5. Induction and Recursion

5.1 Mathematical Induction

Consider the sum of the first n positive odd numbers:
$1=1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25$
Is it $n^{2} ?$
Induction is a powerful tool to prove assertions of this type.

Mathematical Induction:

Prove the theorem: $\quad \mathrm{P}(n)$ is true $\forall n \in Z^{+}$

Proof by induction:

1. Basis step
$\mathrm{P}(1)$ is shown to be true
2. Inductive step
$\mathrm{P}(n) \rightarrow \mathrm{P}(n+1)$ is shown to be true $\forall n \in Z^{+}$

Mathematical Induction:

Prove the theorem: $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$

Proof by induction:

1. Basis step $\quad P(1)$ is shown to be true
2. Inductive step $\quad \mathrm{P}(n) \rightarrow \mathrm{P}(n+1)$ is shown to be true $\forall n \in Z^{+}$

Then if we apply the following rule of inference,

$$
[\mathrm{P}(1) \wedge \forall n(\mathrm{P}(n) \rightarrow \mathrm{P}(n+1))] \rightarrow \forall n \mathrm{P}(n)
$$

to conclude that $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
Basis step:

$$
\mathrm{P}(1): 1=1^{2}
$$

(True)
e.g.
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
Basis step:

$$
\mathrm{P}(1): 1=1^{2}
$$

(True)
Inductive step:
$? \mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$
e.g.
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
Basis step:

$$
P(1): 1=1^{2} \quad \text { (True) }
$$

Inductive step:
$? \mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$
Suppose, for a fixed arbitrary $n, \mathrm{P}(n)$ is T, i.e., $1+3+\ldots+(2 n-1)=n^{2}$ Then show $\mathrm{P}(n+1)$ is also T .

$$
1+3+\ldots+(2 n-1)+(2 n+1)=(n+1)^{2} ?
$$

e.g.
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
Basis step:

$$
P(1): 1=1^{2} \quad \text { (True) }
$$

Inductive step:
$? \mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$
Suppose, for a fixed arbitrary $n, \mathrm{P}(n)$ is T, i.e., $1+3+\ldots+(2 n-1)=n^{2}$ Then show $\mathrm{P}(n+1)$ is also T .

$$
\begin{align*}
1+3+\ldots+(2 n-1)+(2 n+1) & =(n+1)^{2} ? \\
& =n^{2}+(2 n+1) \tag{T}
\end{align*}
$$

e.g.
$\mathrm{P}(n)$: The sum of first n positive odd integers is n^{2}.
Prove $\mathrm{P}(n)$ is true $\forall n \in Z^{+}$.
Basis step:

$$
P(1): 1=1^{2} \quad \text { (True) }
$$

Inductive step:
$? \mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$
Suppose, for a fixed arbitrary $n, \mathrm{P}(n)$ is T, i.e., $1+3+\ldots+(2 n-1)=n^{2}$ Then show $\mathrm{P}(n+1)$ is also T .

$$
\begin{align*}
1+3+\ldots+(2 n-1)+(2 n+1) & =(n+1)^{2} ? \\
& =n^{2}+(2 n+1) \tag{T}
\end{align*}
$$

$\therefore \mathrm{P}(n)$ is $\mathrm{T} \quad \forall n \in Z^{+}$
Remark: Here $\mathrm{P}(n)$ is called inductive hypothesis for a fixed arbitrary n.
e.g.

Prove $n<2^{n} \quad \forall n \in Z^{+}$

Basis step:
$\mathrm{P}(1): 1<2^{1}=2$

Inductive step:

Show $\mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$. $n<2^{n} \rightarrow n+1<2^{(n+1)}$?
e.g.

Prove $n<2^{n} \quad \forall n \in Z^{+}$

Basis step:

$\mathrm{P}(1): 1<2^{1}=2$

Inductive step:

Show $\mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \quad \forall n \in Z^{+}$. $n<2^{n} \rightarrow n+1<2^{(n+1)}$?
$n<2^{n} \Rightarrow n+1<2^{n}+1 \leq 2^{n}+2^{n}=2^{n+1}$
$\therefore \mathrm{P}(n+1)$ is T
$\therefore n<2^{n} \quad \forall n \in Z^{+}$
e.g. Inequality for Harmonic Numbers:

Harmonic number:
$\mathrm{H}_{k}=1+1 / 2+1 / 3+\cdots+1 / k, \quad k=1,2,3 \ldots$

Show that $\mathrm{H}_{2}{ }^{n} \geq 1+n / 2 \quad \forall n, n$ is a nonnegative integer.
e.g. Inequality for Harmonic Numbers:

Harmonic number:
$\mathrm{H}_{k}=1+1 / 2+1 / 3+\cdots+1 / k, \quad k=1,2,3 \cdots$
Show that $\mathrm{H}_{2}{ }^{n} \geq 1+n / 2 \quad \forall n, n$ is a nonnegative integer.
Basis step:
$\mathrm{P}(0)$ is true, since $\mathrm{H}_{2}{ }^{0}=\mathrm{H}_{1}=1 \geq 1+0 / 2=1$.
Inductive step:
Assume $\mathrm{P}(n)$ is true $\Rightarrow \quad \mathrm{H}_{2}{ }^{n} \geq 1+n / 2$

$$
\begin{aligned}
\mathrm{H}_{2}{ }^{n+1} & =\mathrm{H}_{2}{ }^{n}+1 /\left(2^{n}+1\right)+\ldots+1 /\left(2^{n+1}\right) \\
& \geq(1+n / 2)+1 /\left(2^{n}+1\right)+\ldots+1 /\left(2^{n+1}\right) \\
& \geq(1+n / 2)+2^{n}\left(1 / 2^{n+1}\right)=1+(n+1) / 2
\end{aligned}
$$

$\therefore \mathrm{P}(n+1)$ is true.
Hence by induction $\mathrm{H}_{2}{ }^{n} \geq 1+n / 2 \quad \forall n$
e.g.

Prove that $2^{n}<n!$ for $n=4,5,6, \ldots$.

Let $\mathrm{P}(n): 2^{n}<n!$
e.g.

Prove that $2^{n}<n!$ for $n=4,5,6, \ldots$.

Let $\mathrm{P}(n): 2^{n}<n!$

Basis step:
$P(4)$ is true, since $2^{4}=16<4!=24$

Inductive step:

Assume $\mathrm{P}(n)$ is true: $2^{n}<n$!

$$
\begin{aligned}
\Rightarrow 2^{n+1} & <2 n! \\
& <(n+1) n! \\
& =(n+1)!\quad \therefore \mathrm{P}(n+1) \text { is true. }
\end{aligned}
$$

Hence by induction $2^{n}<n$! for $n=4,5,6, \ldots$

5.2 Strong Induction

1. Basis step:

Show that $\mathrm{P}(1)$ is true.
2. Inductive step:

Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.

1. Basis step: Show that $P(1)$ is true.
2. Inductive step: Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.
e.g. Show that if $n>1$ integer, then n is either prime or can be written as a product of primes.
Let $\mathrm{P}(n)$ be " n is either prime or can be written as the product of primes".
3. Basis step: Show that $P(1)$ is true.
4. Inductive step: Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.
e.g. Show that if $n>1$ integer, then n is either prime or can be written as a product of primes.
Let $\mathrm{P}(n)$ be " n is either prime or can be written as the product of primes".
Basis step: $\quad \mathrm{P}(2)$ is true since 2 is prime itself.
5. Basis step: Show that $P(1)$ is true.
6. Inductive step: Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.
e.g. Show that if $n>1$ integer, then n is either prime or can be written as a product of primes.
Let $\mathrm{P}(n)$ be " n is either prime or can be written as the product of primes".
Basis step: $\quad \mathrm{P}(2)$ is true since 2 is prime itself.
Inductive step: Assume $\mathrm{P}(k)$ is true for all $2 \leq k \leq n$. Show $\mathrm{P}(n+1)$ is also true.
7. Basis step: Show that $P(1)$ is true.
8. Inductive step: Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.
e.g. Show that if $n>1$ integer, then n is either prime or can be written as a product of primes.
Let $\mathrm{P}(n)$ be " n is either prime or can be written as the product of primes".
Basis step: $\quad \mathrm{P}(2)$ is true since 2 is prime itself.
Inductive step: Assume $\mathrm{P}(k)$ is true for all $2 \leq k \leq n$. Show $\mathrm{P}(n+1)$ is also true.
If $(n+1)$ is prime then $\mathrm{P}(n+1)$ is already true.
9. Basis step: Show that $P(1)$ is true.
10. Inductive step: Show that $[\mathrm{P}(1) \wedge \mathrm{P}(2) \wedge \ldots \wedge \mathrm{P}(n)] \rightarrow \mathrm{P}(n+1)$ is true $\forall n \in Z^{+}$.
e.g. Show that if $n>1$ integer, then n is either prime or can be written as a product of primes.
Let $\mathrm{P}(n)$ be " n is either prime or can be written as the product of primes".
Basis step: $\quad \mathrm{P}(2)$ is true since 2 is prime itself.
Inductive step: Assume $\mathrm{P}(k)$ is true for all $2 \leq k \leq n$. Show $\mathrm{P}(n+1)$ is also true.
If $(n+1)$ is prime then $\mathrm{P}(n+1)$ is already true.
If $(n+1)$ is composite then $n+1=a \cdot b$ s.t. $1<a \leq b<n+1$.
Since we know that $\mathrm{P}(a)$ and $\mathrm{P}(b)$ are true by inductive hypothesis, a and b are either prime or can be written as product of primes.
$\Rightarrow a \cdot b$ can also be written as product of primes.
$\Rightarrow \mathrm{P}(n+1)$ is also true.
$\therefore \mathrm{P}(n)$ is $\mathrm{T} \quad \forall n>1$ by strong induction
This completes the proof of the Fundamental Theorem of Arithmetic (see previous lectures, Ch. 4).

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero. 2. Give a rule for finding its value based on its previous values.

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero. 2. Give a rule for finding its value based on its previous values.
e.g.

$$
\begin{array}{rlrl}
& a_{n}=2^{n} & n=0,1,2, \ldots \\
\Rightarrow & a_{n+1}=2 a_{n} & a_{0}=1, \quad n=0,1,2, \ldots
\end{array}
$$

5.3 Recursive Definitions

A function can often be defined also recursively:

1. Specify the value of the function at the beginning, e.g., at zero. 2. Give a rule for finding its value based on its previous values.

$$
\begin{aligned}
& \text { e.g. } \quad a_{n}=2^{n} \quad n=0,1,2, \ldots \\
& \Rightarrow \quad a_{n+1}=2 a_{n} \quad a_{0}=1, \quad n=0,1,2, \ldots \\
& \text { e.g. } \\
& \mathrm{F}(n)=n!\text { can be defined recursively: } \\
& \mathrm{F}(0)=1 \\
& \mathrm{~F}(n+1)=\mathrm{F}(n)(n+1)
\end{aligned}
$$

e.g.

Fibonacci numbers:

$$
\begin{aligned}
& f_{0}=0, \quad f_{1}=1 \\
& f_{n+1}=f_{n}+f_{n-1} \quad n=1,2, \ldots
\end{aligned}
$$

e.g.

Fibonacci numbers:

$$
\begin{aligned}
& f_{0}=0, \quad f_{1}=1 \\
& f_{n+1}=f_{n}+f_{n-1} \quad n=1,2, \ldots
\end{aligned}
$$

$$
\lim _{n \rightarrow \infty} \frac{f_{n+1}}{f_{n}}=\frac{1+\sqrt{5}}{2} \approx \text { Golden Ratio }
$$

Golden ratio, found in nature and used in art and architecture
e.g. Show that $f_{n}>\alpha^{n-2} \quad \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
e.g. Show that $f_{n}>\alpha^{n-2} \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
Let $\mathrm{P}(n): f_{n}>\alpha^{n-2}$
Basis step: $n=3 \Rightarrow \alpha<2=f_{3} \quad \therefore \mathrm{P}(3)$ is true

$$
n=4 \Rightarrow \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4} \quad \therefore \mathrm{P}(4) \text { is true }
$$

e.g. Show that $f_{n}>\alpha^{n-2} \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
Let $\mathrm{P}(n): f_{n}>\alpha^{n-2}$
Basis step: $n=3 \Rightarrow \alpha<2=f_{3} \quad \therefore \mathrm{P}(3)$ is true

$$
n=4 \Rightarrow \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4} \quad \therefore \mathrm{P}(4) \text { is true }
$$

Inductive step: Assume $f_{k}>\alpha^{k-2} \quad \forall k, 3 \leq k \leq n$ where $n \geq 4$ $f_{n+1}>\alpha^{n-1}$?
e.g. Show that $f_{n}>\alpha^{n-2} \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
Let $\mathrm{P}(n): f_{n}>\alpha^{n-2}$
Basis step: $n=3 \Rightarrow \alpha<2=f_{3} \quad \therefore \mathrm{P}(3)$ is true

$$
n=4 \Rightarrow \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4} \quad \therefore \mathrm{P}(4) \text { is true }
$$

Inductive step: Assume $f_{k}>\alpha^{k-2} \quad \forall k, 3 \leq k \leq n$ where $n \geq 4$

$$
f_{n+1}>\alpha^{n-1} ?
$$

Since α is a solution of $x^{2}-x-1=0$
$\therefore \alpha^{2}=\alpha+1$
$\Rightarrow \alpha^{n-1}=\alpha^{2} \cdot \alpha^{n-3}=(\alpha+1) \alpha^{n-3}=\alpha^{n-2}+\alpha^{n-3}$
e.g. Show that $f_{n}>\alpha^{n-2} \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
Let $\mathrm{P}(n): f_{n}>\alpha^{n-2}$
Basis step: $n=3 \Rightarrow \alpha<2=f_{3} \quad \therefore \mathrm{P}(3)$ is true

$$
n=4 \Rightarrow \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4} \quad \therefore \mathrm{P}(4) \text { is true }
$$

Inductive step: Assume $f_{k}>\alpha^{k-2} \quad \forall k, 3 \leq k \leq n$ where $n \geq 4$

$$
f_{n+1}>\alpha^{n-1} ?
$$

Since α is a solution of $x^{2}-x-1=0$
$\therefore \alpha^{2}=\alpha+1$
$\Rightarrow \alpha^{n-1}=\alpha^{2} \cdot \alpha^{n-3}=(\alpha+1) \alpha^{n-3}=\alpha^{n-2}+\alpha^{n-3}$
By inductive hypothesis, $f_{n}>\alpha^{n-2}$ and $f_{n-1}>\alpha^{n-3}$
e.g. Show that $f_{n}>\alpha^{n-2} \forall n \geq 3$, where $\alpha=(1+\sqrt{5}) / 2$.

Note that α is a solution of $x^{2}-x-1=0$. Use strong induction.
Let $\mathrm{P}(n): f_{n}>\alpha^{n-2}$
Basis step: $n=3 \Rightarrow \alpha<2=f_{3} \quad \therefore \mathrm{P}(3)$ is true

$$
n=4 \Rightarrow \alpha^{2}=(3+\sqrt{5}) / 2<3=f_{4} \quad \therefore \mathrm{P}(4) \text { is true }
$$

Inductive step: Assume $f_{k}>\alpha^{k-2} \quad \forall k, 3 \leq k \leq n$ where $n \geq 4$
$f_{n+1}>\alpha^{n-1}$?
Since α is a solution of $x^{2}-x-1=0$
$\therefore \alpha^{2}=\alpha+1$
$\Rightarrow \alpha^{n-1}=\alpha^{2} \cdot \alpha^{n-3}=(\alpha+1) \alpha^{n-3}=\alpha^{n-2}+\alpha^{n-3}$
By inductive hypothesis, $f_{n}>\alpha^{n-2}$ and $f_{n-1}>\alpha^{n-3}$
$\Rightarrow f_{n+1}=f_{n}+f_{n-1}>\alpha^{n-2}+\alpha^{n-3}=\alpha^{n-1} \quad \therefore f_{n}>\alpha^{n-2} \quad \forall n \geq 3$ by strong induction.
e.g.

Show that $f_{n}<(5 / 3)^{n} \forall n \geq 0$. Exercise (use strong induction).

Theorem: Lamé's Theorem

Let $a, b \in Z^{+}$s.t $a \leq b$.
The number n of division steps used by Euclidean algorithm to find $\operatorname{gcd}(a, b)$
≤ 5 times the number of decimal digits in a, that is, $n \leq 5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)$.
Hence the complexity of Euclidean algorithm is $\mathrm{O}(\log a)$.
Recall the code: (Euclidean Algorithm, $a \leq b$)

```
int gcd(int a, int b)
{
    int X,Y,r;
    x = b;
    y = a;
    while (y != 0) {
        r = X % Y;
        x = y;
        Y = r;
    }
    return x;
}
```

$$
\begin{aligned}
& \text { Example: } \\
& 155=125 \cdot 1+30 \\
& 125=30 \cdot 4+5 \\
& 30=5 \cdot 6 \\
& \therefore \operatorname{gcd}(155,125)=5
\end{aligned}
$$

Proof: Let $b=r_{0}$ and $a=r_{1}$

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
\vdots & 0 \leq r_{n}<r_{n-1} \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & \\
r_{n-1}=r_{n} q_{n} &
\end{array}
$$

n division steps to find r_{n}, and $q_{i} \geq 1$ and $q_{n} \geq 2$,

Proof: Let $b=r_{0}$ and $a=r_{1}$

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n} &
\end{array}
$$

Example:

$$
155=125 \cdot 1+30
$$

$$
125=30 \cdot 4+5
$$

$$
30=5.6
$$

$\therefore \operatorname{gcd}(155,125)=5$
$r_{n-1} \geq 2 r_{n} \geq 2 f_{2}=f_{3}$

Proof: Let $b=r_{0}$ and $a=r_{1}$

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
\quad & \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n} &
\end{array}
$$

n division steps to find r_{n}, and $q_{i} \geq 1$ and $q_{n} \geq 2$,
$r_{n} \geq 1=f_{2}$
$r_{n-1} \geq 2 r_{n} \geq 2 f_{2}=f_{3}$
$r_{n-1} \geq r_{n-1}+r_{n} \geq f_{3}+f_{2}=f_{4}$

Example:
$155=125 \cdot 1+30$
$125=30 \cdot 4+5$
$30=5 \cdot 6$
$\therefore \operatorname{gcd}(155,125)=5$

Proof: Let $b=r_{0}$ and $a=r_{1}$

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3} & 0 \leq r_{3}<r_{2} \\
\quad & \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n} & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n} &
\end{array}
$$

n division steps to find r_{n}, and $q_{i} \geq 1$ and $q_{n} \geq 2$,
$r_{n} \geq 1=f_{2}$
$r_{n-1} \geq 2 r_{n} \geq 2 f_{2}=f_{3}$
$r_{n-2} \geq r_{n-1}+r_{n} \geq f_{3}+f_{2}=f_{4}$
$r_{2} \geq r_{3}+r_{4} \geq f_{n-1}+f_{n-2}=f_{n}$
$a=r_{1} \geq r_{2}+r_{3} \geq f_{n}+f_{n-1}=f_{n+1} \quad \therefore a \geq f_{n+1}$

Example:

$155=125 \cdot 1+30$
$125=30 \cdot 4+5$
$30=5 \cdot 6$
$\therefore \operatorname{gcd}(155,125)=5$

So we have $a \geq f_{n+1}$.
We also know that $f_{n+1} \geq \alpha^{n-1}$ for $n>2$, where $\alpha=(1+\sqrt{5}) / 2$.
$\Rightarrow a \geq \alpha^{n-1}$

Recall that n is the number of division steps required by the Euclidean algorithm.

So we have $a \geq f_{n+1}$.
We also know that $f_{n+1} \geq \alpha^{n-1}$ for $n>2$, where $\alpha=(1+\sqrt{5}) / 2$.
$\Rightarrow a \geq \alpha^{n-1}$
$\Rightarrow \log _{10} a \geq(n-1) \log _{10} \alpha>(n-1) / 5$
$\therefore n-1<5 \log _{10} a \Rightarrow n<5 \log _{10} a+1$

Recall that n is the number of division steps required by the Euclidean algorithm.

So we have $a \geq f_{n+1}$.
We also know that $f_{n+1} \geq \alpha^{n-1}$ for $n>2$,
where $\alpha=(1+\sqrt{5}) / 2$.
$\Rightarrow a \geq \alpha^{n-1}$
$\Rightarrow \log _{10} a \geq(n-1) \log _{10} \alpha>(n-1) / 5$
Recall that n is the number of division steps required by the Euclidean algorithm.
$\therefore n-1<5 \log _{10} a \Rightarrow n<5 \log _{10} a+1$
$\Rightarrow n<5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)+1$ since $\left\lfloor\log _{10} a\right\rfloor+1>\log _{10} a$
$\Rightarrow n \leq 5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)$

So we have $a \geq f_{n+1}$.
We also know that $f_{n+1} \geq \alpha^{n-1}$ for $n>2$, where $\alpha=(1+\sqrt{5}) / 2$.

$$
\begin{aligned}
& \Rightarrow a \geq \alpha^{n-1} \\
& \Rightarrow \log _{10} a \geq(n-1) \log _{10} \alpha>(n-1) / 5 \\
& \therefore n-1<5 \log _{10} a \Rightarrow n<5 \log _{10} a+1 \\
& \Rightarrow n<5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)+1 \quad \text { since }\left\lfloor\log _{10} a\right\rfloor+1>\log _{10} a \\
& \Rightarrow n \leq 5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)
\end{aligned}
$$

Recall that n is the number of division steps required by the Euclidean algorithm.

Hence the complexity of Euclidean algorithm is $\mathrm{O}(\log a)$, which is easy to show using the definition of big-O notation.

So we have $a \geq f_{n+1}$.
We also know that $f_{n+1} \geq \alpha^{n-1}$ for $n>2$,
where $\alpha=(1+\sqrt{5}) / 2$.
$\Rightarrow a \geq \alpha^{n-1}$
$\Rightarrow \log _{10} a \geq(n-1) \log _{10} \alpha>(n-1) / 5$
Recall that n is the number of division steps required by the Euclidean algorithm.
$\therefore n-1<5 \log _{10} a \Rightarrow n<5 \log _{10} a+1$
$\Rightarrow n<5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)+1 \quad$ since $\left\lfloor\log _{10} a\right\rfloor+1>\log _{10} a$
$\Rightarrow n \leq 5\left(\left\lfloor\log _{10} a\right\rfloor+1\right)$
Hence the complexity of Euclidean algorithm is $\mathrm{O}(\log a)$, which is easy to show using the definition of big-O notation.

Note also that (\# of decimal digits in a) $=\left\lfloor\log _{10} a\right\rfloor+1$
$\therefore n \leq 5 \cdot$ (\# of decimal digits in a) (which is Lamé's Theorem)

5.4 Recursive Algorithms

Definition:

An algorithm is called recursive if it solves a problem by reducing it to an instance of the same problem with smaller input.

```
e.g. Compute GCD (a,b), a\leqb
int GCD(int a, int b) {
    int gcdAB;
    if (a == 0) gcdAB = b;
    else gcdAB = GCD (b % a, a);
    return gcdAB;
}
```

```
Example:
155=125\cdot1+30
125=30\cdot4+5
30}=5.
\thereforegcd (125, 155)=\operatorname{gcd}(30,125)
    =gcd}(5,30)=\operatorname{gcd}(0,5)=
```

e.g. Compute $a^{n}, a \in R$ and $n \in N$
$a^{0}=1, \quad a^{n+1}=a a^{n}$

```
int power(int a, int n){
    int p;
    if ( }\textrm{n}==0)\textrm{p}=1
    else p = a*power(a,n-1);
    return p;
}
```


e.g. Product of two integers

```
int product(int m,int n) {
    int prod;
    if (n==1) prod = m;
    else prod = m + product(m, n-1);
    return prod;
}
```

```
e.g. Linear search }x\mathrm{ in }{\mp@subsup{a}{0}{},\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n-1}{}
int search(int x, int a[], int n, int i){
    int location;
    if (a[i] == x)
        location = i;
    else if (i == n-1)
        location = -1;
    else
        location = search(x,a,n,i+1);
    return location;
}
```

Initially $i=0$.
e.g. Binary search pseudocode

```
function binary search(x,a,i,j)
    m= L(i + j)/2 \rfloor;
    if (x == a[m]) loc = m;
    else if ( }x<a[m]\mathrm{ and i<m)
        loc = binary search(x,a, i,m-1); (search in the first half)
    else if ( }x>a[m]\mathrm{ and j>m)
        loc = binary search(x,a,m+1, j); (search in the second half)
    else
        loc=-1;
    return loc;
```

Initially $i=0$ and $j=n-1$.

Recursion vs. Iteration:

e.g. Computing factorial

Recursive:

function factorial(n: positive integer)
if ($n==1$) fact $=1$;
else fact $=n^{*}$ factorial ($n-1$);
return fact:

Iterative:

function factorial(n: positive integer)
fact = 1;
for ($\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i++}$)
fact $=$ fact * i ;
return fact:
ALL recursive algorithms have an iterative equivalent, and vice versa.

Recursion vs. Iteration:

e.g. Computing factorial

Recursive:

function factorial(n: positive integer)
if ($n==1$) fact $=1$;
else fact $=n^{\star}$ factorial ($n-1$);
return fact:

Iterative:

function factorial(n: positive integer)
fact = 1;
for ($\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}+\mathrm{+}$)
fact $=$ fact ${ }^{*}$;
return fact:

Let $\mathrm{T}(n)$ be the time complexity of the recursive solution (in terms of comparison and arithmetic operations).
$\mathrm{T}(n)=\mathrm{T}(n-1)+3$ for $n \geq 2$ with $\mathrm{T}(1)=1$.
Then $\mathrm{T}(n)=\mathrm{T}(n-2)+3+3$

$$
=\mathrm{T}(n-3)+3+3+3
$$

$$
=T(1)+3+3+\ldots+3
$$

$$
=3(n-1)+1=3 n-2
$$

Hence $\mathrm{T}(n)$ is $\mathrm{O}(n)$.

Recursion vs. Iteration:

e.g. Computing factorial

Recursive:

function factorial(n: positive integer)
if ($n==1$) fact $=1$;
else fact $=n^{\star}$ factorial ($n-1$);
return fact;

Iterative:

function factorial(n: positive integer)
fact = 1;
for ($\mathrm{i}=1 ; \mathrm{i} \leq \mathrm{n} ; \mathrm{i}+\mathrm{+}$)
fact $=$ fact * i;
return fact:

Let $\mathrm{T}(n)$ be the time complexity of the recursive solution (in terms of comparison and arithmetic operations).
$\mathrm{T}(n)=\mathrm{T}(n-1)+3$ for $n \geq 2$ with $\mathrm{T}(1)=1$.
Then $\mathrm{T}(n)=\mathrm{T}(n-2)+3+3$

$$
=\mathrm{T}(n-3)+3+3+3
$$

$$
=\mathrm{T}(1)+3+3+\ldots+3
$$

$$
=3(n-1)+1=3 n-2
$$

Hence $\mathrm{T}(n)$ is $\mathrm{O}(n)$.

Iterative solutions are usually faster than recursive solutions, though in this example both algorithms are of $\mathrm{O}(n)$ complexity.
e.g. Computing Fibonacci numbers

Recursive:

function Fibonacci(n: nonnegative integer)
if ($n==0$) fibonacci $=0$;
else if ($n==1$) Fibonacci $=1$;
else fibonacci $=$ Fibonacci($n-1$) + Fibonacci $(n-2)$;
return fibonacci;

Iterative:

function Fibonacci(n: nonnegative integer)
if $(n==0) y=0$;
else\{
$x=0$;
$y=1$;
for (i=1; i<n; i++) $\{$
$z=x+y$;
$x=y$;
$y=z ;$
\}
\}
return y :

Complexity analysis for recursive algorithms:

Recursive solution for computing Fibonacci numbers seems more clever and compact; however the iterative solution is much more efficient!!!

Let $\mathrm{T}(n)$ be the time complexity of the recursive solution (in terms of comparison and arithmetic operations).
Then $\mathrm{T}(n)=\mathrm{T}(n-1)+\mathrm{T}(n-2)+5$ for $n \geq 2$ with $\mathrm{T}(0)=1$ and $\mathrm{T}(1)=2$.
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).

```
function Fibonacci(n: nonnegative integer)
if ( }n==0\mathrm{ ) fibonacci= 0;
else if ( }n==1\mathrm{ ) Fibonacci = 1;
else fibonacci = Fibonacci(n-1) + Fibonacci(n-2);
return fibonacci;
```


Complexity analysis for recursive algorithms:

Recursive solution for computing Fibonacci numbers seems more clever and compact; however the iterative solution is much more efficient!!!

Let $\mathrm{T}(n)$ be the time complexity of the recursive solution (in terms of comparison and arithmetic operations).
Then $\mathrm{T}(n)=\mathrm{T}(n-1)+\mathrm{T}(n-2)+5$ for $n \geq 2$ with $\mathrm{T}(0)=1$ and $\mathrm{T}(1)=2$.
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).
Since $f_{n}=f_{n-1}+f_{n-2}, \mathrm{~T}(n) \geq f_{n} \forall n$ and
$f_{n}>\alpha^{n-2} \forall n \geq 3, \alpha=(1+\sqrt{5}) / 2$,
$\Rightarrow \mathrm{T}(n)>\alpha^{n-2}$

Complexity analysis for recursive algorithms:

Recursive solution for computing Fibonacci numbers seems more clever and compact; however the iterative solution is much more efficient!!!

Let $\mathrm{T}(n)$ be the time complexity of the recursive solution (in terms of comparison and arithmetic operations).
Then $\mathrm{T}(n)=\mathrm{T}(n-1)+\mathrm{T}(n-2)+5$ for $n \geq 2$ with $\mathrm{T}(0)=1$ and $\mathrm{T}(1)=2$.
(The term 5 counts for 2 comparisons plus 1 addition plus 2 subtractions).
Since $f_{n}=f_{n-1}+f_{n-2}, \mathrm{~T}(n) \geq f_{n} \forall n$ and
$f_{n}>\alpha^{n-2} \forall n \geq 3, \alpha=(1+\sqrt{5}) / 2$,
$\Rightarrow \mathrm{T}(n)>\alpha^{n-2} \quad \therefore$ exponential complexity $\Theta\left(\alpha^{n}\right)$ or worse.
(Or you can use big-Omega notation: $\mathrm{T}(n)$ is $\Omega\left(\alpha^{n}\right)$.)
Note that complexity of the iterative solution is $\Theta(n)$ (big-Theta).
Moral of the story: Don't compute anything more than once!

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm produces the correct (i.e., the desired) output.
Consider the recursive factorial example:
function factorial(n: positive integer)
if ($n==1$) fact $=1$;
Is it correct?
else fact $=n^{\star}$ factorial ($n-1$);
return fact:

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm produces the correct (i.e., the desired) output.
Consider the recursive factorial example:
function factorial(n: positive integer)
if ($n==1$)fact = 1 ; Is it correct?
else fact $=n^{\star}$ factorial $(n-1)$;
return fact:
We have to show that the recursive code works correctly for all positive n, i.e., $\mathrm{P}(n)$ is true $\forall n$, where $\mathrm{P}(n)$: "The output of the algorithm is $n!$ "
Basis step:
$\mathrm{P}(1)$: The output is $1=1$!

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm produces the correct (i.e., the desired) output.
Consider the recursive factorial example:
function factorial(n: positive integer)
if ($n==1$) fact $=1$; Is it correct?
else fact $=n^{\star}$ factorial $(n-1)$;
return fact;
We have to show that the recursive code works correctly for all positive n, i.e., $\mathrm{P}(n)$ is true $\forall n$, where $\mathrm{P}(n)$: "The output of the algorithm is $n!$ "
Basis step:
$\mathrm{P}(1)$: The output is $1=1$!
Inductive step:
Show $\mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \forall n>0$ or equivalently show $\mathrm{P}(n-1) \rightarrow \mathrm{P}(n) \forall n>1$.
We assume factorial($n-1$) correctly returns ($n-1$)! and show factorial(n) returns n !.

Correctness of recursive algorithms:

We can use mathematical induction also to show that a given recursive algorithm produces the correct (i.e., the desired) output.
Consider the recursive factorial example:
function factorial(n: positive integer)
if ($n==1$) fact $=1$; Is it correct?
else fact $=n^{\star}$ factorial ($n-1$);
return fact:
We have to show that the recursive code works correctly for all positive n, i.e., $\mathrm{P}(n)$ is true $\forall n$, where $\mathrm{P}(n)$: "The output of the algorithm is $n!$ "
Basis step:
$\mathrm{P}(1)$: The output is $1=1$!
Inductive step:
Show $\mathrm{P}(n) \rightarrow \mathrm{P}(n+1) \forall n>0$ or equivalently show $\mathrm{P}(n-1) \rightarrow \mathrm{P}(n) \forall n>1$.
We assume factorial($n-1$) correctly returns ($n-1$)! and show factorial(n) returns n !.
For n, the output is, as seen from the code, $n \cdot$ factorial $(n-1)=n \cdot(n-1)!=n$!
$\therefore \mathrm{P}(n)$ is $\mathrm{T} \quad \therefore \mathrm{P}(n)$ is true $\forall n \in Z^{+}$
e.g. Show that the following recursive function correctly computes the n-th Fibonacci number (Exercise: use strong induction).
function Fibonacci(n: nonnegative integer)
if ($n==0$) fibonacci=0;
else if ($n=-1$) fibonacci=1;
else fibonacci=Fibonacci(n-1)+Fibonacci(n-2); return fibonacci;
e.g. Show that the following recursive function correctly returns $\operatorname{gcd}(a, n), a \leq n$, for all positive integers n.

```
int GCD(int a, int n) {
    int gcdAB;
    if (a == 0) gcdAB = n;
    else gcdAB = GCD ( }n%a,a)\mathrm{ ;
    return gcdAB;
}
```

Let $P(n)$: The function $\operatorname{GCD}(a, n)$ correctly computes $\operatorname{gcd}(a, n)$ when $a \leq n, \forall n>0$. Basis step: $P(1)$ is true because the only possible cases are $a=0$ and $a=1$. Looking into the code, we see that the algorithm returns 0 in the first case and returns $n=1$ in the latter, as expected.
e.g. Show that the following recursive function correctly returns $\operatorname{gcd}(a, n), a \leq n$, for all positive integers n.

```
int GCD(int a, int n){
    int gcdAB;
    if (a == 0) gcdAB = n;
    else gcdAB = GCD ( }n%a,a)\mathrm{ ;
    return gcdAB;
}
```

Let $P(n)$: The function $\operatorname{GCD}(a, n)$ correctly computes $\operatorname{gcd}(a, n)$ when $a \leq n, \forall n>0$. Basis step: $P(1)$ is true because the only possible cases are $a=0$ and $a=1$. Looking into the code, we see that the algorithm returns 0 in the first case and returns $n=1$ in the latter, as expected.
Inductive step: Assume $P(k)$ for all $1 \leq k \leq n$ and check whether $\operatorname{GCD}(a, n+1)$ returns $\operatorname{gcd}(a, n+1)$ for any $a \leq n$.
e.g. Show that the following recursive function correctly returns $\operatorname{gcd}(a, n), a \leq n$, for all positive integers n.

```
int GCD(int }a\mathrm{ , int }n)
    int gcdAB;
    if (a== 0) gcdAB = n;
    else gcdAB = GCD ( }n%a,a)\mathrm{ ;
    return gcdAB;
}
```

Let $P(n)$: The function $\operatorname{GCD}(a, n)$ correctly computes $\operatorname{gcd}(a, n)$ when $a \leq n, \forall n>0$. Basis step: $P(1)$ is true because the only possible cases are $a=0$ and $a=1$. Looking into the code, we see that the algorithm returns 0 in the first case and returns $n=1$ in the latter, as expected.
Inductive step: Assume $P(k)$ for all $1 \leq k \leq n$ and check whether $\operatorname{GCD}(a, n+1)$ returns $\operatorname{gcd}(a, n+1)$ for any $a \leq n$. We see that in this case the function calls itself with input (c, a) where $c=(n+1) \% a$, and this call generates $\operatorname{gcd}((n+1) \% a, a)$ correctly because $P(a)$ is true by inductive hypothesis since $a \leq n$.
e.g. Show that the following recursive function correctly returns $\operatorname{gcd}(a, n), a \leq n$, for all positive integers n.

```
int GCD(int }a,\mathrm{ int }n)
    int gcdAB;
    if (a== 0) gcdAB = n;
    else gcdAB = GCD (n % a, a);
    return gcdAB;
}
```

Let $P(n)$: The function $\operatorname{GCD}(a, n)$ correctly computes $\operatorname{gcd}(a, n)$ when $a \leq n, \forall n>0$. Basis step: $P(1)$ is true because the only possible cases are $a=0$ and $a=1$. Looking into the code, we see that the algorithm returns 0 in the first case and returns $n=1$ in the latter, as expected.
Inductive step: Assume $P(k)$ for all $1 \leq k \leq n$ and check whether $\operatorname{GCD}(a, n+1)$ returns $\operatorname{gcd}(a, n+1)$ for any $a \leq n$. We see that in this case the function calls itself with input (c, a) where $c=(n+1) \% a$, and this call generates $\operatorname{gcd}((n+1) \% a, a)$ correctly because $P(a)$ is true by inductive hypothesis since $a \leq n$. Since $\operatorname{gcd}(a, n+1)=\operatorname{gcd}((n+1) \% a, a)$ from what we've learned in number theory, $\operatorname{GCD}(a, n+1)$ returns $\operatorname{gcd}(a, n+1)$. (Note also that $a=n+1$ case is trivial to check). So by strong induction we conclude that $P(n)$ is true for all n, that is, $\operatorname{GCD}(a, n)$ returns $\operatorname{gcd}(a, n)$ whenever $a \leq n, \forall n>0$.

