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3. Algorithms 
 
We will study algorithms to solve many different types of problems such as 
• finding the largest of a sequence of numbers  
• sorting a sequence of numbers 
• finding the shortest path between two given points 
• finding gcd (greatest common divisor) of two integers 
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3. Algorithms 
 
We will study algorithms to solve many different types of problems such as 
• finding the largest of a sequence of numbers  
• sorting a sequence of numbers 
• finding the shortest path between two given points 
• finding gcd (greatest common divisor) of two integers 

 
What matters? 

 How fast do we solve the problem?  
 How much computer resource do we need? 
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3.1 Algorithm  
 

 
Definition: 

 
An algorithm is a finite set of precise step by step instructions for performing a 
computation or for solving a problem.  
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3.1 Algorithm  
 

 
Definition: 

 
An algorithm is a finite set of precise step by step instructions for performing a 
computation or for solving a problem.  
 
e.g. Find the largest number in a finite sequence of integers: 
 
                       23,56,67,43,32,42,56,33,65,58,12,26, -56,23,56,43,62,59. 
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e.g. Find the largest number in a finite sequence of integers: 
 
                       23,56,67,43,32,42,56,33,65,58,12,26, -56,23,56,43,62,59. 
 
Algorithm: 
 

1. Set a temporary maximum, tmax, equal to the first integer in the sequence. 
2. Compare next integer in the sequence; if it is larger than tmax, set tmax equal 

to this integer. 
3. Repeat step 2 until reaching the end of sequence. 
4. Stop; tmax is the largest of integer sequence. 
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C (or Java) Code: 
 
 int max(int a[], int n) 
 { 
  int tmax; 
 
  for (i=1, tmax = a[0]; i<n; i++){ 
   if (tmax < a[i]){ 
    tmax = a[i]; 
   } 
  } 
  return tmax; 
   } 
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Properties that algorithms generally share: 
 
 

1. Input 
 

2. Output 
 

3. Definiteness: Each step should be defined precisely 
 

4. Correctness: Should produce correct output for input values 
 

5. Finiteness:  Should produce desired output after a finite number of steps 
 

6. Effectiveness: Each step should be performed exactly in a finite amount of time 
 

7. Generality:  Should be applicable to any case 
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Searching Algorithms: 

 
• Locate x in a sequence a0, a1, …, an-1 or determine x is not in the sequence. 
• Return index i or -1 if not found. 
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Searching Algorithms: 

 
• Locate x in a sequence a0, a1, …, an-1 or determine x is not in the sequence. 
• Return index i or -1 if not found. 

 
 
Linear Search Algorithm: 
 
1. Set index to 0, i = 0 

 

2. Compare x and ai, 
 

3. If x ≠ ai, i++ and go to step 2 
stop whenever x = ai or i = n 
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C (or Java) Code: 

 
int linear_search(int a[],int x,int n) 
{  
 int i, location; 
 i = 0; 
  
 while (i<n && a[i]!=x) 
  i = i+1; 
  
 if (i<n) location = i; 
 else location = -1; 
 
 return location; 
} 
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Pseudocode: 

 
function linear_search(int a[ ],int x,int n) 
{  
 i = 0 
  
 while (i<n and a[i]≠ x) 
  i = i+1 
  
 if (i<n)  

location = i 
 else  

location = -1 
 
 return location 
} 
 

 
Remark: Pseudocode is a simplified way of writing algorithms in computer language. 
Your textbook uses its own way of writing pseudocodes. You can also use it. The 
above pseudocode is different than that and looks more like a C or Java code. 
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Binary Search Algorithm: 
 Consider a search problem s.t. the sequence is an ordered list (say increasing). 
  

 e.g. 
 Search 15 in 1, 3, 5, 6, 9, 11, 15, 19 
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Binary Search Algorithm: 
 Consider a search problem s.t. the sequence is an ordered list (say increasing). 
  

 e.g. 
 Search 15 in 1, 3, 5, 6, 9, 11, 15, 19 
  

split into two: 
  1, 3, 5, 6    9, 11, 15, 19 
 check 
  15 £ 6  NO 
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Binary Search Algorithm: 
 Consider a search problem s.t. the sequence is an ordered list (say increasing). 
  

 e.g. 
 Search 15 in 1, 3, 5, 6, 9, 11, 15, 19 
  

split into two: 
  1, 3, 5, 6    9, 11, 15, 19 
 check 
  15 £ 6  NO 
 split upper block into two: 
  9, 11    15, 19 
 check 
  15 £ 11  NO 
 split upper block into two: 
  15     19 
  15 £ 15  YES 
 check 
  15 = 15  YES 
 
Search x in the list a0, a1, …, an-1 where a0 < a1 < … < an-1. 

? 
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1. Compare x with the middle term of the sequence, am, where m = ë (n–1) / 2 û. 
2. If x > am, search x on the second half {am+1, am+2, … an} 

else 
search x on the first half {a1, a2, … am} 

3. Repeat the first two steps until a list with one single term is obtained. 
4. Determine whether this one term is x or not. 
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C (or Java) Code: 
 
int binary_search(int x, int a[], int n) 
{  
  int i, j, location; 
  int m; 
  i = 0; 
  j = n-1; 
  
  while (i < j) { 
   m = (i + j) / 2; 
   if (x > a[m])  i = m+1; 
   else j = m; 
  } 
  
  if (x == a[i]) location = i; 
  else location = -1; 
 
  return location; 
} 
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3.2 & 3.3 The Growth of Functions & Complexity of Algorithms 
 
We will now address the algorithm complexity issue. 
 
Examples:  
 
• Which algorithm is more efficient, binary search or linear search? 
 
• Consider sorting n integers: 

How long will it take to sort? (Bubble sort or insertion sort; see your textbook) 
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We can time how long it takes a computer 
 

4 But what if the computer is doing other things? 
4 And what happens if you get a faster computer? 

§ A 3 Ghz Windows machine chip will run an algorithm at a different 
speed than a 3 Ghz Mac 
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We can time how long it takes a computer 
 

4 But what if the computer is doing other things? 
4 And what happens if you get a faster computer? 

§ A 3 Ghz Windows machine chip will run an algorithm at a different 
speed than a 3 Ghz Mac 

 
 
       We need more platform independent measures! 
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We can time how long it takes a computer 
 

4 But what if the computer is doing other things? 
4 And what happens if you get a faster computer? 

§ A 3 Ghz Windows machine chip will run an algorithm at a different 
speed than a 3 Ghz Mac 

 
 
       We need more platform independent measures! 

 
 
An efficient algorithm on a slow computer will always beat an inefficient 
algorithm on a fast computer (given sufficiently large inputs!) 
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A better way is to count basic computer operations involved, 
4 A comparison, an assignment, an addition, etc. 
4 Regardless of how many machine instructions it translates into (different 

CPUs will require different amount of machine instructions for the same 
algorithm) 
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A better way is to count basic computer operations involved, 

4 A comparison, an assignment, an addition, etc. 
4 Regardless of how many machine instructions it translates into (different 

CPUs will require different amount of machine instructions for the same 
algorithm) 

 
 

 
 
We might come up with something like:  
           # of operations:  ƒ(n) = 100nlog(n) + 25n + 9 
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A better way is to count basic computer operations involved, 

4 A comparison, an assignment, an addition, etc. 
4 Regardless of how many machine instructions it translates into (different 

CPUs will require different amount of machine instructions for the same 
algorithm) 

 
 

 
 
We might come up with something like:  
           # of operations:  ƒ(n) = 100nlog(n) + 25n + 9 
 
 
 
 

 
 

We will say: 
 

ƒ(n) is O(nlog(n)). 
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Worst-case computational complexity analysis 
 
Linear search: 
 1 initial assignment operation 
 5 operations (2 comparisons, 1 addition, 1 assignment, and 1 logical) per iteration: 
   5n operations inside the loop 
 1 additional comparison if x is not in the list 
 1 comparison and 1 assignment outside the loop 
 
Totally 5n + 4 operations in the worst case. 
 

int linear_search(int a[],int x,int n){  
 int i, location; 
 i = 0; 
  
 while (i<n && a[i]!=x) 
  i = i+1; 
  
 if (i<n) location = i; 
 else location = -1; 
 
 return location; 
} 
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The linear search takes n “steps” 
 
Let’s say the linear search takes the following number of instructions on specific 
CPUs: 

4 Intel Pentium IV CPU: 58*n /2 
4 Motorola CPU: 84.4*(n + 1)/2 
4 Intel Pentium V CPU: 44*n/2 

 
Notice that each has an “n” term 

4 As n increases, the other terms will drop out 
4 As processors change, the constants will always change 
4 The exponent on n (if there is any) will not 
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int binary_search(int x, int a[], int n) 
{  
  int i, j, location; 
  int m; 
  i = 0; 
  j = n-1; 
  
  while (i < j) { 
   m = (i + j) / 2; 
   if (x > a[m])  i = m+1; 
   else j = m; 
  }  
  if (x == a[i]) location = i; 
  else location = -1; 
 
  return location; 
} 
5 operations (3 assignments, 1 subtraction, 1 comparison) outside the loop. 
7 operations (2 additions, 1 division, 2 comparisons, 2 assignments) at each loop run. 
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int binary_search(int x, int a[], int n) 
{  
  int i, j, location; 
  int m; 
  i = 0; 
  j = n-1; 
  
  while (i < j) { 
   m = (i + j) / 2; 
   if (x > a[m])  i = m+1; 
   else j = m; 
  }  
  if (x == a[i]) location = i; 
  else location = -1; 
 
  return location; 
} 
5 operations (3 assignments, 1 subtraction, 1 comparison) outside the loop. 
7 operations (2 additions, 1 division, 2 comparisons, 2 assignments) at each loop run. 
1 comparison to terminate the loop 
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Binary search: 

 
 Let ƒ(n) be # of operations required for n-element list. 
 

 Let n = 2k (simplifying assumption),  p: # of operations per loop (p = 7). 
 Then   ƒ(n) = p + ƒ(n/2) 
    = p + p + ƒ(n/4) 
      . 
      . 
      . 
    = k p + ƒ(n/2k) 
       need to stop at  n = 2k 
       \ k = log n 
     ƒ(n) = p log n + ƒ(1) 
    = 7 log n + 6 
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Binary search: 

 
 Let ƒ(n) be # of operations required for n-element list. 
 

 Let n = 2k (simplifying assumption),  p: # of operations per loop (p = 7). 
 Then   ƒ(n) = p + ƒ(n/2) 
    = p + p + ƒ(n/4) 
      . 
      . 
      . 
    = k p + ƒ(n/2k) 
       need to stop at  n = 2k 
       \ k = log n 
     ƒ(n) = p log n + ƒ(1) 
    = 7 log n + 6 
       
 
 
for 2k-1 < n < 2k , easy to see that ƒ(n) = 7 élog nù  + 6 
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Linear search vs. Binary search 
 
Consider ƒ(n): # of operations (in the worst case) 
 
Linear search: ƒ(n) = 5n + 4 
 We will say  ƒ(n) is O(n); has linear complexity 
 
Binary search: ƒ(n) = 7log n + 6 

We will say  ƒ(n) is O(log n); has logarithmic complexity 
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Linear search vs. Binary search 
 
Consider ƒ(n): # of operations (in the worst case) 
 
Linear search: ƒ(n) = 5n + 4 
 We will say  ƒ(n) is O(n); has linear complexity 
 
Binary search: ƒ(n) = 7log n + 6 

We will say  ƒ(n) is O(log n); has logarithmic complexity 
 
Binary search is more efficient than linear search! 

 
What actually matters: How many times does the loop execute in the worst case? 
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Linear search vs. Binary search 
 
Consider ƒ(n): # of operations (in the worst case) 
 
Linear search: ƒ(n) = 5n + 4 
 We will say  ƒ(n) is O(n); has linear complexity 
 
Binary search: ƒ(n) = 7log n + 6 

We will say  ƒ(n) is O(log n); has logarithmic complexity 
 
Binary search is more efficient than linear search! 

 
 
Note: Logarithms in computer science is almost always in base 2. But in the Big-Oh 
notation, the base of the logarithm does not matter. Why?  

logb(x) = logc(x) / logc(b) 
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Big-O Notation 
Let ƒ and g be functions from the set of integer (or real) numbers to the set of real 
numbers. 
 We say: 
 

ƒ(x) is O(g(x)) iff  $C, k real constants such that |ƒ(x)| £ C |g(x)|  "x > k. 
 

“ƒ(x) is big-oh of g(x)” 
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Big-O Notation 
Let ƒ and g be functions from the set of integer (or real) numbers to the set of real 
numbers. 
 We say: 
 

ƒ(x) is O(g(x)) iff  $C, k real constants such that |ƒ(x)| £ C |g(x)|  "x > k. 
 

“ƒ(x) is big-oh of g(x)” 
 
Note: (C, k) pair is never unique if it exists. 
Note:      One can always find a positive (C, k) integer pair if a pair exists. 
Remark: Big-O notation gives an idea about the growth of a function. 
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Example: Show that ƒ(x) = x2 + 2x + 1 is O(x2). 
 
?$C,k such that | x2 + 2x + 1 | £ C | x2|   "x > k 
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Example: Show that ƒ(x) = x2 + 2x + 1 is O(x2). 
 
?$C,k such that | x2 + 2x + 1 | £ C | x2|   "x > k 
 
Let  x > 1 Þ 0 £ x2 + 2x + 1 £ x2 + 2x2 + x2 = 4x2   since x2 > x 

                     Þ |ƒ(x)| £ 4|x2| whenever x > 1   Þ  (C = 4, k =1)  
\  ƒ(x) is O(x2). 
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Example: Show that ƒ(x) = x2 + 2x + 1 is O(x2). 
 
?$C,k such that | x2 + 2x + 1 | £ C | x2|   "x > k 
 
Let  x > 1 Þ 0 £ x2 + 2x + 1 £ x2 + 2x2 + x2 = 4x2   since x2 > x 

                     Þ |ƒ(x)| £ 4|x2| whenever x > 1   Þ  (C = 4, k =1)  
\  ƒ(x) is O(x2). 
 
Note that there are infinitely many other pairs that satify this inequality such as (C = 5, 
k =1), (C = 6, k =1), (C = 3, k =2), … 
 
For example, let x > 2  Þ 0 £ x2 + 2x + 1 £ x2 + x2 + x2 = 3x2 
Þ C = 3, k = 2 also satisfy the inequality 
 
\ (C,k) is not unique if exists. 
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Example: Show that ƒ(x) = 7x2 is O(x3). 
 
?$C,k such that |7x2| £ C |x3|  whenever x > k 
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Example: Show that ƒ(x) = 7x2 is O(x3). 
 
?$C,k such that |7x2| £ C |x3|  whenever x > k 
 
"x > 7,   0 < 7x2 < x3 Þ  |7x2| <  |x3| 
\ C = 1, k = 7 and 7x2 is O(x3). 
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How about x3? Is it O(x2)? 
 
?$C,k  |x3|£ |C x2|  whenever x > k 
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How about x3? Is it O(x2)? 
 
?$C,k positive 0 < x3 £ C x2  whenever x > k       
           Þ  x £ C  whenever x > k 
No such (C, k) exists \ x3 is not O(x2) 
 
 
Recall:  One can always find a positive (C, k) integer pair if a pair exists. 
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Growth of Polynomials 
 
Theorem: 
Let ƒ(x) = anxn + an-1xn-1 + … + a1x + a0, where ai are real numbers.  
Then ƒ(x) is O(xn). 
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Growth of Polynomials 
 
Theorem: 
Let ƒ(x) = anxn + an-1xn-1 + … + a1x + a0, where ai are real numbers.  
Then ƒ(x) is O(xn). 
 
Proof: Use triangle inequality. 
 
 |ƒ(x)| = |an xn + an-1 xn-1 + … + a1 x + a0| 
   £ |an xn| + |an-1 xn-1| + … + |a1x| + |a0|   (by triangle inequality) 

£ |an| xn + |an-1| xn-1 + … + |a1| x + |a0|    
   £ xn ( |an| + |an-1|/x +…+ |a0|/xn )    
   £ xn ( |an| + |an-1| + … + |a1| + |a0| )  when x > 1 

Þ C = |an| + |an-1| + … + |a0|,   k =1   
\ ƒ(x) is O(xn) 
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Complexity of an algorithm is usually expressed as a discrete function f (n), where n is 
a positive integer n >1. Some examples: 
 
e.g.   ƒ(n) =1 + 4 + 9 + … + n2     

Give a big-O estimate for this complexity function? 
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e.g.   ƒ(n) =1 + 4 + 9 + … + n2     

  0 < 1 + 4 + 9 + … + n2 £ n2 + n2 + … + n2 = n3  "n > 1 
  Þ C = 1, k = 1   
           \ (1 + 4 + 9 + … + n2 ) is O(n3) 
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e.g.   ƒ(n) =1 + 4 + 9 + … + n2     

  0 < 1 + 4 + 9 + … + n2 £ n2 + n2 + … + n2 = n3  "n > 1 
  Þ C = 1, k = 1   
           \ (1 + 4 + 9 + … + n2 ) is O(n3) 
 
 
Note: If ƒ(n) is non-negative, then you can get rid of the absolute signs in the big-O 
definition for the sake of simplicity (complexity functions are always non-negative 
valued). 
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e.g.   ƒ(n) = n! ? 
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e.g.   ƒ(n) = n! ? 
 
  n! = 1×2×3 ××× n 
   £ n×n×n ××× n = nn        "n > 0 
  Þ C = 1, k = 0  
 

 \ n! is O(nn) 
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e.g.   ƒ(n) = log n!  ? 
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e.g.   ƒ(n) = log n!  ? 
 
  log n! £ nlog n   "n > 0 

Þ C = 1, k = 0 
 

 \ log n! is O(nlog n) 
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e.g. 
 ƒ(n) = 3nlog(n!) + (n3+3)logn  n > 0 
  big-O estimate? 
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The Growth Combinations of Functions: 
 
Theorem: 
Let ƒ1(x) be O(g1(x)) and ƒ2(x) be O(g2(x)). 
Then, ƒ1(x)ƒ2(x) is O(g1(x)g2(x)). 
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The Growth Combinations of Functions: 
 
Theorem: 
Let ƒ1(x) be O(g1(x)) and ƒ2(x) be O(g2(x)). 
Then, ƒ1(x)ƒ2(x) is O(g1(x)g2(x)). 
 
Proof: 
$C1, k1 such that |ƒ1(x)| £ C1|g1(x)| whenever x > k1, 
$C2, k2 such that |ƒ2(x)| £ C2|g2(x)| whenever x > k2, 
Þ |ƒ1(x)ƒ2(x)|  £ C1 |g1(x)| C2 |g2(x)|  "x > max(k1, k2) 
             £ C1C2 |g1(x)g2(x)| 
 
Choose C= C1C2 and k = max(k1, k2). 
 
\ ƒ1(x)ƒ2(x) is O(g1(x)g2(x)). 
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Theorem: 
Suppose ƒ1(x) is O(g1(x)) and ƒ2(x) is O(g2(x)). 
Then ƒ1(x) + ƒ2(x) is O(max(|g1(x)|, |g2(x)|)). 
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Theorem: 
Suppose ƒ1(x) is O(g1(x)) and ƒ2(x) is O(g2(x)). 
Then ƒ1(x) + ƒ2(x) is O(max(|g1(x)|, |g2(x)|)). 
Proof: 
Suppose ƒ1(x) is O(g1(x)) and ƒ2(x) is O(g2(x)) with C1, C2, k1, k2 

$C1, k1 such that |ƒ1(x)| £ C1|g1(x)| whenever x > k1, 
$C2, k2 such that |ƒ2(x)| £ C2|g2(x)| whenever x > k2, 
Þ | ƒ1(x)+ƒ2(x) |  £ |ƒ1(x)| + |ƒ2(x)|  < C1 |g1(x)| + C2 |g2(x)|,  "x> max(k1, k2) 
    < C1 |g(x)| + C2 |g(x)| = (C1 + C2) |g(x)| 
where g(x) = max(|g1(x)|, |g2(x)|). 
Choose C = C1 + C2  and k = max(k1, k2)   
\ ƒ1(x)+ƒ2(x) is O(max(|g1(x)|, |g2(x)|) ). 

 
Corollary: 
Let ƒ1(x), ƒ2(x) be both O(g(x)), then ƒ1(x) + ƒ2(x) is also O(g(x)). 
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e.g. 
 ƒ(n) = 3nlog(n!) + (n3+3)logn  n > 0 
  big-O estimate? 
 
 log(n!)   is O(nlogn)  
  3n   is O(n) 
\ 3nlog(n!) is O(n2logn) 
 
 (n3+3) is O(n3) 
 logn is O(logn) 
\  (n3+3)logn is O(n3logn) 
 
\ ƒ(n) is O(n3logn) 
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Big-Omega Notation: 
We say  ƒ(x) is W(g(x))   
          iff  $C,k positive constants  s.t. |ƒ(x)| ³ C |g(x)| whenever x > k 
 
Remark:  ƒ(x) is W(g(x)) ↔ g(x) is O(ƒ(x))  
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Big-Omega Notation: 
We say  ƒ(x) is W(g(x))   
          iff  $C,k positive constants  s.t. |ƒ(x)| ³ C |g(x)| whenever x > k 
 
Remark:  ƒ(x) is W(g(x)) ↔ g(x) is O(ƒ(x))  
 
 
 
Big-Theta Notation: 
We say  ƒ(x) is Θ(g(x))  (or  ƒ(x) is of order g(x)) 
          iff  $C1, C2, k positive constants  s.t. C1 |g(x)|£ |ƒ(x)| £ C2 |g(x)| whenever x > k 
 
Remark:  ƒ(x) is Θ(g(x))    ↔      ƒ(x) is O(g(x)) and g(x) is O(ƒ(x)). 
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Example: Show that 3x2 + 8x logx is Θ(x2).   
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Example: Show that 3x2 + 8x logx is Θ(x2).   
 
For this we have to show that 

i. 3x2 + 8x logx is O(x2) 
ii. x2 is O(3x2 + 8x logx)  (or equivalently 3x2 + 8x logx is W (x2)) 
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Example: Show that 3x2 + 8x logx is Θ(x2).   
 
For this we have to show that 

i. 3x2 + 8x logx is O(x2) 
ii. x2 is O(3x2 + 8x logx)  (or equivalently 3x2 + 8x logx is W (x2)) 

 
i. "x ³ 1,  0 £ 8x logx £ 8x2 
Þ "x > 1  |3x2 +8x logx| £ 11| x2|  Þ  Choose C = 11, k =1. 
\ 3x2 +8x logx is O(x2) 
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Example: Show that 3x2 + 8x logx is Θ(x2).   
 
For this we have to show that 

i. 3x2 + 8x logx is O(x2) 
ii. x2 is O(3x2 + 8x logx)  (or equivalently 3x2 + 8x logx is W (x2)) 

 
i. "x ³ 1,  0 £ 8x logx £ 8x2 
Þ "x > 1  |3x2 +8x logx| £ 11| x2|  Þ  Choose C = 11, k =1. 
\ 3x2 +8x logx is O(x2) 
ii.  "x > 1  |x2| £ |3x2 +8x logx|   Þ  Choose C = 1, k =1. 
\ x2 is O(3x2 + 8x logx) 
 
(i) and (ii) Þ 3x2 + 8x logx is Θ(x2)  
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e.g. Show that ƒ(n) = 1+2+…+n is W(n2) 
 
1+2+…+n = n(n+1)/2= n2/2+n/2  
 
This is equivalent to show that n2 is O(n2/2+n/2) 
 
"n>1   n2 £ 2 (n2/2+n/2)   hence choose C = 2, k = 1 
 
\ ƒ(n) is W(n2) 
 
 
 
 
Note that ƒ(n) is non-negative, so you can get rid of the absolute signs in the big-O 
definition. 

 
 
 
 
 



64 

 e.g. Show that 1+2+…+n is Θ(n2) 
 
 
 
"n>1   1+2+…+n  ≤ n + n + … + n = n2 
 
\ ƒ(n) is O(n2) with C=1, k=1 
 
Together with the above exercise, ƒ(n) is  Θ(n2). 
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Worst-case computational complexity analysis 
 
Examples: 
Linear search: 
Totally 5n+4 operations in the worst case: 
Linear search algorithm has complexity O(n). 
 
Finding maximum in n-element list: 
Totally 2(n–1) + 1 = 2n – 1 comparison operations in the worst case; 
    has complexity O(n). 
 
Binary search: 
Totally (plogn + r) operations in the worst case: 

has complexity O(log n). 
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Worst-case computational complexity analysis 
 
Examples: 
Linear search: 
Totally 5n+4 operations in the worst case: 
Linear search algorithm has complexity O(n). 
 
Finding maximum in n-element list: 
Totally 2(n–1) + 1 = 2n – 1 comparison operations in the worst case; 
    has complexity O(n). 
 
Binary search: 
Totally (plogn + r) operations in the worst case: 

has complexity O(log n). 
 
Note that p and r are some constant factors and do not affect complexity. 
What actually matters is: How many times does the loop execute in the worst case? 
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Average-case computational complexity analysis 
 

Linear search:  
 
 Average # of comparison operations, assuming that x is in the list: 

 

 
 
 
 
int linear_search(int a[],int x,int n) 
{  
 int i, location; 
 i = 0; 
  
 while (i<n && a[i]!=x) 
  i = i+1; 
  
 if (i<n) location = i; 
  else location = -1; 

return location; 
} 
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Average-case computational complexity analysis 
 

Linear search:  
 
 Average # of comparison operations, assuming that x is in the list: 
 

 
 \ The average complexity of linear search is O(n). 
 
 
int linear_search(int a[],int x,int n) 
{  
 int i, location; 
 i = 0; 
  
 while (i<n && a[i]!=x) 
  i = i+1; 
  
 if (i<n) location = i; 
  else location = -1; 

return location; 
} 
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Terminology: 
 
O(1)  constant complexity 
 

O(log n)  logarithmic complexity 
 

O(n)  linear complexity 
 

O(nlog n) nlog n complexity 
 

O(nb)  polynomial complexity 
 

O(bn), b > 1 exponential complexity 
 

O(n!)  factorial complexity 
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Terminology: 
 
O(1)  constant complexity 
 

O(log n)  logarithmic complexity 
 

O(n)  linear complexity 
 

O(nlog n) nlog n complexity 
 

O(nb)  polynomial complexity 
 

O(bn), b > 1 exponential complexity 
 

O(n!)  factorial complexity 
 
If a problem is solvable with polynomial worst-case complexity, it is called 
tractable. 
If a problem cannot be solved with polynomial worst-case complexity, it is 
intractable. 

 
Problems that no algorithm exists for solving them are called unsolvable problems 
(e.g., The Halting Problem). 
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Complexity  # Steps  (for input size n = 1000) 
 
O(1)   1 
O(log n)   ≈10 
O(n)   103 
O(n log n)  ≈104 
O(n2)   106 
O(n3)   109 
O(n4)   1012 
O(nc)   103*c  c is a consant 
2n    ≈10301 
n!    ≈102568  
nn    103000 
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Complexity Classes (A one-slide introduction) 
 

P Class: Problems that can be solved in polynomial-time (tractable problems)  
 
NP Class:  Non-deterministic polynomial-time class problems. There are many 
solvable problems that are believed no algorithm with O(nb) polynomial complexity 
solves them. But given a candidate solution, it can be checked in polynomial time. 
These are called NP class problems. Many optimization problems are in this class. 
Many people believe (not proven yet) that P ≠ NP, which means there are NP problems 
that are not solvable with any polynomial-time algorithm. Note that P Í NP. 

 
NP–Complete Class: 
Class of NP problems such that if any of these problems can be solved with polynomial 
O(nb) complexity then all NP problems can be solved with O(nb).  It is accepted, 
though not proven yet, that no NP–complete problem can be solved in O(nb).  
 
Note that NP class may not contain all problems (e.g., ones for which even the time to 
verify the solution is not polynomial, such as some NP-hard problems). 
 
Remark: To fully understand these concepts, you need to learn Turing machines. 


