
Motion-based Adaptive Streaming in WebRTC
using Spatio-Temporal Scalable VP9 Video Coding

Gonca Bakar, R. Arda Kirmizioglu, and A. Murat Tekalp
Dept. of Electrical and Electronics Engineering, Koc University

34450 Sariyer, Istanbul, Turkey
Email: gbakar15@ku.edu.tr, rkirmizioglu@ku.edu.tr, mtekalp@ku.edu.tr

Abstract—WebRTC has become a popular platform for real-
time communications over the best-effort Internet. It employs
the Google Congestion Control algorithm to obtain an estimate
of the state of the network. The default configuration employs
single-layer CBR video encoding given the available network
rate with rate control achieved by varying the quantization
parameter and video frame rate. Recently, some open-source
WebRTC platforms provided support for VP9 encoding with
spatial scalable encoding option. The main contribution of this
paper is to incorporate motion-based spatial resolution adapta-
tion for adaptive streaming rate control and evaluate the use
of single-layer (non-scalable) VP9 encoding vs. motion-based
mixed spatio-temporal scalable VP9 encoding in point-to-point
RTC between two parties in the presence of network congestion.
Our results show that, during intervals of high motion activity,
spatial resolution reduction with sufficiently high frame rates and
reasonable quantization parameter values yield more pleasing
video quality compared to the standard rate control scheme
employed in open-source WebRTC implementations, which uses
only quantization parameter and frame rate for rate control.

I. INTRODUCTION

Video telephony or videoconferencing over the open In-
ternet or Web has become an essential means of real-time
communications (RTC). There are a number of highly popular
proprietary solutions available. A comparative study of some
of these solutions can be found in [1]. WebRTC is a free,
open project that aims at standardizing an inter-operable and
efficient framework for Web-based RTC via simple applica-
tion programming interfaces (API) using Real-Time Protocol
(RTP) over User Datagram Protocol (UDP) for push-based
video transfer over point-to-point connections.

Video conferencing applications over the best-effort Inter-
net have to cope with user device and network access het-
erogeneities, and dynamic bandwidth variations. Congestion
occurs when the amount of data being sent over a network
link is more than the capacity of the link, which results in
queuing delays, packet loss, and delay jitter. While seconds of
buffering delay is tolerable in uni-directional video streaming,
in interactive RTC the maximum tolerable delay is limited to
a couple of hundreds of milli-seconds. Thus, RTC applications
must employ powerful network estimation, congestion control,
and video rate adaptation schemes. A comparison of receive-
side congestion control algorithms for WebRTC has been
reported in [2]. The Google Congestion Control algorithm that
is employed in the WebRTC platform has been described and
analyzed in [3].

Regarding the choice of video encoder, WebRTC ”browsers”
and (non-browser) ”devices” are required to implement the
VP8 video codec as described in RFC6386 [4] and H.264
Constrained Baseline as described in [5]. Recently support for
VP9 encoding/decoding [6] and spatial scalable coding option
with VP9 have been added in most platforms. This allows
WebRTC users to have a choice between non-scalable vs.
scalable coding options considering their associated tradeoffs.
For coding video at full resolution (sum of all layers), scalable
coding introduces a source bitrate overhead as compared to
non-scalable encoding. This overhead is limited to 30% (in
spatial scalability mode). When resolution is same, overhead
is close to zero. However, when we transmit video over a
congested network we have to account for packet losses and
delay jitter. A non-scalable codec can handle those problems
with FEC or sending I frames more frequently, which typically
nullifies the bitrate advantage of non-scalable coding.

Scalable video coding in multi-party videoconferencing,
where clients have heteregeneous devices and/or network
connections, has been proposed and implemented for several
years [8]. An MCU transcoding each stream to multiple
resolutions and bitrates may actually require the lowest source
bitrate; however, this comes at the cost of high computational
power and delay. Furthermore, in multi-party RTC, the bitrate
overhead due to spatial scalable encoding is only from the
sender to the server (router), and not from the server to the
receiver. Hence, the advantages of scalable coding in multi-
party RTC is clear. This paper advocates that scalable video
coding offers video quality advantages even for two-party
point-to-point RTC in the presence of network congestion.

In this paper, we provide an evaluation of video quality for
non-scalable vs. scalable coding with CBR and VBR encoding
options at the same bitrate in the case of two-party point-to-
point WebRTC conferencing in the presence of network con-
gestion. Multi-party videoconferencing and associated design
issues and problems are not addressed in this paper. Our results
show that mixed spatio-temporal scalable coding together with
our proposed motion-adaptive layer selection algorithm can
significantly improve video quality under network congestion
compared to single-layer rate control by only quality factor
(quantization parameter) and/or temporal frame rate reduction.



II. RELATED WORKS

This section first provides an overview of the WebRTC
iniative, and then discusses prior art in scalable VP9 video
coding and rate control for mixed spatio-temporal resolution
video encoding.

A. Overview of WebRTC

WebRTC is an open source technology that brings RTC
capabilities to web browsers, non-browser applications, and
mobile devices via APIs for fast and easy application develop-
ment. RTC can be in the form of peer-to-peer (P2P) or multi-
party audio/video conferencing. In the P2P mode, a signaling
server is needed for only establishing connection between two
users using Session Description Protocol (SDP) messages and
create media paths. The source code is available from [9].

WebRTC provides media capture, audio/video stream and
data sharing APIs for developers. Major components of
WebRTC include: (i) getUserMedia, which allows a web
browser to access the camera and microphone and to capture
media, (ii) RTCPeerConnection, which sets up audio/video
calls, and (iii) RTCDataChannel, which allows browsers to
share data. WebRTC uses RTP network protocol implemented
over UDP transport layer protocol. RTP is coupled with RTCP
(Real-time Transport Control Protocol) to monitor and esti-
mate available bandwidth between end systems [15]. WebRTC
applications are required to support VP8 and H.264 video
encoding. Some platforms also provide support for VP9 video
coding with its spatial and temporal scalable coding extension.

WebRTC network packets can traverse entire network in-
frastructure including NATs (Network Address Translation)
and firewalls. NATs map a group of private IP addresses to a
single public IP address in a device such as a router or firewall.
The main reason for this is that there are 232 possible IPv4
addresses, which are about to be exhausted. STUN (Session
Traversal Utilities for NAT) servers help end-points find each
other in the presence of NATs. Firewalls used for security
concerns that might drop specific flows or allow only specific
flows. TURN (Traversal Using Relays around NAT) servers
are used as relays in the presence of firewalls or NATs in
order to establish a connection.

B. Scalable Coding in VP9

VP9 is an open and royalty-free video compression standard
developed by the WebM project sponsored by Google. VP9 has
been shown to outperform VP8 and H.264 in terms of rate-
distortion performance at the expense of higher computational
complexity. Yet, it is possible to perform real-time VP9
encoding/decoding at 30 Hz on a standard laptop for standard
definition (SD) video using libvpx codec implementation. In
addition to its better compression efficiency, VP9 also offers
support for temporal and spatial scalable video coding.

A scalable video encoder produces multiple encoded bit-
stream layers, which depend on each other, forming a hier-
archy. A specific layer, together with the layers it depends
on, determines a particular spatial and temporal resolution.
The layer that does not depend on any other layer determines

Fig. 1. Mixed spatio-temporal scalable coding with three spatial and three
temporal layers and the dependency between the layers.

the lowest spatio-temporal resolution and is called the base
layer. Each additional layer improves spatial and/or temporal
resolution of the video. A mixed (spatio-temporal) scalable
encoded video with three spatial and three temporal layers
and the dependency structure between the layers are depicted
in Figure 1. In the figure S0 (red), S1 (purple) and S2
(pink) denote the spatial layers, while T0 (yellow), T1 (green)
and T2 (blue) denote the temporal layers. The arrows show
the dependencies between the layers, where white arrows
show spatial dependencies and black arrows show temporal
dependencies.

VP9 manages the spatial scalability structure by using super
frames. A super frame consists of one or more layer frames,
encoding different spatial layers. Within a super frame, a layer
frame, which is not from the base layer, can depend on a layer
frame of the same super frame with a lower spatial layer.

Two types of payload formats for a scalable VP9 stream are
possible: flexible mode and non-flexible mode. In the flexible
mode, it is possible to change layer hierarchies and patterns
dynamically. In the non-flexible mode, the dependency struc-
ture and hierarchies within a group of frames (GOF) are pre-
specified as part of the scalability structure (SS) data. SS data
is sent with key frames once for each GOF and is also used to
parse the resolution of each spatial layer. In this mode, each
packet must have an index to refer to the spatial layer of it.

It is possible to achieve a coarse level source bitrate control,
in order to match the source video bitrate to the estimated net-
work bitrate, for adaptive video streaming by discarding one
or more spatial and/or temporal layers per frame. Further finer
bitrate control can be achieved by adjusting the quantization
parameter value (quality level adaptation).

C. Mixed Spatio-Temporal Resolution Rate Control

In adaptive streaming, rate control at the encoder aims at
adapting the video source bitrate to the estimated network
bitrate. While rate control is a well studied problem in single
resolution video coding, only few works exist for spatial-
resolution adaptive (spatial scalable) video coding. On-the-
fly rate-adaptation for low-delay scalable video coding has
been proposed for the case of P2P push streaming over
multi-cast trees [10]. Previous work has shown that spatial



resolution adaptation can improve rate-distortion performance
and provide more consistent video quality over time at low
bitrates [11], [12]. More recently, Hosking et al. [13] showed
that rate control by spatial resampling can provide a higher
and more consistent level of video quality at low bitrates
in the case of intra-only HEVC coding. Motivated by these
observations, this paper incorporates rate control by motion-
based spatial resolution adaptation into the WebRTC platform
and shows that more consistent and pleasing video quality can
be achieved at low bitrates (in the presence of congestion).

III. THE PROPOSED SYSTEM

This section first describes the proposed system architecture
for motion-based mixed spatio-temporal resolution rate control
in a P2P WebRTC session, and then provides the details of the
operation of the proposed motion activity detection and layer
selection manager modules.

A. System Architecture

The bitrate of the mixed scalable coded source video must
dynamically adapted to the changing network bitrate. As the
network bitrate degrades, the source bitrate must be reduced
accordingly to avoid delay jitter and packet losses. Alterna-
tively, when the network bitrate improves, the source encoding
bitrate should be increased up to the maximum encoding rate.

The reduction of video bitrate can be achieved by decreas-
ing the frame rate, spatial resolution, or quality (increasing
quantization parameter). The frame rate must be related to the
amount of motion activity. When the video has high motion
activity, reducing the frame rate by discarding temporal layers
causes motion jitter which affects user experience negatively. It
is well-known high spatial frequencies are not visible to human
eye when the motion activity high due to the spatio-temporal
frequency response of the human eye. Hence, we can reduce
the spatial resolution of the video by discarding a spatial
layer. On the other hand, the spatial resolution and the quality
level of the video should be high when the motion activity is
low. This is the essence of the proposed motion-based spatial-
resolution adaptive WebRTC streaming system that is shown
in Figure 2. We modified the WebRTC open source code[9]
to include motion activity detection and motion-based layer
adaptation in both scalable VP9 CBR and VBR encoding
modes. A brief description of each block is provided in the
following. Detailed descriptions of the novel motion activity
detection and layer adaptation manager blocks are provided in
Sections III.B and III.C, respectively. The remaining modules
are used as is in the WebRTC open-source software.

Scalable Video Encoder: We used the VP9 video codec
provided in the WebRTC platform for temporal and spatial
scalable coding. We configured it for 3 spatial and 3 temporal
layers. VP9 codec can perform both CBR and VBR encoding.
CBR encoding mode allows fine-scale rate control. VBR
coding gives a higher bitrate to the more complex segments of
video while less bitrate is allocated to less complex segments.
VBR is used to eliminate variable QP because we want to
adapt bitrate by adapting spatial or temporal layers, not quality.

Fig. 2. The block diagram of the proposed motion-based spatial-resolution
adaptive WebRTC streaming system.

Bitstream Extractor: This module extracts different spatial
and temporal layers from the scalable video bitstream.

Motion Activity Detector: This is a module proposed and
implemented by us to estimate a numerical measure of motion
activity in the source camera stream.

Layer Adaptation Manager: This is a module proposed
and implemented by us that uses motion activity measure
and network bitrate estimate as inputs, and decides which
spatial and temporal layers will be retained and which will
be discarded for each video frame.

Network Estimator: This module implements the Google
congestion control algorithm in the WebRTC open source
software and also provides an estimate of available network
bitrate. RTCP feedback mechanism is used to detect packet
losses and the delay between packets is used to predict the
available bitrate.

WebRTC Packetizer: This module uses layers that comes
from the bitstream extractor and layer selection information
that comes from layer adaptation manager as inputs. It pack-
etizes the selected layers and send them to the network.
Selected spatial layers are packetized as a superframe. End
of superframe is set by a marker bit.

B. Motion-Activity Detection

A measure of motion activity is obtained based on the
number of pixels where the frame difference between the
current frame (CF) and previous frame (PF) is higher than
a threshold value (DT). This number is entered into a list
(VL), which keeps all values for a group of frames (GOF). We
compute a weighted average of the values in this list as the
motion activity measure for the GOF. The weights (WVL) are
selected to emphasize the most recent frames more. Finally, the
motion activity measure is compared to a selection threshold
(ST) to classify the GOF as a high or low motion GOF. The
complete algorithm is provided in Algorithm 1.

C. Layer Adaptation Manager

When the available network bitrate degrades, the decision
between reducing spatial resolution or frame rate is made
dynamically. If the motion activity is high, the number of
spatial layers will decrease; otherwise, the number of temporal



Algorithm 1: Motion Activity Detection Algorithm

1 Input: CF , PF , V L, WV L, DT and ST
2 Output: Decision
3 count = 0
4 foreach pixel pi ∈ CF , PF do
5 if |CF [pi] - PF [pi]|>DT then
6 count = count + 1

7 V L.push front(count)
8 V L.pop back()
9 avg motion = 0

10 foreach index i ∈ V L, WV L do
11 avg motion = avg motion + ( V L[i] * WV L[i] )

12 Decision = ( avg motion >ST )

Fig. 3. Example of motion-based temporal and spatial resolution reduction
for two GOFs. The yellow frames indicate the first frame of a GOF. The
temporal resolution is reduced for the first GOF, while spatial resolution is
reduced for the second. The white circles show the layers that are discarded.

layers will decrease. An example of motion-based temporal
and spatial resolution reduction is depicted in Figure 3.

If the value of fraction loss (Loss) is higher than 0.10,
indicating potential congestion, then the number of spatial or
temporal layers are reduced according to the majority vote
of motion states (Motion) of the last 5 group of frames. The
number of layers that are decreased depends on the difference
between the bitrate of the encoded stream (EBW) and the
available bitrate (BWE) as shown in Algorithm 2 (between
lines 23-32).

For upscaling, if the difference between available bitrate
(BWE) and encoder bitrate (EBW) is larger than a threshold
value (UT) and loss fraction (Loss) is lower than 0.02, the
current spatial layer (SL) or temporal layer (TL) number is
incremented depending on motion state (Motion) which is
shown in the Algorithm 2 between lines 10-21. If one of
the layers is not at the top level, we check motion state
periodically. If the decremented layer is not appropriate with
motion state, then we change the layer selection dynamically,
corresponds to the Algorithm 2 between lines 3-9.

In our proposed mixed spatio-temporal scalable motion-
based layer selective CBR mode, we use the Google Con-

Algorithm 2: Layer Selection Algorithm

1 Input: Motion, SL, CBR, TL, Loss, BWE, UT and
EBW

2 Output: SL, TL if Loss <0.10 then
3 if (SL 6= 3) or (TL 6= 3) then
4 if Motion and (SL 6= 1) and (TL 6= 3) then
5 SL = SL - 1
6 TL = TL + 1

7 else if (TL 6= 1) and (SL 6= 3) then
8 TL = TL - 1
9 SL = SL + 1

10 if Loss <0.02 then
11 if BWE - EBW >UT then
12 if Motion then
13 if SL 6= 3 then
14 SL = SL + 1

15 else if TL 6= 3 then
16 TL = TL + 1

17 else
18 if TL 6= 3 then
19 TL = TL + 1

20 else if SL 6= 3 then
21 SL = SL + 1

22 else
23 if Motion then
24 if SL 6= 1 then
25 SL = SL - 1

26 else if TL 6= 1 then
27 TL = TL - 1

28 else
29 if TL 6= 1 then
30 TL = TL - 1

31 else if SL 6= 1 then
32 SL = SL - 1

33 if CBR then
34 goto Google Congestion Control Algorithm

Algorithm 3: Google Congestion Control Algorithm

1 Input: TargetBitrate, Loss
2 if Loss <0.02 then
3 TargetBitrate = (TargetBitrate + 1000) * 1.05

4 else if 0.02 <Loss <0.1 then
5 Do nothing

6 else
7 TargetBitrate = TargetBitrate * (1 - 0.5*Loss)



gestion Control algorithm in addition to our layer selection
algorithm to better match our send bitrate to the available
network bitrate. Because layer selection only gives us a stair-
case shaped bitrate with large steps, we adapt to small changes
in the available bitrate by changing QP in a small range.

Spatial and temporal layers can be downscaled at anytime
when necessary, but upscaling can only occur at certain frames
according to the dependency structure of the frames. This
information is available in the payload description header.
Temporal upscaling is allowed after a frame with enabled
switching point. For spatial upscaling, the layer frame that
is not an inter-predicted frame needs to be send before we
start to send higher spatial layers. If the network is available,
the model forces encoder to send a key frame to increase the
spatial resolution immediately.

IV. EXPERIMENTAL RESULTS

A. Experimental Test-bed

Experiments were conducted over a local area network with
two computers connected to each other by a switch. Both
computers run WebRTC client software and one of them runs
a signaling server. Clients connect to the signaling server and
a P2P video session is established when one of them calls
the other. In order to emulate cross network traffic, we limit
available uplink capacity of one computer using the software
[14]. WebRTC clients become aware of the reduction in the
network bitrate by means of RTCP feedback packets through
the Google congestion control algorithm and decide for an
appropriate motion-based source rate adaptation model.

Fig. 4. Test environment.

B. Results

We conducted three experiments under identical condi-
tions for 640x480 resolution, where we employed the default
WebRTC single-layer CBR encoding, mixed spatio-temporal
scalable CBR encoding with motion-based layer selection, and
mixed spatio-temporal scalable VBR encoding with motion-
based layer selection. The target bitrate for the default non-
scalable CBR VP9 coder is set to 1 Mbps. When running the
scalable VP9 encoder with three temporal and three spatial
layers, the maximum video coding rate (with all layers) was
set to 1.35 Mbps in the CBR mode. All experiments lasted
60 sec, where there was moderate-high subject motion up
to 50 sec and very limited motion between 50 and 60 sec.
We limited the available network bitrate to 600 kbps at 27

sec using the netlimiter software to compare the response of
WebRTC clients with three different rate control models to
this limited available bitrate. In order to select reasonable QP
parameters for the adaptive VBR model, we conducted some
off-line coding tests for the cases of low spatial resolution
and high QP encoding with high motion video under limited
available bandwidth.

The results of the experiments are shown in Figure 5, where
the sent video bitrate, sent frame rate, motion activity measure,
the QP value, and the number of spatial layers sent are depicted
for all three scenarios. We see that all three rate control models
perform similarly for the first 27 sec (where the network rate
is high enough) except the bitrate with VBR mode varies
with the motion more than others. We also observe that the
bitrate for scalable coding options is about 30% higher than the
default non-scalable coding option due overhead of scalable
coding when sending all layers. When the available network
rate drops to 600 kbps, the default CBR model keeps the
frame rate high but increases QP value to adapt to the network
rate. In the proposed motion-based spatial-resolution adaptive
CBR model, we see that the number of spatial layers sent
drops from 3 to 2 (320x240) at 27th second in response to
dropping network bitrate while the motion activity is still
high, but at 50th second it increases back to 3 when the
motion activity becomes very low. The motion-based spatial-
resolution adaptive VBR model behaves very similar to the
proposed spatial-resolution adaptive CBR model except that it
achieves a slightly lower frame rate due to coarser rate control.

In terms of visual quality, we observe that video interpolated
from low spatial resolution layers introduce some blurring,
which is subjectively better than video encoded at the same
bitrate at full spatial resolution but with a high QP, which
shows blocking artifacts. We show a representative frame that
is interpolated from two spatial layers in Fig. 6, while Fig. 7
shows the same frame encoded using the default CBR model
at the same frame rate with full spatial resolution but with a
high QP, which shows inferior quality.

V. CONCLUSIONS

This paper shows that scalable video coding is beneficial not
only for multi-party but also point-to-point WebRTC sessions.
High motion activity causes higher encoding (source) bitrates.
The default WebRTC CBR rate control (non-scalable encoder)
increases the quantization parameter and/or reduce frame rate
to maintain the desired source bitrate. For better subjective
video quality, it is important to maintain a high frame rate
in the presence of high motion in order to avoid motion
jitter. This means we have the choice of a tradeoff between
coarser quantization, which results in blocking artifacts versus
spatial resolution reduction, which results in some blurring.
Our results indicate that the proposed motion-based spatial-
resolution adaptive rate control model achieves sufficiently
high frame rates and reasonable quantization parameter val-
ues which yields more pleasing video quality compared to
the default WebRTC rate control scheme, which uses only
quantization parameter and frame rate for rate control.



Fig. 5. Comparison of default WebRTC CBR coding, motion-based spatial-resolution adaptive CBR, and motion-based spatial-resolution adaptive VBR coding.

Fig. 6. Visual video quality for rate control by spatial resolution reduction.

Fig. 7. Visual video quality for rate control by increasing QP.
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