5. Induction and Recursion
5.1 Mathematical Induction

Consider the sum of the first n positive odd numbers:
1=1, 1+3=4, 1+3+5=9, 1+3+5+7=16, 14+3+5+7+9=25
Is it n*?

Induction 1s a powerful tool to prove assertions of this type.

Mathematical Induction:

Prove the theorem: P(n)is true Vn € Z°*

Proof by induction:
1. Basis step P(1) is shown to be true
2. Inductive step P(n) — P(n+1) is shown to be true VneZ"

Mathematical Induction:

Prove the theorem: P(n)is true Vn € Z°*

Proof by induction:

1. Basis step P(1) is shown to be true

2. Inductive step P(n) — P(n+1) is shown to be true VneZ"
Then 1f we apply the following rule of inference,

[P(1) A V1 (P(n) — P(n+1))] — Vn P(n)

to conclude that P(#n) is true VneZ"

e.g.
P(n) : The sum of first n positive odd integers is n’.

Prove P(n) is true VneZ".

e.g.
P(n) : The sum of first n positive odd integers is n’.

Prove P(n) is true VneZ".

Basis step:
P(1):1=1° (True)

e.g.
P(n) : The sum of first n positive odd integers is n’.

Prove P(n) is true VneZ".

Basis step:
P(1):1=1° (True)

Inductive step:

? P(n) » P(n+1) VneZ"

e.g.
P(n) : The sum of first n positive odd integers is n’.
Prove P(n) is true VneZ".

Basis step:

P(1):1=1? (True)

Inductive step:

? P(n) » P(n+1) VneZ"

Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 +3 +...+ (2n-1) = n?
Then show P(n+1) is also T.
1+3+...+Q2n-1)+Q2n+1)=m+1)*?

e.g.
P(n) : The sum of first n positive odd integers is n’.
Prove P(n) is true VneZ".

Basis step:

P(1):1=1? (True)

Inductive step:

? P(n) » P(n+1) VneZ"

Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 +3 +...+ (2n-1) = n?
Then show P(n+1) is also T.
1+3+...+Q2n-1)+Q2n+1)=m+1)*?

=n’+(2n+1) (T)

e.g.
P(n) : The sum of first n positive odd integers is n’.
Prove P(n) is true VneZ".

Basis step:
P(1):1=1° (True)

Inductive step:

? P(n) » P(n+1) VneZ"

Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 +3 +...+ (2n-1) = n?
Then show P(n+1) is also T.
1+3+...+Q2n-1)+Q2n+1)=m+1)*?
=n’+(2n+1) (T)
. P(n)isT VneZ'

Remark: Here P(n) is called inductive hypothesis for a fixed arbitrary n.

e.g.
Prove n < 2" VneZ"

Basis step:

P(1):1<2'=2 (T)

Inductive step:

Show P(n) — P(n+1) VneZ".

n<2"— p+l1<20th9

10

e.g.
Prove n < 2" VneZ"

Basis step:

P(1): 1<2'=2 (T)

Inductive step:

Show P(n) —» P(n+1) VneZ".
n<2®"— p+1 <209

n<2 =+l <2t+1 <" 4 Qn=ntl
© P(n+1)is T
n<2" VneZ'

11

e.g. Inequality for Harmonic Numbers:

Harmonic number:
Hi=1+12+1/3+ - +1/k, k=1,2,3...

Show that H»* > 1+ n/2 Vn, n 1s a nonnegative integer.

12

e.g. Inequality for Harmonic Numbers:

Harmonic number:
Hi=1+12+1/3+ - +1/k, k=1,2,3...

Show that H»* > 1+ n/2 Vn, n1s a nonnegative integer.

Basis step:
P(0) 1s true, since Ho*=H;=1>1+0/2=1.

Inductive step:

Assume P(n)istrue = Hx'>1+n/2

Hy"!=Hy"+ 1/2"+ 1) + ... + 1/(2")
>(1+n2)+1/Q2"+1)+....+1/2"
>(1+n/2)+2" (12" =1+ (nt1)/2

" P(n+1) 1s true.
Hence by induction Hy"> 1 +n/2 Vn

13

e.g.
Prove that 2" <n! forn =4, 5,6,

Let P(n): 2" < n!

14

e.g.
Prove that 2" <n! forn =4, 5,6,

Let P(n): 2" < n!

Basis step:

P(4) is true, since 2* = 16 < 4! =24

Inductive step:

Assume P(n) is true: 2" < n!
= 21 <2n!
<(n+1) n!
= (n+1)! " P(n+1) 1s true.

Hence by induction 2" <n! forn =4,5,6,

15

5.2 Strong Induction

1. Basis step:
Show that P(1) is true.

2. Inductive step:
Show that [P(1) A P(2) A

... AP(n)] — P(n+1)is true VneZ".

16

1. Basis step: Show that P(1) is true.
2. Inductive step: Show that [P(1) A P(2) A ... AP(n)] = P(n+1) is true VneZ".

e.g. Show that if n» > 1 integer, then n 1s either prime or can be written as a product of

primes.
Let P(n) be “n 1s either prime or can be written as the product of primes™.

17

1. Basis step: Show that P(1) is true.
2. Inductive step: Show that [P(1) A P(2) A ... AP(n)] = P(n+1) is true VneZ".

e.g. Show that if n» > 1 integer, then n 1s either prime or can be written as a product of

primes.
Let P(n) be “n 1s either prime or can be written as the product of primes™.

Basis step: P(2) is true since 2 1s prime itself.

18

1. Basis step: Show that P(1) is true.
2. Inductive step: Show that [P(1) A P(2) A ... AP(n)] = P(n+1) is true VneZ".

e.g. Show that if n» > 1 integer, then n 1s either prime or can be written as a product of

primes.
Let P(n) be “n 1s either prime or can be written as the product of primes™.
Basis step: P(2) is true since 2 1s prime itself.

Inductive step: Assume P(k) is true for all 2 < k£ < n. Show P(n+1) is also true.

19

1. Basis step: Show that P(1) is true.
2. Inductive step: Show that [P(1) A P(2) A ... AP(n)] = P(n+1) is true VneZ".

e.g. Show that if n» > 1 integer, then n 1s either prime or can be written as a product of
primes.

Let P(n) be “n 1s either prime or can be written as the product of primes™.

Basis step: P(2) is true since 2 1s prime itself.

Inductive step: Assume P(k) 1s true for all 2 < k£ < n. Show P(n+1) is also true.

If (n+1) is prime then P(n+1) is already true.

20

1. Basis step: Show that P(1) is true.
2. Inductive step: Show that [P(1) A P(2) A ... AP(n)] = P(n+1) is true VneZ".

e.g. Show that if n» > 1 integer, then n 1s either prime or can be written as a product of
primes.

Let P(n) be “n 1s either prime or can be written as the product of primes™.

Basis step: P(2) is true since 2 1s prime itself.

Inductive step: Assume P(k) is true for all 2 < k£ < n. Show P(n+1) is also true.

If (n+1) is prime then P(n+1) is already true.

If (n+1) 1s composite then n+1 =ab st 1<a<b<n+l.

Since we know that P(a) and P(b) are true by inductive hypothesis, a and b are either
prime or can be written as product of primes.

= a-b can also be written as product of primes.
= P(n+1) 1s also true.
S P(n)1isT Vn>1 by strong induction

This completes the proof of the Fundamental Theorem of Arithmetic (see previous lectures, Ch. 4).

21

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero.
2. Give a rule for finding its value based on its previous values.

22

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero.
2. Give a rule for finding its value based on its previous values.

e.g.
an=2" n=0,1,2,...

= ant1= 2an ao=1, n=0,1,2,....

23

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero.
2. Give a rule for finding its value based on its previous values.

e.g.
an=2" n=0,1,2,...
= ant1= 2an ao=1, n=0,1,2,....
e.g.
F(n) = n! can be defined recursively:
F(0)=1

F(n+1)=Fmn)(n+1)

24

e.g.

Fibonacci numbers:
fo=0, fi=1
Jnt1 = fu F fuut

n=1,2,...

25

e.g.

Fibonacci numbers:
Jo=0, fi=1 li_I>n j;’:l - 1+2\/§ ~ Golden Ratio
fer1=fotfoa n=1,2,... 4

Golden ratio, found in nature and used in art and architecture

26

e.g. Show that f,> o2 Vn > 3, where a = (1+5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

27

e.g. Show that f,> o2 Vn > 3, where a = (1++5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

Let P(n): fn> o™
Basisstep: n=3 = a<2=f3 - P(3) 1s true
n=4= 2= (3+V5)2<3=fs . P(4)is true

28

e.g. Show that f,> o2 Vn > 3, where a = (1++5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

Let P(n): fn> o™
Basisstep: n=3 = a<2=f3 - P(3) 1s true
n=4= 2= (3+V5)2<3=fs . P(4)is true

Inductive step: Assume fr> o¥? Vk,3<k<n where n>4

fn+1 > o1 9

29

e.g. Show that f,> o2 Vn > 3, where a = (1++5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

Let P(n): fn> o™
Basisstep: n=3 = a<2=f3 - P(3) 1s true
n=4= 2= (3+V5)2<3=fs . P(4)is true

Inductive step: Assume fr> o¥? Vk,3<k<n where n>4

fn+1 > o1 9

Since « is a solution of x2—x—-1=0
ot =o+1
— an-l — 0(2 .an-3 — (OH‘I) an-3 — an-2 + an-3

30

e.g. Show that f,> o2 Vn > 3, where a = (1++5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

Let P(n): fn> o™
Basisstep: n=3 = a<2=f3 - P(3) 1s true
n=4= 2= (3+V5)2<3=fs . P(4)is true

Inductive step: Assume fr> o¥? Vk,3<k<n where n>4

fn+1 > o1 9

Since « is a solution of x2—x—-1=0
ot =o+1
— an-l — 0(2 .an-3 — (OH‘I) an-3 — an-2 + an-3

By inductive hypothesis, f, > o"* and f,.1> o™

31

e.g. Show that f,> o2 Vn > 3, where a = (1++5)/2.
Note that a is a solution of x> —x — 1 = 0. Use strong induction.

Let P(n): fn> o™
Basisstep: n=3 = a<2=f3 - P(3) 1s true
n=4= 2= (3+V5)2<3=fs . P(4)is true

Inductive step: Assume fr> o¥? Vk,3<k<n where n>4

fn+1 > o1 9

Since « is a solution of x2—x—-1=0
ot =o+1
— an-l — 0(2 .an-3 — (OH‘I) an-3 — an-2 + an-3

By inductive hypothesis, f, > o"* and f,.1> o™
= far1 = ot fa1> a7+ o =a" o fy>a"? Ve >3 by strong induction.

32

e.g.
Show that f,< (5/3)" Vn > 0. Exercise (use strong induction).

33

Theorem: Lame’s Theorem

Leta,beZ" st a<b.
The number 7n of division steps used by Euclidean algorithm to find gcd(a,b)

< 5 times the number of decimal digits in a, that is, n < 5(llogioal+ 1).

Hence the complexity of Euclidean algorithm 1s O(log a).
Recall the code: (Euclidean Algorithm, a < b)

int gcd(int a, int b)

{ :

int x,y,r; Example:

X = b;

vy = a; 155=125-1 + 30

while (y != 0){ 125=30-4+5
r =x % y; 30 =5-6
* 7Yy . ged (155, 125)=5
y = Ij

}

return X;

34

Proof: Letb=r¢and a =r

ro=riqi1 t r 0<m<n
rr=r2q2tr3 0<r<r
Fn2 = Vn-1qn-1 T I'n 0<r,<rui
Vn-1 = I'n{n

n division steps to find 7,, and ¢; > 1 and g, > 2,

35

Example:

155=125-1+30
125=30-4+5

30 =56

-oged (155, 125)=35

Proof: Letb=r¢and a =r

ro=riqi1 t r 0<m<n
rr=r2q2tr3 0<r<r
Fn2 = Vn-1qn-1 T I'n 0<r,<rui
Vn-1 = I'n{n

n division steps to find 7, , and ¢; > 1 and g, > 2,
rn»>1=f2 (fn:nth Fibonacci number)
Fn1 22 22f2=f3

36

Example:

155=125-1+30
125=30-4+5

30 =56

-oged (155, 125)=35

Proof: Letb=r¢and a =r

ro=riqi1 t r 0<m<n
rr=r2q2tr3 0<r<r
Fn2 = Vn-1qn-1 T I'n 0<r,<rui
Vn-1 = I'n{n

n division steps to find 7, , and ¢; > 1 and g, > 2,
m21=f

Vol 2> 210 2 2f2 = f3

Fn2 2 Tnl T a2 f3t f2= f4

37

Example:

155=125-1+30
125=30-4+5

30 =56

-oged (155, 125)=35

Proof: Letb=r¢and a =r

ro=riqi1 t r 0<m<n
rr=r2q2tr3 0<r<r
Fn2 = Vn-1qn-1 T I'n 0<r,<rui
Vn-1 = I'n{n

n division steps to find 7, , and ¢; > 1 and g, > 2,
m21=f

Vol 2> 210 2 2f2 = f3

Fn2 2 Tnl T a2 f3t f2= f4

r2r3tra> foat fao=fa
a=r12rntrzfit fo1=fun Coa > fa

38

Example:

155=125-1+30
125=30-4+5

30 =56

-oged (155, 125)=35

So we have a > f,+1.

We also know that f,+1> ™! for n> 2,
where o = (1 + \/g)/2.

Recall that n 1s the number of
= a>o"! division steps required by the
Euclidean algorithm.

39

So we have a > f,+1.

We also know that f,+1> ! for n > 2,
where o = (1 + \/g)/2.

= a>o"!
= log,,a 2 (n-1)log,a > (n-1)/5
. n—1 <5log,,a= n<>5log,a+1

40

Recall that # 1s the number of
division steps required by the
Euclidean algorithm.

So we have a > f,+1.

We also know that f,+1> ! for n > 2,
where o = (1 + \/g)/2.

Recall that n 1s the number of
= a>o"! division steps required by the
= log,a = (n-1)log, o > (n-1)/5 Euclidean algorithm.

. n—1 <5log,,a= n<>5log,a+1
= n <5(Llogioal + 1) +1 since Llogioal + 1 > log, a
= n < 5(Llogioal + 1)

41

So we have a > f,+1.

We also know that f,+1> ! for n > 2,
where o = (1 + \/g)/2.

Recall that n 1s the number of
= a>o"! division steps required by the
= log,a = (n-1)log, o > (n-1)/5 Euclidean algorithm.

. n—1 <5log,,a= n<>5log,a+1
= n <5(Llogioal + 1) +1 since Llogioal + 1 > log, a

= n < 5(Llogioal + 1)
Hence the complexity of Euclidean algorithm 1s O(log @), which is easy to show using
the definition of big-O notation.

42

So we have a > f,+1.

We also know that f,+1> ! for n > 2,
where o = (1 + \/g)/2.

Recall that n 1s the number of
= a>o"! division steps required by the
= log,a = (n-1)log, o > (n-1)/5 Euclidean algorithm.

. n—1 <5log,,a= n<>5log,a+1
= n <5(Llogioal + 1) +1 since Llogioal + 1 > log, a

= n < 5(Llogioal + 1)
Hence the complexity of Euclidean algorithm 1s O(log @), which is easy to show using
the definition of big-O notation.

Note also that (# of decimal digits in @) = | logioa] + 1
. n < 5(# of decimal digits in a) (which is Lamé’s Theorem)

43

5.4 Recursive Algorithms

Definition:
An algorithm is called recursive 1f it solves a problem by reducing it to an instance of

the same problem with smaller input.

e.g. Compute GCD(a,b), a <b Examole:
int GCD(int a, int Db) { 155 =125-1 + 30
int gedAB; 125=30-4+5
1f (a == 0) gcdAB = Db; 30 = 5.6
iiiirECdiiA;°GCD (b % a, a); - ged (125, 155) = ged (30,125)
J / — gcd (5,30) = ged (0,5) = 5

44

e.g. Compute a”, aeR and neN
=1, a*'=aa"

int power (int a, 1int n) {

int p;
if (n == 0) p = 1;
else p = a*power (a,n-1

return p;

) ;

45

e.g. Product of two integers

int product (int m,int n) {
int prod;
1f (n==1) prod = m;
else prod = m + product(m, n-1);

return prod;

e.g. Linear search x in {ao, ai, ..., an-1}

int search(int x, int af[], int n, int 1) {
int location;

if (afi] == x)
location = 1i;
else if (i == n-1)
location = -1;
else
location = search(x,a,n,i+1l);

return location;

Initially i = 0.

47

e.g. Binary search pseudocode

function binary search(x,a,i,j)
m=L(i+j)/2;
if (x==a[m]) loc=m;
else if (x <a[m]and i <m)
loc = binary search(x,q, i, m-1); (search in the first half)
else if (x >a[m] and j> m)
loc = binary search(x,am+1, j). (search in the second half)
else
loc = -1;
return loc;

Initially i =0 and j =7 — 1.

48

Recursion vs. Iteration:

e.g. Computing factorial

Recursive:

function factorial(n: positive integer)
if (n==1fact =1,

else fact = n*factorial (n-1);

return fact;

Iterative:
function factorial(n: positive integer)
fact = 1;
for (i=1;i<n; i++)
fact = fact * i;
return fact;

ALL recursive algorithms have an iterative equivalent, and vice versa.

49

Recursion vs. Iteration:

e.g. Computing factorial

Recursive:

function factorial(n: positive integer)
if (n==1fact =1,

else fact = n*factorial (n-1);

return fact;

Iterative:
function factorial(n: positive integer)
fact=1;
for (i=1;i<n; i++)
fact = fact * i;
return fact;

Let T(n) be the time complexity of the recursive
solution (in terms of comparison and arithmetic
operations).

T(n)=T(n—-1)+ 3 for n > 2 with T(1) = 1.

Then T(n)=T(n—2)+3+3
=T(n-3)+3+3+3
—T()+3+3+...+3
=3(n-1)+1=3n-2

Hence T(n) is O(n).

50

Recursion vs. Iteration:

e.g. Computing factorial Let T(n) be the time complexity of the recursive
solution (in terms of comparison and arithmetic

Recursive: operations).

function factorial(n: positive integer)

if (n==1)fact = 1; T(n)=T(n-1)+ 3 for n > 2 with T(1) = 1.

else fact = n*factorial (n-1);

return fact: Then T(n) = T(n-2) + 3 + 3

=T(n-3)+3+3+3

Iterative:
function factorial(n: positive integer) — T(1)+3+3+...+3
fact = L =3(n-1)+1=3n-=2
for (i = 1; i < n; i++)

fact = fact * i; Hence T(n) is O(n).

return fact;

[terative solutions are usually faster than recursive solutions, though in this example
both algorithms are of O(n) complexity.

51

e.g. Computing Fibonacci numbers
Recursive:

function Fibonacci(n: nonnegative integer)

if (n==0) fibonacci = O;

else if (n==1) Fibonacci = 1;

else fibonacci = Fibonacci(n-1) + Fibonacci(n-2);
return fibonacci;

Iterative:
function Fibonacci(n: nonnegative integer)
if (n==0)y =0;
else{
x=0;
y=1.
for (i=1; i < n; i++){
Z = X+Y;
X =y
y=2z
}
}

returny:

52

Complexity analysis for recursive algorithms:
Recursive solution for computing Fibonacci numbers seems more clever and compact;
however the iterative solution is much more efficient!!!

Let T(n) be the time complexity of the recursive solution (in terms of comparison and
arithmetic operations).

Then T(n) =T(n-1) + T(n—2) + 5 for n > 2 with T(0) =1 and T(1) = 2.

(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).

function Fibonacci(n: nonnegative integer)

if (n==0) fibonacci = O;

else if (n==1) Fibonacci = 1;

else fibonacci = Fibonacci(n-1) + Fibonacci(n-2);
return fibonacci;

53

Complexity analysis for recursive algorithms:
Recursive solution for computing Fibonacci numbers seems more clever and compact;
however the iterative solution is much more efficient!!!

Let T(n) be the time complexity of the recursive solution (in terms of comparison and
arithmetic operations).

Then T(n) =T(n-1) + T(n—2) + 5 for n > 2 with T(0) =1 and T(1) = 2.

(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).

Since fn = fn1+ fn2, T(n) > f, Vn and

fa> a2 Vn>3, o= (1+V5)/2,

= T(n) > o>

54

Complexity analysis for recursive algorithms:
Recursive solution for computing Fibonacci numbers seems more clever and compact;
however the iterative solution is much more efficient!!!

Let T(n) be the time complexity of the recursive solution (in terms of comparison and
arithmetic operations).

Then T(n) =T(n-1) + T(n—2) + 5 for n > 2 with T(0) =1 and T(1) = 2.

(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).

Since f, = fn1+ funo, T(n) > f, Vn and

fa> a2 Vn>3, o= (1+V5)/2,

= T(n) > o™% .. exponential complexity ®(a”) or worse.

(Or you can use big-Omega notation: T(n) 1s Q(a”) .)
Note that complexity of the iterative solution is ®(n) (big-Theta).

Moral of the story: Don’t compute anything more than once!

55

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm
produces the correct (i.e., the desired) output.

Consider the recursive factorial example:

function factorial(n: positive integer)

if (n==Dfact=1; Is 1t correct?
else fact = n*factorial (n-1);

return fact;

56

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm
produces the correct (i.e., the desired) output.

Consider the recursive factorial example:

function factorial(n: positive integer)

if (n==Dfact=1; Is 1t correct?
else fact = n*factorial (n-1);

return fact;

We have to show that the recursive code works correctly for all positive n, 1.e.,
P(n) is true Vn, where P(n): “The output of the algorithm 1s n!”

Basis step:
P(1): The outputis 1 = 1! (T)

57

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm
produces the correct (i.e., the desired) output.

Consider the recursive factorial example:

function factorial(n: positive integer)

if (n==Dfact=1; Is 1t correct?
else fact = n*factorial (n-1);

return fact;

We have to show that the recursive code works correctly for all positive n, 1.e.,
P(n) is true Vn, where P(n): “The output of the algorithm 1s n!”

Basis step:

P(1): The outputis 1 = 1! (T)

Inductive step:

Show P(n) — P(n+1) Vn > 0 or equivalently show P(n—1) — P(n) Vn> 1.

We assume factorial(n-1) correctly returns (n—1)! and show factorial(n) returns n!.

58

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm
produces the correct (i.e., the desired) output.

Consider the recursive factorial example:

function factorial(n: positive integer)

if (n==Dfact=1; Is 1t correct?
else fact = n*factorial (n-1);

return fact;

We have to show that the recursive code works correctly for all positive n, 1.e.,
P(n) is true Vn, where P(n): “The output of the algorithm 1s n!”
Basis step:
P(1): The outputis 1 = 1! (T)
Inductive step:
Show P(n) — P(n+1) Vn > 0 or equivalently show P(n—1) — P(n) Vn> 1.
We assume factorial(n-1) correctly returns (n—1)! and show factorial(n) returns n!.
For n, the output 1s, as seen from the code, n- factorial(n-1) = n-(n—1)! = n!
oo P(n)is T .. P(n)istrue VneZ"

59

e.g. Show that the following recursive function correctly computes the n-th Fibonacci
number (Exercise: use strong induction).

function Fibonacci(n: nonnegative integer)

if (n==0) fibonacci=0;

else if (n==1) fibonacci=1;

else fibonacci=Fibonacci(n-1)+Fibonacci(n-2);
return fibonacci;

60

e.g. Show that the following recursive function correctly returns gcd(a, n), a < n, for all
positive integers n.

int GCD(int a, int n) {

int gcdAB;

1if (a == 0) gcdAB = n;

else gcdAB = GCD(n % a, a);

return gcdAB;
}
Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a <n, Vn>0.
Basis step: P(1) 1s true because the only possible cases are a = 0 and a = 1. Looking
into the code, we see that the algorithm returns 0 in the first case and returns » =1 in

the latter, as expected.

61

e.g. Show that the following recursive function correctly returns ged(a, n), a < n, for all
positive integers n.

int GCD(int a, int n) {
int gcdAB;
1if (a == 0) gcdAB = n;
else gcdAB = GCD(n % a, a);
return gcdAB;
}

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a <n, Vn>0.
Basis step: P(1) 1s true because the only possible cases are a = 0 and a = 1. Looking
into the code, we see that the algorithm returns 0 in the first case and returns » =1 in
the latter, as expected.

Inductive step: Assume P(k) for all 1<k <n and check whether GCD(a, n+1) returns

gcd(a, n+1) for any a < n.

62

e.g. Show that the following recursive function correctly returns ged(a, n), a < n, for all
positive integers n.

int GCD(int a, int n) {
int gcdAB;
1if (a == 0) gcdAB = n;
else gcdAB = GCD(n % a, a);
return gcdAB;
}

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a <n, Vn>0.
Basis step: P(1) 1s true because the only possible cases are a = 0 and a = 1. Looking
into the code, we see that the algorithm returns 0 in the first case and returns » =1 in
the latter, as expected.

Inductive step: Assume P(k) for all 1<k <n and check whether GCD(a, n+1) returns
gcd(a, nt+1) for any a < n. We see that in this case the function calls itself with input
(c, a) where ¢ = (n+1)%a, and this call generates gcd((n+1)% a, a) correctly because
P(a) 1s true by inductive hypothesis since a < n.

63

e.g. Show that the following recursive function correctly returns ged(a, n), a < n, for all
positive integers n.

int GCD(int a, int n) {
int gcdAB;
1if (a == 0) gcdAB = n;
else gcdAB = GCD(n % a, a);
return gcdAB;
}

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a <n, Vn>0.
Basis step: P(1) 1s true because the only possible cases are a = 0 and a = 1. Looking
into the code, we see that the algorithm returns 0 in the first case and returns » =1 in
the latter, as expected.

Inductive step: Assume P(k) for all 1<k <n and check whether GCD(a, n+1) returns
gcd(a, nt+1) for any a < n. We see that in this case the function calls itself with input
(c, a) where ¢ = (n+1)%a, and this call generates gcd((n+1)% a, a) correctly because
P(a) 1s true by inductive hypothesis since a < n. Since gecd(a, n+1) = gcd((n+1)% a, a)
from what we’ve learned in number theory, GCD(a, n+1) returns gcd(a, n+1). (Note also
that @ = n+1 case is trivial to check). SO by strong induction we conclude that P(n) 1s true for

all n, that 1s, GCD(a, n) returns gcd(a, n) whenever a < n, Vn>0.

64

