

ate the Newtonian droplet moving through a constricted tube and

he results are found to be in good agreement with the computa-

ional results of Tsai and Miksis [50] . Finally the method is used to

imulate more challenging cases involving motion of a viscoelastic

roplet through a smoothly and a sharply constricted capillaries

or a wide range of flow parameters. 

. Mathematical formulation 

The flow equations are briefly presented here in the context of

he front-tracking method. Following Tryggvason et al. [49] and

zbassarov and Muradoglu [22] , a one field formulation is used

here a single set of governing equations is written for the entire

omputational domain with different material properties in each

hase. The surface tension is included as a body force distributed

ear the interface. Flow is assumed to be incompressible and ma-

erial properties remain constant in each phase. 

In the front-tracking framework, the mass and momentum con-

ervation equations can be written as 

 · u = 0 , (1) 

∂ρu 

∂t 
+ ∇ · (ρuu ) = −∇p + ∇ · μs (∇ u + ∇ u 

T ) + ∇ · τττ

+ 

∫ 
S 

σκn δ(x − x f ) dS, (2) 

here μs , ρ , p , u and τ denote the solvent viscosity, the density,

he pressure, the velocity vector and the extra stress tensor, re-

pectively. Last term in Eq. (2) represents the body force due to the

urface tension. In this term, σ , κ , n and S are the surface tension

oefficient, twice the mean curvature, unit vector normal to the in-

erface pointing into the drop phase and the surface area, respec-

ively. The surface tension only acts on the interface as indicated

y the three dimensional Dirac delta function, δ, whose arguments

 and x f are the points where the equation is being evaluated and

n interface point, respectively. 

The FENE-CR model [6] is adopted as a constitutive equation for

he viscoelastic extra stresses. The model can be expressed as 

∂ A 

∂t 
+ ∇ · ( u A ) − (∇ u ) T · A − A · ∇ u = −F A 

λ
( A − I ) , (3) 

 A = 

L 0 
2 

L 0 
2 − trace ( A ) 

, (4) 

here A , λ, L 0 , F A and I are the conformation tensor, the relaxation

ime, the extensibility parameter defined as the ratio of the length

f a fully extended polymer dumbbell to its equilibrium length,

he strech function and the identity tensor, respectively. The extra
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Immersed boundary
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Fig. 1. The Lagrangian and Eulerian grids used in the computations. The flow equa- 

tions are solved on a fixed Eulerian grid. The interface between different fluid 

phases is represented by a Lagrangian grid consisting of connected marker points. 

An immersed boundary method is applied to impose the boundary conditions on 

the solid boundary which cuts through the Eulerian grid. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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stress tensor τττ is related to the conformation tensor by 

τ = 

F A μp 

λ
( A − I ) , (5)

where μp is the polymeric viscosity. 

It is also assumed that material properties remain constant fol-

lowing a fluid particle, i.e., 

Dρ

Dt 
= 0 ; Dμs 

Dt 
= 0 ; Dμp 

Dt 
= 0 ; Dλ

Dt 
= 0 , (6)

where 
D 

Dt 
= 

∂ 

∂t 
+ u · ∇ is the material derivative. The density,

polymeric and solvent viscosities and the relaxation time vary dis-

continuously across the fluid interface and are specified using an

indicator function φ as 

μp = μp,i φ + μp,o (1 − φ) ; μs = μs,i φ + μs,o (1 − φ) ;
ρ = ρi φ + ρo (1 − φ) ; λ = λi φ + λo (1 − φ) , (7)

where the subscripts i and o denote the properties of the inner

(dispersed) and outer (continuous) fluids, respectively. The indica-

tor function φ is defined such that it is unity inside the droplet

and zero outside. 

3. Numerical method 

The flow equations are solved fully coupled with the FENE-CR

model in the framework of the front-tracking method [22] . The fo-

cus of this work is placed on a sharp interface immersed bound-

ary algorithm and its coupling with the front-tracking method. Al-

though it is described and implemented here for two-dimensional

(axisymmetric) flows, the numerical method is general and can be

readily extended to full 3D flows. 

The mass and momentum conservation equations ( Eqs. (1) and

( 2 )) are solved on a staggered Cartesian grid using a projection

method. The log-conformation method is used to solve the FENE-

CR model equations to overcome so called high Weissenberg num-

ber problem. All the spatial derivatives are approximated using

central differences except for the convective terms in the FENE-CR

model for which the 5 th -order WENO-Z scheme [4] is used. A time

integration is done using a simple first order Euler method but sec-

ond order time accuracy can be easily recovered using a predictor-

corrector scheme [49] . The details of the numerical method can be

found in Izbassarov and Muradoglu [22] . The method has been suc-

cessfully applied to various viscoelastic two-phase flow problems

[22–24,37] . 

3.1. Front-tracking method 

The front-tracking method is briefly described here for com-

pleteness. In this approach, fluid-fluid interface is handled on a

separate Lagrangian grid that consists of linked marker points

moving with the local flow velocity interpolated from the Eulerian

grid ( Fig. 1 ). Each segment of Lagrangian grid between two marker

points is called a front element. The surface tension is computed

on the Lagrangian grid and is then distributed on the neighboring

Eulerian grid points to be added to the momentum equations as a

body force [49] . The indicator function is computed at each time

step using the standard procedure [49] and is then employed to

set the fluid properties in each phase. The Lagrangian grid is re-

structured at each time step by splitting very large front elements

and deleting very small ones [49] to keep the front element size

nearly uniform and comparable to the Eulerian grid size. Note that

very small elements create unresolved wiggles while very large el-

ements cause lack of grid resolution. Details of the front-tracking

method can be found in Unverdi and Tryggvason [53] and Tryggva-

son et al. [49] , and the treatment of viscoelasticity in Izbassarov

and Muradoglu [22] . 
.2. Immersed boundary method 

A sharp-interface immersed boundary method has been widely

sed to treat complex fluid-solid interfaces [34] . The present

ethod belongs to the discrete forcing category where the im-

ersed boundary treatment is directly applied to the discretized

avier–Stokes equations on the immersed boundaries. In this ap-

roach, an arbitrary solid surface immersed in the fluid is rep-

esented by a discrete function and the boundary conditions are

mposed using the ghost cell methodology [14,15,29,33,51] . A gen-

ral immersed boundary with various cell types is shown in Fig. 1 .

n this figure, a ghost cell (GC) is defined as an Eulerian grid cell

hich owns at least one solid and one fluid grid points. Similarly,

 ghost point (GP) is defined as an Eulerian grid point which is in

he solid region but shares a ghost cell that has at least one node

n the fluid region. A ghost point is projected with respect to the

olid interface to determine its associated image point (IP). The in-

ersection point between the solid boundary and the line connect-

ng the ghost and its associated image points is called a body inter-

ept point (BI). A series of computational geometry operations are

erformed to identify the ghost points and associated image and

ntercept points. Since simulations are performed on a staggered

rid, these operations have to be done for pressure and velocity

odes separately. However, these operations have to be performed

nly once prior to beginning of flow simulations. 

Once the node operations are completed, we use a bilinear in-

erpolation to determine the values of flow quantities at image

oints. The boundary conditions are taken into account in the in-

erpolation process as detailed later. A given flow quantity, say

, is represented in the computational cell containing the image
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Fig. 2. The type I (cross shaded) and type II (gray colored) cells that may be en- 

countered in the 2D image point methodology. 
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oint as 

(r, z) = C 1 rz + C 2 r + C 3 z + C 4 , (8) 

here C i are the interpolation coefficients to be determined. In the

implest case that the cell containing the image point is completely

n the fluid region as shown in Fig. 1 , the coefficients can be simply

omputed by 

 

 

 = A 

A A 

-1 ψ 

ψ ψ , (9) 

here 

 

 

 = 

⎡ 

⎢ ⎣ 

C 1 
C 2 
C 3 
C 4 

⎤ 

⎥ ⎦ 

, ψ 

ψ ψ = 

⎡ 

⎢ ⎣ 

ψ 1 

ψ 2 

ψ 3 

ψ 4 

⎤ 

⎥ ⎦ 

, A 

A A = 

⎡ 

⎢ ⎣ 

rz| 1 r| 1 z| 1 1 

rz| 2 r| 2 z| 2 1 

rz| 3 r| 3 z| 3 1 

rz| 4 r| 4 z| 4 1 

⎤ 

⎥ ⎦ 

. (10) 

In Eq. (10) , the subscripts denote the corner points of the cell

e.g., the blue shaded cell in Fig. 1 ). Once the vector C C C is deter-

ined, the value of ψ at the image point can be approximated

sing the bilinear interpolation as 

 ψ] IP = C 1 rz| IP + C 2 r| IP + C 3 z| IP + C 4 . (11) 

nce the image point value is estimated, the corresponding ghost

oint value is updated according to the Neumann or the no-slip

oundary conditions for the pressure or the velocity fields, respec-

ively. An additional treatment is needed for an image point that

hares a computational cell with at least one ghost point as de-

icted in Fig. 2 . There are two types of such cases that require

pecial treatment in the 2D image point methodology. The type

 and the type II cases involve one and two ghost points among

heir four neighboring nodes, respectively, as depicted in Fig. 2 .

ote that the three-ghost-points case is not permissible in the 2D

artesian grid. In the type I case, the boundary conditions are read-

ly incorporated into the interpolation procedure used to evaluate

he value at the image point. For instance, in the case of a station-

ry wall, the no-slip boundary conditions for a velocity component

n the body intercept result in 

 1 rz| BI + C 2 r| BI + C 3 z| BI + C 4 = 0 . (12) 
ssuming that the node 1 in Fig. 1 is the ghost point, the matrix A 

AA

nd vector ψ 

ψ ψ are then modified as 

 

 

 = 

⎛ 

⎜ ⎝ 

rz| BI r| BI z| BI 1 

rz| 2 r| 2 z| 2 1 

rz| 3 r| 3 z| 3 1 

rz| 4 r| 4 z| 4 1 

⎞ 

⎟ ⎠ 

, ψ 

ψ ψ = 

⎡ 

⎢ ⎣ 

0 

ψ 2 

ψ 3 

ψ 4 

⎤ 

⎥ ⎦ 

. (13) 

owever, in the case of the pressure field, the Neumann boundary

onditions must be applied on the solid wall, i.e., [(∇p · n )] wall =
 , where p is the pressure and n is the normal vector to the sur-

ace at the body intercept point. Using central differences, we ob-

ain 

 1 rz| IP + C 2 r| IP + C 3 z| IP = C 1 rz| GP + C 2 r| GP + C 3 z| GP , (14) 

hich can be re-arranged as 

 1 (r z| IP − r z| GP ) + C 2 (r| IP − r| GP ) + C 3 (z| IP − z| GP ) = 0 . (15) 

hus the matrix A 

A A and vector ψ 

ψ ψ become 

 

 

 = 

⎛ 

⎜ ⎝ 

β1 β2 β3 0 

rz| 2 r| 2 z| 2 1 

rz| 3 r| 3 z| 3 1 

rz| 4 r| 4 z| 4 1 

⎞ 

⎟ ⎠ 

, ψ 

ψ ψ = 

⎡ 

⎢ ⎣ 

0 

ψ 2 

ψ 3 

ψ 4 

⎤ 

⎥ ⎦ 

, (16) 

here 

1 = r z| IP − r z| GP , β2 = r | IP − r | GP , β3 = z| IP − z| GP . (17) 

 similar procedure can be used for the other quantities, i.e., for

he extra stresses when the ambient fluid is viscoelastic. In the

resent study, the viscoelasticity is contained only in the drop

hase which is assumed to remain distant from the solid wall at

ll the time. 

To mitigate the problem of the type II, various approaches can

e used. One straightforward methodology is to assemble the ghost

oint equations (including the body intercept equations for type I)

nto a coupled global system of linear equations. This requires solv-

ng a linear system of equations at each time step and therefore is

ot computationally efficient. Alternatively, the values at the type

 nodes are evaluated first and then their updated values are used

o convert type II cells into the type I cells which are then han-

led using the type I procedure. Converting type II nodes into type

 nodes is done iteratively and is typically completed in a few cy-

les. In this way, the image point values are updated without as-

embling and solving an additional linear system of equations. This

rocedure is used in the present study and found to be highly ro-

ust and maintains overall second order accuracy of the numerical

ethod. 

. Results and discussions 

.1. Single-phase flow 

The method is first validated for a Newtonian single-phase flow

n a pipe with a semicircular constriction as shown in Fig. 3 . The

adius of the pipe is R and the length is L = 12 R . The radius of the

onstriction is R /2 and it is located in the middle of the pipe. The

ow is assumed to be axisymmetric so a cylindrical coordinate sys-

em is adopted with z and r representing the axial and radial direc-

ions, respectively. Pressure driven flow is initiated and maintained

y imposing a fully developed velocity profile at the inlet and con-

tant pressure at the outlet. The symmetry and no-slip boundary

onditions are applied at the centerline and the solid wall, respec-

ively. For this flow, the Reynolds number is defined as Re = 

ρV R 
μ

here V is the average velocity at the inlet. 

Simulations are performed on a uniform Cartesian grid with

rid sizes �r = R/ 256 and �r = R/ 384 for Re = 1 and Re = 50 , re-

pectively. Note that an unstructured triangular mesh is employed
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Fig. 3. The constricted pipe used for simulations of a single phase Newtonian fluid flow. 
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Fig. 4. The single phase Newtonian fluid flow in a pipe with a semicircular constriction on the wall. The steady state velocity profiles at the middle of the constriction for 

Re = 1 (left) and Re = 50 (right). The solid lines represent the present results and the symbols are the results obtained using the Fluent TM software. 
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Fig. 5. The sinusoidally constricted capillary tube [50] . 
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for the simulations in the Fluent TM software package. Fig. 4 shows

the steady state velocity profiles normalized by the maximum ax-

ial velocity ( v z,max ) at the neck of the constriction for Re = 1 and

Re = 50 . As can be seen in this figure, there is excellent agree-

ment between the present results and the results obtained by the

Fluent TM software package indicating accuracy of the immersed

boundary method. Although not included in the paper, there is also

good quantitative agreement between the present simulations and

the results of Fluent TM software for all the flow quantities. 

4.2. Multiphase flow 

In this section, the method is first validated for the motion and

deformation of a Newtonian droplet in a sinusoidally constricted

capillary tube. This problem is selected to facilitate direct compar-

ison of the present results with the boundary integral simulations

of Tsai and Miksis [50] . Then the method is applied to study the

effects of viscoelasticity on drop dynamics in two different con-

stricted tubes. 

4.2.1. Motion of a Newtonian droplet in a constricted capillary tube 

This test case deals with dynamics of a Newtonian droplet in a

sinusoidal constricted tube as depicted in Fig. 5 . Following Tsai and
iksis [50] , the constriction geometry is defined as 

 = ω(z) = R ( 1 − 0 . 3 [ 1 + cos (πz/R ) ] ) , 5 R ≤ z ≤ 7 R, (18)

here R is the radius of the tube. Note that the radius of the neck

s r 0 = 0 . 4 R and the length of the constriction is 2 R . A total length

f the channel is L = 12 R . A spherical droplet of radius 0.9 R is ini-

ially located at 4 R distance from the inlet. Flow is assumed to be

xisymmetric so the symmetry boundary conditions are applied at

he centerline while the no-slip boundary conditions are used on

he wall. Flow is initiated instantly and maintained by imposing a

ully developed velocity profile at the inlet and keeping the pres-

ure fixed at the exit of the channel. Taking the average velocity ( V )

nd the channel radius ( R ) at the inlet as the velocity and length

cales, respectively, the time scale is defined as T = 

R 
V . Following

sai and Miksis [50] , the relevant non-dimensional parameters are

hen defined as 

e = 

2 . 5 ρo V R 

μo 
;Ca = 

μo V 

σ
; θ = 

μi 

μo 
;α = 

ρi 

ρo 
, (19)

here Re and Ca are the Reynolds and the capillary numbers, re-

pectively. Note that Re in Eq. (19) corresponds to the Reynolds

umber at the neck. The other parameters θ and α denote the

iscosity and the density ratios, respectively. Following Tsai and

iksis [50] , the capillary number, and the viscosity and the den-

ity ratios are fixed at Ca = 0 . 1 , θ = 0 . 01 and α = 1 , respectively.
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Fig. 6. Evolution of an initially spherical Newtonian droplet in a sinusoidally constricted tube. The snapshots are taken at nondimensional times of t ∗ = 0 , 0.25, 0.5, 0.75, 

1, 1.25, 1.5, 1.75, 2 (top row). The interface shapes are shown at nondimensional times of t ∗ = 0 . 25 and 0.75 (bottom row). The red symbols denote the results of Tsai and 

Miksis (1994) while the solid lines are the present results. ( Ca = 0 . 1 , Re = 0 . 05 , θ = 0 . 01 and α = 1 ). (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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lthough Tsai and Miksis [50] considered a creeping flow, we set

e = 0 . 05 to relax the time step restriction imposed by the numer-

cal stability condition. 

Simulations are performed using a 64 × 768 grid resolution. Al-

hough not shown here, this grid resolution is sufficient to obtain

rid independent solutions. The top row in Fig. 6 shows the time

volution of the droplet as it passes through the constriction. As

xpected the droplet deforms in conformity with the shape of the

onstriction, i.e., the leading edge of the droplet is sharpened at

he entry and the rear is flattened at the exit due to acceleration

f the flow in the constriction, which is consistent with the obser-

ations of Tsai and Miksis [50] . The drop shapes are compared with

he boundary integral results of Tsai and Miksis [50] in the bottom

ow of Fig. 6 at the nondimensional times of t ∗ = 0 . 25 and 0.75. As

een, the present results are in good agreement with those of Tsai

nd Miksis [50] , illustrating the capability of the current method

o accurately handle strong interactions of two-phase flows with a

omplex geometry. 

.2.2. A viscoelastic droplet in constricted capillaries 

The method is next applied to study the dynamics of a vis-

oelastic droplet moving through a Newtonian liquid in two dif-

erent constricted capillaries. The FENE-CR model is employed to

odel the viscoelasticity and the flow is considered to be ax-

symmetric. Thus only one half of the computational domain is

sed. The first capillary tube is the same as the one considered

n the previous section, i.e., the sinusoidally constricted channel

hown in Fig. 5 . As discussed above, this geometry is motivated

y the computational studies of Tsai and Miksis [50] and Udayku-

ar et al. [52] but they both considered only all Newtonian two-

hase flow systems. To demonstrate the robustness of the numer-

cal method, the second geometry is selected as a capillary tube

ith a sharp-edged protrusion as sketched in Fig. 8 . The case of tri-

ngular protrusion is motivated by the computational study of Yin

nd Luo [57] who simulated a 2D droplet moving inside a planar

icrochannel with a triangular protrusion. Note that they also con-
idered only all Newtonian two-phase flow systems. For the both

ases, the constriction is placed at the middle of the channel of

he radius R and length L = 12 R . Both constrictions have the length

f 2 R and the height of 0.6 R , so the radius of the channel at the

eck is r 0 = 0 . 4 R . A spherical viscoelastic droplet of radius 0.7 R is

laced at the centerline with an axial distance of 4 R from the inlet.

ressure driven flow is maintained by imposing a fully developed

elocity profile at the inlet and a constant pressure at the outlet.

he symmetry and no-slip boundary conditions are applied at the

olid wall and the centerline, respectively. 

In addition to the non-dimensional numbers defined in Eq. (19) ,

he other relevant dimensionless parameters are the Weissenberg

umber W i = 

λV 

R 
and the solvent viscosity ratio β = 

μs 

μs + μp 
.

rop deformation parameter is defined as 

eformation = 

d a − d r 

d a + d r 
, (20) 

here d a and d r are the maximum sizes of the droplet in the axial

nd the radial directions, respectively. Simulations are performed

or a wide range of flow parameters by changing only one param-

ter at a time while keeping all others fixed to demonstrate the

ole effects of the parameter on the flow. To facilitate this, we de-

ne a base case as Re = 10 , Ca = 0 . 1 , W i = 1 , β = 0 . 5 , L 0 = 25 , θ = 2

nd α = 1 . Note that the base case is selected to be consistent with

he range of parameters used by Izbassarov and Muradoglu [23] . 

Simulations are first performed to determine the grid resolu-

ion required for the grid convergence and demonstrate the second

rder spatial accuracy of the numerical method. For this purpose,

omputations are done for the base case using the grid resolutions

f 64 × 768, 96 × 1152 and 128 × 1536, and the results are plotted

n Fig. 7 . As can be seen in this figure, differences between succes-

ive grid resolutions decrease as grid is refined indicating the grid

onvergence. The relative spatial error is also plotted in the bot-

om row of Fig. 7 at the selected locations indicated by the verti-

al dashed lines in the top row of Fig. 7 . For a grid size of �r , the
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Fig. 7. Grid convergence of the numerical method for the base case. The results are obtained using various grid resolutions ranging between 64 × 768 and 128 × 1536. (a) 

The deformation and (b) the average axial velocity of the droplet versus the moving distance of the droplet centroid. The variation of error in (c) the deformation and (d) 

the average axial velocity of the droplet against the square of the non-dimensional grid size ( �r / R ) 2 at the axial locations z c /R = 0 , 1 , 2 . The approximate linear relationship 

indicates the expected second-order accuracy of the method. ( W i = 1 , Re = 10 , Ca = 0 . 1 , θ = 2 and α = 1 ). 
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Fig. 8. The capillary tube constricted with a sharp-edged protrusion. 
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relative error in a flow quantity, say Q , is defined as 

Error = 

∣∣∣Q �r→ 0 − Q �r 

Q �r→ 0 

∣∣∣, (21)

where Q �r is the value computed using grid resolution �r

and Q �r → 0 is the spatial error free value predicted using the

Richardson’s extrapolation. The approximate linear relationship in

Fig. 7 confirms the expected second order spatial accuracy of the

method. The figure also shows that the 64 × 768 grid resolution

is sufficient to reduce the spatial error below 5% in all the flow

quantities. Therefore this grid resolution is used for all the mul-
iphase simulations in the present study. Note that, although not

hown here, the drop volume is preserved within 2% for all the

ases considered in this study. 

First the robustness of the present numerical method is tested.

or this purpose, simulations are performed for the base case us-

ng the tubes with a sinusoidal and a sharp-edged protrusions. The

volution of the droplet in a sinusoidally constricted tube is shown

n Fig. 9 where the square root of the trace of conformation ten-

or ( 
√ 

trace (A ) ) is also plotted as a measure of average polymer

ength. This figure shows that droplet does not deform in a full
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Fig. 9. Evolution of a FENE-CR droplet in a sinusoidally constricted capillary tube. Contours of average polymeric extension ( 
√ 

trace (A ) ) are also plotted to show the evolution 

of the viscoelastic stresses. ( W i = 1 , Re = 10 , Ca = 0 . 1 , θ = 2 and α = 1 , Grid: 64 × 768). 
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Fig. 10. Evolution of a FENE-CR droplet in a sharp-edged constricted capillary tube. Contours of average polymeric extension ( 
√ 

trace (A ) ) are also plotted to show the 

evolution of the viscoelastic stresses. ( W i = 1 , Re = 10 , Ca = 0 . 1 , θ = 2 and α = 1 , Grid: 64 × 768). 
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ompliance with the shape of the constriction, which is mainly at-

ributed to the inertial effects that are expected to be significant

specially in the constriction region. As seen, the droplet elongates

n the constriction and retracts back in the expansion region. The

olymers in the droplet fluid undergo a strong extensional strain in

he axial direction as the droplet enters the contraction. Once the

roplet is within the constriction, high viscous shear stresses in

he bulk fluid between the wall and the interface induce large tan-

ential viscoelastic stresses and elongate polymers parallel to the
nterface as seen at t ∗ = 1 . 2 in Fig. 9 . As the droplet moves for-

ard, this region grows and penetrates further inside the droplet

 t ∗ = 1 . 5 ). In the expansion region, the flow decelerates and the tail

f the droplet retracts towards the exit of the constriction and sig-

ificantly reduces the viscoelastic stresses as the polymers relax to

heir equilibrium length ( t ∗ = 1 . 6 ). After the tail retracts, the pos-

erior dimple occurs at the trailing edge of the droplet ( t ∗ = 1 . 8 )

nd the shape eventually relaxes towards a typical shape as ob-

erved in the all Newtonian systems ( t ∗ = 3 . 3 ). Very similar results
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Fig. 11. Effects of viscoelasticity on dynamics of a FENE-CR droplet in the range 

of W i = 0 (Newtonian) and W i = 100 (highly viscoelastic). The snapshots are taken 

at t ∗ = 0 . 0 , 0.5, 0.8, 1.0, 1.3, 1.4, 1.6, 2.0, 2.2, 2.5. ( Re = 10 , Ca = 0 . 1 , θ = 2 , α = 1 , 

Grid: 64 × 768). 
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are also obtained for the sharp-edged protrusion case as shown in

Fig. 10 . The analogous results for these two different geometries

are mainly attributed to the inertia which significantly suppresses

effects of the shape of the constriction. These results show that

the constriction geometry does not play significant role in drop

dynamics for the base case. Thus only the sinusoidal constricted

channel is used in the rest of the paper. However, the smooth flow

field and viscoelastic stresses observed in the both cases without

any sign of numerical instability indicate the robustness and accu-

racy of the present numerical method. 

We next examine the effects of viscoelasticity on drop dynamics

in the sinusoidally constricted channel. For this purpose, the Weis-

senberg number is varied between W i = 0 (Newtonian) and W i =
100 (highly viscoelastic) while keeping the other parameters the

same as the base case. The shape evolution is shown in Fig. 11 for

 i = 0 , 0 . 1 , 1 , 10 and 100 to qualitatively illustrate the effects of

the viscoelasticity on the drop dynamics. This figure shows that the

overall droplet evolution is not significantly affected by the Weis-

senberg number, i.e., the droplet deforms in the constriction, re-

tracts in the expansion and eventually relaxes to a steady shape

in the downstream of the channel for all the Weissenberg num-

bers. However, a close examination of Fig. 11 reveals that there is

a noticeable viscoelastic effect especially in the downstream region

up to W i = 10 . This can be better seen in Fig. 12 where the defor-

mation and average axial velocity of the droplet are plotted as a

function of the moving distance of the droplet centroid. This fig-

ure shows that the effects of the viscoelasticity are significantly

more pronounced in the expansion region. In general, the droplet

deformation is inhibited by the viscoelastic normal stresses in the

droplet phase in a complicated and non-monotonic way. Droplet

deformation decreases up to W i = 0 . 1 and then increases to even-

tually relax to the all Newtonian case. This non-monotonic behav-
or is attributed to the fact that viscoelasticity reacts to flow with

 finite time proportional to the polymer relaxation time λ, and is

onsistent with the numerical simulations of Zhou et al. [60] and

zbassarov and Muradoglu [22] . At low Weissenberg numbers (i.e.,

p to W i = 0 . 1 ), the relaxation time is small. Thus less time is re-

uired to attain the maximum level of viscoelastic stresses which

ct to inhibit droplet deformation and droplet mobility. As Wi is

urther increased, there is not a sufficient time for the viscoelastic

tresses to react to the flow before the droplet leaves the constric-

ion, which reduces the effects of viscoelasticity on drop dynam-

cs. When Wi > 10, the droplet behaves like a Newtonian droplet.

imilar trend is also observed for the axial velocity of the droplet

entroid as seen in Fig. 12 . The viscoelasticity reduces droplet de-

ormation and thus moves the interface closer to the wall, thereby

eading to an overall decrease in droplet mobility. The present re-

ults are in qualitative agreement with the numerical simulations

f Wu [55] , Yue et al. [58] , Aggarwal and Sarkar [1] , and with ex-

erimental observations of Mighri et al. [32] . 

Simulations are then performed to examine the inertial effects

n viscoelastic droplet dynamics. First the evolution of droplet

hape and viscoelastic stresses are shown in Fig. 13 for Re = 50

nd W i = 100 to illustrate the combined effects of the inertia and

he viscoelasticity. The other parameter are the same as in the base

ase. This figure shows that the droplet significantly elongates as it

asses through the constriction, which is mainly attributed to ef-

ects of inertia as will be discussed below. The viscoelastic stresses

re mainly generated along the interface near the wall of the con-

triction and quickly penetrate inside the droplet making the dis-

ribution nearly uniform in the radial direction. A bulge is formed

s a result of recirculation at the leading edge of the droplet as

lso observed by Udaykumar et al. [52] 

Next the effects of the Reynolds number are investigated. For

his purpose, the Reynolds number is varied between Re = 1 and

e = 50 while keeping the other parameters the same as in the

ase case. The shape evolution of a droplet is plotted in Fig. 14 for

e = 1 , 10 , 20 and 50 at times t ∗ = 0 , 0 . 5 , 0 . 8 , 1 , 1 . 3 , 1 . 4 , 1 . 6 , 2 , 2 . 2

nd 2.5. This figure clearly shows strong inertial effects on the

rop dynamics especially in the downstream of the constriction.

he droplet elongates more as the Reynolds number increases. The

ulge formation occurs only at Re = 50 . The inertial effects are

uantified in Fig. 15 where the droplet deformation and the av-

rage axial velocity of the droplet are plotted against the moving

istance of the droplet centroid. The results for the corresponding

ewtonian droplet are also shown in Fig. 15 to highlight the ef-

ects of viscoelasticity. This figure confirms the large effects of the

eynolds number on the drop dynamics. 

We finally study the effects of the capillary number on dynam-

cs of a viscoelastic droplet. The capillary number quantifies the

elative importance of the surface tension compared to the vis-

ous stresses and droplet tends to deform more easily as the capil-

ary number increases. The evolution of the droplet shape together

ith the viscoelastic stresses is shown in Fig. 16 for W i = 100 and

a = 1 to demonstrate the combined effects of viscoelasticity and

eformability, and their interactions with the constriction. A forked

ail is formed as the droplet passes through the constriction and

rows further in the downstream. Note that the filament at the

railing edge is likely to rupture in the downstream of the con-

triction but breakup is not allowed in the present simulations. As

efore, the viscoelastic stresses are mainly induced near the tip of

he constriction but remain concentrated at the back of the droplet

ue to lack of strong internal circulation in the droplet at this rel-

tively high capillary number. Simulations are then performed for

 range of capillary numbers between Ca = 0 . 05 and Ca = 1 while

eeping the other parameters fixed at their values in the base

ase and results are shown in Figs. 17 and 18 . Fig. 17 qualitatively

hows that the droplet deformation increases with the capillary
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Fig. 12. Effects of viscoelasticity on dynamics of a FENE-CR droplet in the range of W i = 0 (Newtonian) and W i = 100 (highly viscoelastic). The deformation (upper plot) and 

the axial velocity (lower plot) of the droplet are plotted against the moving distance of the droplet centroid. ( Re = 10 , Ca = 0 . 1 , θ = 2 , α = 1 , Grid: 64 × 768). 
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Fig. 13. Evolution of a FENE-CR droplet in a sinusoidally constricted capillary tube. Contours of average polymeric extension ( 
√ 

trace (A ) ) are also plotted to show the 

evolution of the viscoelastic stresses. ( W i = 100 , Re = 50 , Ca = 0 . 1 , θ = 2 , α = 1 , Grid: 64 × 768). 
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Fig. 14. Effects of Reynolds number on dynamics of a FENE-CR droplet in the range 

of Re = 1 and Re = 50 . The snapshots are taken at t ∗ = 0 . 0 , 0.5, 0.8, 1.0, 1.3, 1.4, 1.6, 

2.0, 2.2, 2.5. ( W i = 1 , Ca = 0 . 1 , θ = 2 , α = 1 , Grid: 64 × 768). 
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Fig. 15. Effects of Reynolds number on dynamics of a FENE-CR drolpet in the range of

(lower plot) of the droplet are plotted against the moving distance of the droplet centro

corresponding Newtonian cases, respectively. ( W i = 1 , Ca = 0 . 1 , θ = 2 , α = 1 , Grid: 64 ×
umber as expected. It also shows that the forked tail formation

ccurs at the trailing edge before the droplet leaves the constric-

ion at high capillary numbers, i.e., Ca ≥ 0.5. The effects of cap-

llary number are quantified in Fig. 18 where the average droplet

elocity and the droplet deformation are plotted as a function of

he moving distance of droplet centroid. The results for the corre-

ponding Newtonian droplet are also shown in Fig. 18 to demon-

trate the effects of the viscoelasticity. This figure clearly shows

he large dependence of drop dynamics on the capillary number.

n the case of Ca = 0 . 05 , the droplet almost completely occupies

he constriction region leaving a very thin liquid film between the

roplet and the solid wall. On the other hand, the droplet eas-

ly deforms and squeezes through the constriction with a rela-

ively large liquid film between the wall and the droplet inter-

ace for Ca = 1 . The average axial velocity increases as Ca increases

ince the droplet easily deforms and elongates near the center-

ine where flow velocity is the maximum whereas, in the case of

mall Ca , the droplet resists to viscous shear stresses and thus its

verage velocity becomes smaller. As also mentioned before, the

iscoelasticity inhibits droplet deformation and thus decreases its

obility. 

. Conclusions 

A sharp interface immersed boundary method has been devel-

ped and coupled with a finite-difference/front-tracking algorithm
 Re = 1 and Re = 50 . The deformation (upper plot) and the average axial velocity 

id. The solid lines and the symbols denote the results for the viscoelastic and the 

768). 



H. Zolfaghari et al. / Computers and Fluids 156 (2017) 548–561 559 

0

1

2

3

4

5

6

7

8

t∗ = 0.0 t∗ = 0.7 t∗ = 1.2 t∗ = 1.5 t∗ = 1.6 t∗ = 1.8 t∗ = 2.1 t∗ = 2.4

Fig. 16. Evolution of a highly viscoelastic droplet in a sinusoidally constricted capillary tube. Contours of average polymeric extension ( 
√ 

trace (A ) ) are also plotted to show 

the evolution of the viscoelastic stresses. ( W i = 100 , Re = 10 , Ca = 1 . 0 , θ = 2 , α = 1 , Grid: 64 × 768). 

Fig. 17. Effects of capillary number on dynamics of a FENE-CR droplet in the range 

of Ca = 0 . 05 and Ca = 1 . The snapshots are taken at t ∗ = 0 . 0 , 0.5, 0.8, 1.0, 1.3, 1.4, 

1.6, 2.0, 2.2, 2.5. ( W i = 1 , Re = 10 , θ = 2 , α = 1 , Grid: 64 × 768). 
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or direct numerical simulations of viscoelastic droplets moving

hrough complex geometries. The method is general and applica-

le to virtually any viscoelastic multiphase flow system but it is

mplemented only for axisymmetric flows and the viscoelasticity is
ontained only in the droplet fluid in this paper. The solid bound-

ry is represented by an arbitrary smooth function and a ghost

ell methodology is used to impose the boundary conditions on

he wall. A bilinear interpolation scheme is employed to approxi-

ate the boundary conditions and the method is found to be very

obust and maintains the overall second order spatial accuracy of

he numerical algorithm. A computational geometry procedure is

eveloped to identify the ghost points and the associated intercept

nd image points. The procedure is found to be very robust and

ffective even for the extreme case of a sharp-edged protrusion. 

The immersed boundary method is first validated for a sin-

le and a multiphase benchmark cases. The method is then ap-

lied to study the effects of viscoelasticity on droplet dynamics in

 smoothly and a sharply constricted channels. The viscoelasticity

s accounted for using the FENE-CR model of Chilcott and Ralli-

on [6] . Extensive simulations are performed to examine the ef-

ects of Weissenberg, Reynolds and capillary numbers. It is found

hat the viscoelasticity influences the drop dynamics significantly

specially in the downstream in a highly complicated and non-

onotonic way. The viscoelasticity generally inhibits the droplet

eformation and thus decreases its mobility. Compared to the all

ewtonian case, droplet deformation decreases as Wi increases up

o W i = 0 . 1 and then relaxes back to the all Newtonian case as

i is further increased. It is found that Reynolds number strongly

nfluences the drop dynamics. The droplet deformation monoton-

cally increases and the droplet elongates more along the center-

ine as the Reynolds number increases. A bulge formation is ob-

erved at the leading edge of the droplet at high Reynolds num-

ers, i.e., Re ≥ 20. The effects of the capillary number are also ex-

mined. It is found that the droplet deformation increases as Ca

ncreases as expected. The viscoelastic stress concentration occurs

ear the solid wall as the droplet passes through the constriction

ue to the stretching of polymers by the large velocity gradients

here. A forked tail formation occurs at the back of the droplet

s it passes through the constriction at high capillary numbers,

.e., Ca ≥ 0.5. 
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Ca increasing

Ca increasing

Fig. 18. Effects of capillary number on dynamics of a FENE-CR drolpet in the range of Ca = 0 . 05 and Ca = 1 . The deformation (upper plot) and the average axial velocity 

(lower plot) of the droplet are plotted against the moving distance of the droplet centroid. The solid lines and the symbols denote the results for the viscoelastic and the 

corresponding Newtonian cases, respectively. ( W i = 1 , Re = 10 , θ = 2 , α = 1 , Grid: 64 × 768). 
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