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5. Induction and Recursion 
 

5.1 Mathematical Induction    
 
Consider the sum of the first n positive odd numbers: 
 
1=1, 1+3=4,  1+3+5=9,  1+3+5+7=16, 1+3+5+7+9=25 
 
Is it n2? 
 
Induction is a powerful tool to prove assertions of this type.  
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Mathematical Induction: 
 
Prove the theorem: P(n) is true "n Î Z+  
 
 
Proof by induction: 
 1. Basis step   P(1) is shown to be true 
 2. Inductive step  P(n) → P(n+1) is shown to be true "nÎZ+ 
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Mathematical Induction: 
 
Prove the theorem: P(n) is true "n Î Z+  
 
 
Proof by induction: 
 1. Basis step   P(1) is shown to be true 
 2. Inductive step  P(n) → P(n+1) is shown to be true "nÎZ+ 
 
Then if we apply the following rule of inference, 
 
 [P(1) Ù "n (P(n) → P(n+1))] → "n P(n) 
 
to conclude that P(n) is true "nÎZ+ 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
 

Basis step: 
   P(1): 1 = 12    (True) 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
 

Basis step: 
   P(1): 1 = 12    (True) 
 
Inductive step: 
    
? P(n) → P(n+1)  "nÎZ+ 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
 

Basis step: 
   P(1): 1 = 12    (True) 
 
Inductive step: 
    
? P(n) → P(n+1)  "nÎZ+ 
 
Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 + 3 +…+ (2n-1) = n2 
Then show P(n+1) is also T. 
1 + 3 + … + (2n-1) + (2n+1) = (n+1)2  ? 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
 

Basis step: 
   P(1): 1 = 12    (True) 
 
Inductive step: 
    
? P(n) → P(n+1)  "nÎZ+ 
 
Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 + 3 +…+ (2n-1) = n2 
Then show P(n+1) is also T. 
1 + 3 + … + (2n-1) + (2n+1) = (n+1)2  ? 
          = n2 + (2n+1)     (T) 
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e.g. 
P(n) : The sum of first n positive odd integers is n2. 
Prove P(n) is true "nÎZ+. 
 

Basis step: 
   P(1): 1 = 12    (True) 
 
Inductive step: 
    
? P(n) → P(n+1)  "nÎZ+ 
 
Suppose, for a fixed arbitrary n, P(n) is T, i.e., 1 + 3 +…+ (2n-1) = n2 
Then show P(n+1) is also T. 
1 + 3 + … + (2n-1) + (2n+1) = (n+1)2  ? 
          = n2 + (2n+1)     (T) 
\ P(n) is T   "nÎZ+ 
 
Remark: Here P(n) is called inductive hypothesis for a fixed arbitrary n. 
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e.g.  
Prove n < 2n  "nÎZ+ 
 
Basis step: 
    
P(1): 1 < 21 = 2   (T) 
 
Inductive step: 
 
Show P(n) → P(n+1)   "nÎZ+. 
n < 2n →  n+1 < 2(n+1) ? 
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e.g.  
Prove n < 2n  "nÎZ+ 
 
Basis step: 
    
P(1): 1 < 21 = 2   (T) 
 
Inductive step: 
 
Show P(n) → P(n+1)   "nÎZ+. 
n < 2n →  n+1 < 2(n+1) ? 
 
n < 2n  Þ n+1 < 2n +1 £ 2n + 2n = 2n+1 
\ P(n+1) is T 
\ n < 2n  "nÎZ+ 
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e.g. Inequality for Harmonic Numbers: 
 
Harmonic number:   
Hk = 1 + 1/2 + 1/3 + ∙∙∙ +1/k,  k =1, 2, 3… 
 
Show that H2n ³ 1 + n/2 "n, n is a nonnegative integer. 
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e.g. Inequality for Harmonic Numbers: 
 
Harmonic number:   
Hk = 1 + 1/2 + 1/3 + ∙∙∙ +1/k,  k =1, 2, 3… 
 
Show that H2n ³ 1 + n/2 "n, n is a nonnegative integer. 

 
Basis step: 
 

P(0) is true, since H20 = H1 = 1 ³ 1 + 0/2 = 1. 
 
Inductive step: 
 

Assume P(n) is true  Þ  H2n ³ 1 + n/2 
 
      H2n+1 = H2n + 1/(2n + 1) + … + 1/(2n+1) 
  ³ (1 + n/2) + 1/(2n + 1) + …. + 1 /(2n+1) 
  ³ (1 + n/2) + 2n (1/2n+1) = 1 + (n+1) / 2    
\ P(n+1) is true.   
Hence by induction  H2n ³ 1 + n/2 "n 
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e.g.  
Prove that 2n < n! for n = 4, 5, 6, …. 
  
Let P(n): 2n < n! 
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e.g.  
Prove that 2n < n! for n = 4, 5, 6, …. 
  
Let P(n): 2n < n! 
 
Basis step: 
 
P(4) is true, since 24 = 16 < 4! = 24 
 
Inductive step: 
 
Assume P(n) is true: 2n < n! 
 Þ 2n+1 < 2n! 
   < (n+1) n! 
   = (n+1)!   \ P(n+1) is true. 
 
Hence by induction  2n < n! for n = 4, 5, 6, …. 
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5.2 Strong Induction 
 

1. Basis step:  
      Show that P(1) is true. 

 
 

2. Inductive step:  
    Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
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1. Basis step:   Show that P(1) is true. 
2. Inductive step: Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
 
e.g. Show that if n > 1 integer, then n is either prime or can be written as a product of 
primes. 
Let P(n) be “n is either prime or can be written as the product of primes”. 
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1. Basis step:   Show that P(1) is true. 
2. Inductive step: Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
 
e.g. Show that if n > 1 integer, then n is either prime or can be written as a product of 
primes. 
Let P(n) be “n is either prime or can be written as the product of primes”. 
Basis step:   P(2) is true since 2 is prime itself. 
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1. Basis step:   Show that P(1) is true. 
2. Inductive step: Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
 
e.g. Show that if n > 1 integer, then n is either prime or can be written as a product of 
primes. 
Let P(n) be “n is either prime or can be written as the product of primes”. 
Basis step:   P(2) is true since 2 is prime itself. 
Inductive step:  Assume P(k) is true for all 2 £ k £ n. Show P(n+1) is also true.   
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1. Basis step:   Show that P(1) is true. 
2. Inductive step: Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
 
e.g. Show that if n > 1 integer, then n is either prime or can be written as a product of 
primes. 
Let P(n) be “n is either prime or can be written as the product of primes”. 
Basis step:   P(2) is true since 2 is prime itself. 
Inductive step:  Assume P(k) is true for all 2 £ k £ n. Show P(n+1) is also true.   
 
If (n+1) is prime then P(n+1) is already true. 
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1. Basis step:   Show that P(1) is true. 
2. Inductive step: Show that [P(1) Ù P(2) Ù … Ù P(n)] → P(n+1) is true "nÎZ+. 
 
e.g. Show that if n > 1 integer, then n is either prime or can be written as a product of 
primes. 
Let P(n) be “n is either prime or can be written as the product of primes”. 
Basis step:   P(2) is true since 2 is prime itself. 
Inductive step:  Assume P(k) is true for all 2 £ k £ n. Show P(n+1) is also true.   
 
If (n+1) is prime then P(n+1) is already true. 
If (n+1) is composite then n+1 = a·b    s.t. 1 < a £ b < n+1. 
Since we know that P(a) and P(b) are true by inductive hypothesis, a and b are either 
prime or can be written as product of primes.   
Þ a∙b can also be written as product of primes. 
Þ P(n+1) is also true. 
\ P(n) is T   "n > 1  by strong induction 
This completes the proof of the Fundamental Theorem of Arithmetic (see previous lectures, Ch. 4). 
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5.3 Recursive Definitions 
 
A function can often be defined also recursively: 
 

1. Specify the value of the function at the beginning, e.g., at zero. 
2. Give a rule for finding its value based on its previous values. 
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5.3 Recursive Definitions 
 
A function can often be defined also recursively: 
 

1. Specify the value of the function at the beginning, e.g., at zero. 
2. Give a rule for finding its value based on its previous values. 

 
 
e.g.  
  an = 2n   n = 0, 1, 2,… 
  
 Þ an+1 = 2an  a0 =1, n = 0, 1, 2,…. 
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5.3 Recursive Definitions 
 
A function can often be defined also recursively: 
 

1. Specify the value of the function at the beginning, e.g., at zero. 
2. Give a rule for finding its value based on its previous values. 

 
 
e.g.  
  an = 2n   n = 0, 1, 2,… 
  
 Þ an+1 = 2an  a0 =1, n = 0, 1, 2,…. 
  
 
e.g.   
F(n) = n! can be defined recursively:  
 F(0) = 1 
 F(n+1) = F(n)(n+1) 
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e.g.  
Fibonacci numbers: 
  f0 = 0,  f1 = 1 
  fn+1 = fn + fn-1        n = 1, 2,… 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 



 26 

e.g.  
Fibonacci numbers: 
  f0 = 0,  f1 = 1 
  fn+1 = fn + fn-1        n = 1, 2,… 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Golden ratio, found in nature and used in art and architecture 
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
Let P(n): fn > αn-2   
Basis step: n = 3 Þ α < 2 = ƒ3    \ P(3) is true 

    n = 4 Þ α2 = (3+ )/2 < 3 = ƒ4    \ P(4) is true 
 

 
 

 

 

 

 

 

 

 

 

 
 

5

5
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
Let P(n): fn > αn-2   
Basis step: n = 3 Þ α < 2 = ƒ3    \ P(3) is true 

    n = 4 Þ α2 = (3+ )/2 < 3 = ƒ4    \ P(4) is true 
 

Inductive step: Assume ƒk > αk-2    "k, 3 £ k £ n  where  n ³ 4 
 

ƒn+1 > αn–1 ? 
 
 
 
 
 
 
 
 
 

5

5
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
Let P(n): fn > αn-2   
Basis step: n = 3 Þ α < 2 = ƒ3    \ P(3) is true 

    n = 4 Þ α2 = (3+ )/2 < 3 = ƒ4    \ P(4) is true 
 

Inductive step: Assume ƒk > αk-2    "k, 3 £ k £ n  where  n ³ 4 
 

ƒn+1 > αn–1 ? 
 
 
 
 
 

 
 
 
 
 

5

5

Since α is a solution  of x2 – x – 1 = 0 
\ α2 =α+1 
Þ αn-1 = α2 ∙αn-3 = (α+1) αn-3 = αn-2 + αn-3 
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
Let P(n): fn > αn-2   
Basis step: n = 3 Þ α < 2 = ƒ3    \ P(3) is true 

    n = 4 Þ α2 = (3+ )/2 < 3 = ƒ4    \ P(4) is true 
 

Inductive step: Assume ƒk > αk-2    "k, 3 £ k £ n  where  n ³ 4 
 

ƒn+1 > αn–1 ? 
 
 
 
 
 

By inductive hypothesis, ƒn >  αn-2   and ƒn-1 > αn-3 

 
 
 

5

5

Since α is a solution  of x2 – x – 1 = 0 
\ α2 =α+1 
Þ αn-1 = α2 ∙αn-3 = (α+1) αn-3 = αn-2 + αn-3 
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e.g. Show that fn > αn-2  "n ≥ 3, where α = (1+ )/2.  
Note that α is a solution  of x2 – x – 1 = 0. Use strong induction. 
 
Let P(n): fn > αn-2   
Basis step: n = 3 Þ α < 2 = ƒ3    \ P(3) is true 

    n = 4 Þ α2 = (3+ )/2 < 3 = ƒ4    \ P(4) is true 
 

Inductive step: Assume ƒk > αk-2    "k, 3 £ k £ n  where  n ³ 4 
 

ƒn+1 > αn–1 ? 
 
 
 
 
 

By inductive hypothesis, ƒn >  αn-2   and ƒn-1 > αn-3 

Þ ƒn+1 = ƒn + ƒn-1 > αn-2 + αn-3 = αn-1      \  fn > αn-2  "n ≥ 3 by strong induction. 
 
 
 

5

5

Since α is a solution  of x2 – x – 1 = 0 
\ α2 =α+1 
Þ αn-1 = α2 ∙αn-3 = (α+1) αn-3 = αn-2 + αn-3 
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e.g. 
Show that ƒn< (5/3)n  "n ≥ 0. Exercise (use strong induction). 
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Theorem: Lamé’s Theorem 
Let a,bÎZ+  s.t  a £ b. 
The number n of division steps used by Euclidean algorithm to find gcd(a,b)   
£  5 times the number of decimal digits in a, that is,  n £  5( ëlog10 aû + 1).  
  
Hence the complexity of Euclidean algorithm is O(log a). 
 

Recall the code: (Euclidean Algorithm, a £ b) 
 
 int gcd(int a, int b)   
 {  
  int x,y,r;  
  x = b; 
  y = a; 
  while (y != 0){ 
   r = x % y; 
   x = y; 
   y = r; 
  } 
  return x; 
 } 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Proof:  Let b = r0 and a = r1 
 r0 = r1q1 + r2    0 £ r2 < r1 
 r1 = r2q2 + r3    0 £ r3 < r2 
 

 rn-2 = rn-1qn-1 + rn   0 £ rn < rn-1 

 rn-1 = rnqn 
 

n division steps to find rn ,  and qi ³ 1 and qn ³ 2, 
 
 
 
 
 
 
 
 
 
 
 
 

. 

. 

.. 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Proof:  Let b = r0 and a = r1 
 r0 = r1q1 + r2    0 £ r2 < r1 
 r1 = r2q2 + r3    0 £ r3 < r2 
 

 rn-2 = rn-1qn-1 + rn   0 £ rn < rn-1 

 rn-1 = rnqn 
 

n division steps to find rn ,  and qi ³ 1 and qn ³ 2, 
rn ³ 1 = ƒ2    ( ƒn : nth Fibonacci number) 

rn-1 ³ 2rn ³ 2ƒ2 = ƒ3 

 
 
 
 
 
 
 
 
 
 

. 

. 

.. 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Proof:  Let b = r0 and a = r1 
 r0 = r1q1 + r2    0 £ r2 < r1 
 r1 = r2q2 + r3    0 £ r3 < r2 
 

 rn-2 = rn-1qn-1 + rn   0 £ rn < rn-1 

 rn-1 = rnqn 
 

n division steps to find rn ,  and qi ³ 1 and qn ³ 2, 
rn ³ 1 = ƒ2 

rn-1 ³ 2rn ³ 2ƒ2 = ƒ3 

rn-2 ³ rn-1 + rn ³ ƒ3 + ƒ2 = ƒ4 

 
 
 
 
 
 
 
 
 

. 

. 

.. 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Proof:  Let b = r0 and a = r1 
 r0 = r1q1 + r2    0 £ r2 < r1 
 r1 = r2q2 + r3    0 £ r3 < r2 
 

 rn-2 = rn-1qn-1 + rn   0 £ rn < rn-1 

 rn-1 = rnqn 
 

n division steps to find rn ,  and qi ³ 1 and qn ³ 2, 
rn ³ 1 = ƒ2 

rn-1 ³ 2rn ³ 2ƒ2 = ƒ3 

rn-2 ³ rn-1 + rn ³ ƒ3 + ƒ2 = ƒ4 

 
r2 ³ r3 + r4 ³ ƒn-1 + ƒn-2 = ƒn 

a = r1 ³ r2 + r3 ³ ƒn + ƒn-1 = ƒn+1         \ a ³ ƒn+1 
 
 
 
 
 
 

. 

. 

.. 

. 

. 

. 

. 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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So we have a ³ ƒn+1. 
 
We also know that ƒn+1 ³ an-1 for n > 2,  
where a = (1 + ) / 2. 
 
Þ a ³ an-1 
 
 
 
 
 
 
 
 
 
 
 
 
 

5
Recall that n is the number of 
division steps required by the 
Euclidean algorithm. 
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So we have a ³ ƒn+1. 
 
We also know that ƒn+1 ³ an-1 for n > 2,  
where a = (1 + ) / 2. 
 
Þ a ³ an-1 
Þ log10a  ³  (n-1)log10a  >  (n-1) / 5 
\ n-1 < 5log10a Þ n < 5log10a +1  
 
 
 
 
 
 
 
 
 
 

5
Recall that n is the number of 
division steps required by the 
Euclidean algorithm. 
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So we have a ³ ƒn+1. 
 
We also know that ƒn+1 ³ an-1 for n > 2,  
where a = (1 + ) / 2. 
 
Þ a ³ an-1 
Þ log10a  ³  (n-1)log10a  >  (n-1) / 5 
\ n-1 < 5log10a Þ n < 5log10a +1  
Þ n < 5( ëlog10aû + 1) +1   since ëlog10aû + 1 > log10a 
Þ n £ 5( ëlog10aû + 1)  
 
 
 
 
 
 
 
 

5
Recall that n is the number of 
division steps required by the 
Euclidean algorithm. 
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So we have a ³ ƒn+1. 
 
We also know that ƒn+1 ³ an-1 for n > 2,  
where a = (1 + ) / 2. 
 
Þ a ³ an-1 
Þ log10a  ³  (n-1)log10a  >  (n-1) / 5 
\ n-1 < 5log10a Þ n < 5log10a +1  
Þ n < 5( ëlog10aû + 1) +1   since ëlog10aû + 1 > log10a 
Þ n £ 5( ëlog10aû + 1)  
Hence the complexity of Euclidean algorithm is O(log a), which is easy to show using 
the definition of big-O notation. 
 
 
 
 
 
 

5
Recall that n is the number of 
division steps required by the 
Euclidean algorithm. 
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So we have a ³ ƒn+1. 
 
We also know that ƒn+1 ³ an-1 for n > 2,  
where a = (1 + ) / 2. 
 
Þ a ³ an-1 
Þ log10a  ³  (n-1)log10a  >  (n-1) / 5 
\ n-1 < 5log10a Þ n < 5log10a +1  
Þ n < 5( ëlog10aû + 1) +1   since ëlog10aû + 1 > log10a 
Þ n £ 5( ëlog10aû + 1)  
Hence the complexity of Euclidean algorithm is O(log a), which is easy to show using 
the definition of big-O notation. 
 
Note also that (# of decimal digits in a) = ëlog10aû + 1 
 \ n £ 5∙(# of decimal digits in a)  (which is Lamé’s Theorem) 
 
 
 

5
Recall that n is the number of 
division steps required by the 
Euclidean algorithm. 
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5.4 Recursive Algorithms 
 
Definition:  
An algorithm is called recursive if it solves a problem by reducing it to an instance of 
the same problem with smaller input. 
 
 
e.g. Compute GCD(a,b), a £ b 
 
int GCD(int a, int b){ 
 int gcdAB; 
 if (a == 0) gcdAB = b; 
 else gcdAB = GCD(b % a, a); 
 return gcdAB; 
}  

 
 
 
 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (125, 155) = gcd (30,125)  
     = gcd (5,30) = gcd (0,5) = 5 
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e.g. Compute an, aÎR and nÎN 
a0 = 1, an+1 = aan 
  
int power(int a, int n){ 
 int p; 
 if (n == 0)  p = 1; 
 else p = a*power(a,n-1); 
 return p;  
} 
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e.g. Product of two integers 
 
int product(int m,int n){ 
 int prod; 
 if (n==1) prod = m; 
 else prod = m + product(m, n-1); 
 return prod; 
} 
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e.g. Linear search x in {a0, a1, …, an-1} 
 
int search(int x, int a[], int n, int i){ 
 int location; 
 if (a[i] == x)  
    location = i; 
 else if (i == n-1)  
  location = -1; 
 else  
  location = search(x,a,n,i+1); 
 return location; 
} 
 
Initially i = 0. 
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e.g. Binary search pseudocode 
 
function binary search(x,a,i,j) 

m = ë(i + j)/2û; 
if (x == a[m]) loc = m; 
else if (x < a[m] and i < m) 
 loc = binary search(x,a, i, m-1);      (search in the first half) 
else if (x > a[m] and j> m) 
 loc = binary search(x,a,m+1, j);      (search in the second half) 
else 
 loc = -1; 
return loc; 

 
Initially i = 0 and j = n – 1. 
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Recursion vs. Iteration: 
 
e.g. Computing factorial 
 
Recursive: 
function factorial(n: positive integer) 
if (n == 1) fact = 1; 
else fact = n*factorial (n-1); 
return fact; 
 
Iterative: 
function factorial(n: positive integer) 
fact = 1; 
for (i = 1; i £ n; i++) 
 fact = fact * i; 
return fact; 
 
ALL recursive algorithms have an iterative equivalent, and vice versa. 
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Recursion vs. Iteration: 
 
e.g. Computing factorial 
 
Recursive: 
function factorial(n: positive integer) 
if (n == 1) fact = 1; 
else fact = n*factorial (n-1); 
return fact; 
 
Iterative: 
function factorial(n: positive integer) 
fact = 1; 
for (i = 1; i £ n; i++) 
 fact = fact * i; 
return fact; 
 
 
 

Let T(n) be the time complexity of the recursive 
solution (in terms of comparison and arithmetic 
operations). 
 
T(n) = T(n-1) + 3 for n ≥ 2 with T(1) = 1. 
 
Then T(n) = T(n-2) + 3 + 3 
   = T(n-3) + 3 + 3 + 3 

  . 
  . 
  . 
 = T(1) + 3 + 3 + … + 3 
 = 3(n-1)+1 = 3n-2 
 

Hence T(n) is O(n). 
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Recursion vs. Iteration: 
 
e.g. Computing factorial 
 
Recursive: 
function factorial(n: positive integer) 
if (n == 1) fact = 1; 
else fact = n*factorial (n-1); 
return fact; 
 
Iterative: 
function factorial(n: positive integer) 
fact = 1; 
for (i = 1; i £ n; i++) 
 fact = fact * i; 
return fact; 
 
Iterative solutions are usually faster than recursive solutions, though in this example 
both algorithms are of O(n) complexity. 

Let T(n) be the time complexity of the recursive 
solution (in terms of comparison and arithmetic 
operations). 
 
T(n) = T(n-1) + 3 for n ≥ 2 with T(1) = 1. 
 
Then T(n) = T(n-2) + 3 + 3 
   = T(n-3) + 3 + 3 + 3 

  . 
  . 
  . 
 = T(1) + 3 + 3 + … + 3 
 = 3(n-1)+1 = 3n-2 
 

Hence T(n) is O(n). 
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e.g. Computing Fibonacci numbers 
Recursive: 
function Fibonacci(n: nonnegative integer) 
if (n==0) fibonacci = 0; 
else if (n==1) Fibonacci = 1; 
else fibonacci = Fibonacci(n-1) + Fibonacci(n-2); 
return fibonacci; 
Iterative: 
function Fibonacci(n: nonnegative integer) 
if (n==0) y = 0; 
else{ 
 x=0; 
 y=1; 
 for (i=1; i < n; i++){ 
  z = x+y; 
  x = y; 
  y = z; 
 } 
} 
return y; 
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Complexity analysis for recursive algorithms: 
Recursive solution for computing Fibonacci numbers seems more clever and compact; 
however the iterative solution is much more efficient!!! 
 
Let T(n) be the time complexity of the recursive solution (in terms of comparison and 
arithmetic operations). 
Then T(n) = T(n-1) + T(n-2) + 5 for n ≥ 2 with T(0) = 1 and T(1) = 2. 
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions). 
 
 
 
 

function Fibonacci(n: nonnegative integer) 
if (n==0) fibonacci = 0; 
else if (n==1) Fibonacci = 1; 
else fibonacci = Fibonacci(n-1) + Fibonacci(n-2); 
return fibonacci; 
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Complexity analysis for recursive algorithms: 
Recursive solution for computing Fibonacci numbers seems more clever and compact; 
however the iterative solution is much more efficient!!! 
 
Let T(n) be the time complexity of the recursive solution (in terms of comparison and 
arithmetic operations). 
Then T(n) = T(n-1) + T(n-2) + 5 for n ≥ 2 with T(0) = 1 and T(1) = 2. 
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions). 
Since ƒn = ƒn-1 + ƒn-2, T(n) ³ ƒn   "n  and  
ƒn > αn-2  "n ≥ 3,  α = (1+ )/2, 
Þ T(n) > αn-2    
 
 
 
 
 
 
 
 

5
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Complexity analysis for recursive algorithms: 
Recursive solution for computing Fibonacci numbers seems more clever and compact; 
however the iterative solution is much more efficient!!! 
 
Let T(n) be the time complexity of the recursive solution (in terms of comparison and 
arithmetic operations). 
Then T(n) = T(n-1) + T(n-2) + 5 for n ≥ 2 with T(0) = 1 and T(1) = 2. 
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions). 
Since ƒn = ƒn-1 + ƒn-2, T(n) ³ ƒn   "n  and  
ƒn > αn-2  "n ≥ 3,  α = (1+ )/2, 
Þ T(n) > αn-2   \ exponential complexity Q(αn) or worse. 
 
(Or you can use big-Omega notation: T(n) is W(αn) .) 
 
Note that complexity of the iterative solution is Q(n)   (big-Theta). 
 
Moral of the story: Don’t compute anything more than once!  
 

5
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Correctness of recursive algorithms: 
We can use mathematical induction also to show that a given recursive algorithm 
produces the correct (i.e., the desired) output. 
Consider the recursive factorial example: 
 
function factorial(n: positive integer) 
if (n == 1) fact = 1;      Is it correct? 
else fact = n*factorial (n-1); 
return fact; 
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Correctness of recursive algorithms: 
We can use mathematical induction also to show that a given recursive algorithm 
produces the correct (i.e., the desired) output. 
Consider the recursive factorial example: 
 
function factorial(n: positive integer) 
if (n == 1) fact = 1;      Is it correct? 
else fact = n*factorial (n-1); 
return fact; 
 
We have to show that the recursive code works correctly for all positive n, i.e.,  
P(n) is true "n, where P(n): “The output of the algorithm is n!” 
Basis step: 
P(1): The output is 1 = 1!   (T) 
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Correctness of recursive algorithms: 
We can use mathematical induction also to show that a given recursive algorithm 
produces the correct (i.e., the desired) output. 
Consider the recursive factorial example: 
 
function factorial(n: positive integer) 
if (n == 1) fact = 1;      Is it correct? 
else fact = n*factorial (n-1); 
return fact; 
 
We have to show that the recursive code works correctly for all positive n, i.e.,  
P(n) is true "n, where P(n): “The output of the algorithm is n!” 
Basis step: 
P(1): The output is 1 = 1!   (T) 
Inductive step: 
Show P(n) → P(n+1) "n > 0 or equivalently show P(n-1) → P(n)  "n > 1. 
We assume factorial(n-1) correctly returns (n-1)! and show factorial(n) returns n!. 
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Correctness of recursive algorithms: 
We can use mathematical induction also to show that a given recursive algorithm 
produces the correct (i.e., the desired) output. 
Consider the recursive factorial example: 
 
function factorial(n: positive integer) 
if (n == 1) fact = 1;      Is it correct? 
else fact = n*factorial (n-1); 
return fact; 
 
We have to show that the recursive code works correctly for all positive n, i.e.,  
P(n) is true "n, where P(n): “The output of the algorithm is n!” 
Basis step: 
P(1): The output is 1 = 1!   (T) 
Inductive step: 
Show P(n) → P(n+1) "n > 0 or equivalently show P(n-1) → P(n)  "n > 1. 
We assume factorial(n-1) correctly returns (n-1)! and show factorial(n) returns n!. 
For n, the output is, as seen from the code, n· factorial(n-1) = n·(n-1)! = n! 

\ P(n) is T   \ P(n) is true "nÎZ+ 
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e.g. Show that the following recursive function correctly computes the n-th Fibonacci 
number (Exercise: use strong induction). 
 
function Fibonacci(n: nonnegative integer) 
if (n==0) fibonacci=0; 
else if (n==1) fibonacci=1; 
else fibonacci=Fibonacci(n-1)+Fibonacci(n-2); 
return fibonacci; 
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e.g. Show that the following recursive function correctly returns gcd(a, n), a £ n, for all 
positive integers n. 
 
int GCD(int a, int n){ 
 int gcdAB; 
 if (a == 0) gcdAB = n; 
 else gcdAB = GCD(n % a, a); 
 return gcdAB; 
}  

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a £ n,  "n>0.  
Basis step: P(1) is true because the only possible cases are a = 0 and a = 1. Looking 
into the code, we see that the algorithm returns 0 in the first case and returns n = 1 in 
the latter, as expected.  
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e.g. Show that the following recursive function correctly returns gcd(a, n), a £ n, for all 
positive integers n. 
 
int GCD(int a, int n){ 
 int gcdAB; 
 if (a == 0) gcdAB = n; 
 else gcdAB = GCD(n % a, a); 
 return gcdAB; 
}  

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a £ n,  "n>0.  
Basis step: P(1) is true because the only possible cases are a = 0 and a = 1. Looking 
into the code, we see that the algorithm returns 0 in the first case and returns n = 1 in 
the latter, as expected.  
Inductive step: Assume P(k) for all 1≤ k ≤ n and check whether GCD(a, n+1) returns 
gcd(a, n+1) for any a £ n.   
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e.g. Show that the following recursive function correctly returns gcd(a, n), a £ n, for all 
positive integers n. 
 
int GCD(int a, int n){ 
 int gcdAB; 
 if (a == 0) gcdAB = n; 
 else gcdAB = GCD(n % a, a); 
 return gcdAB; 
}  

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a £ n,  "n>0.  
Basis step: P(1) is true because the only possible cases are a = 0 and a = 1. Looking 
into the code, we see that the algorithm returns 0 in the first case and returns n = 1 in 
the latter, as expected.  
Inductive step: Assume P(k) for all 1≤ k ≤ n and check whether GCD(a, n+1) returns 
gcd(a, n+1) for any a £ n.  We see that in this case the function calls itself with input 
(c, a) where c = (n+1)%a, and this call generates gcd((n+1)% a, a) correctly because 
P(a) is true by inductive hypothesis since a £ n.  
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e.g. Show that the following recursive function correctly returns gcd(a, n), a £ n, for all 
positive integers n. 
 
int GCD(int a, int n){ 
 int gcdAB; 
 if (a == 0) gcdAB = n; 
 else gcdAB = GCD(n % a, a); 
 return gcdAB; 
}  

Let P(n) : The function GCD(a,n) correctly computes gcd(a, n) when a £ n,  "n>0.  
Basis step: P(1) is true because the only possible cases are a = 0 and a = 1. Looking 
into the code, we see that the algorithm returns 0 in the first case and returns n = 1 in 
the latter, as expected.  
Inductive step: Assume P(k) for all 1≤ k ≤ n and check whether GCD(a, n+1) returns 
gcd(a, n+1) for any a £ n.  We see that in this case the function calls itself with input 
(c, a) where c = (n+1)%a, and this call generates gcd((n+1)% a, a) correctly because 
P(a) is true by inductive hypothesis since a £ n. Since gcd(a, n+1) = gcd((n+1)% a, a) 
from what we’ve learned in number theory, GCD(a, n+1) returns gcd(a, n+1). (Note also 
that a = n+1 case is trivial to check). So by strong induction we conclude that P(n) is true for 
all n, that is, GCD(a, n) returns gcd(a, n) whenever a £ n,  "n>0.  


