4. Number Theory (Chapter numbers are from the $7^{\text {th }}$ edition of your textbook)

Number theory has various applications in computer science; we will focus on cryptography.

At the end of these lectures, we will be capable of understanding the basics of a cryptography system, namely the "RSA Public Key Cryptosystem".

RSA - A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT
Let p, q be large primes (~ 200 digits) and e be relatively prime to $(p-1)(q-1)$ and $n=p q$.

Encryption: $C=M^{e} \bmod n \quad e$: public encryption key
Decryption: $M=C^{d} \bmod n \quad d$: private decryption key
Decryption key d is the inverse of e modulo $(p-1)(q-1)$.

RSA - A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT
Let p, q be large primes (~ 200 digits) and e be relatively prime to $(p-1)(q-1)$ and $n=p q$.

Encryption: $C=M^{e} \bmod n \quad e$: public encryption key
Decryption: $M=C^{d} \bmod n \quad d$: private decryption key
Decryption key d is the inverse of e modulo $(p-1)(q-1)$.

To understand this, we first need to learn about prime numbers, greatest common divisor algorithms, and modular arithmetic.

4.1/4.2/4.3 Divisibility \& Prime Numbers

Divisibility: (Definition)
Let a and b are integers s.t. $a \neq 0$, we say " a divides b "
if $\exists c$ integer s.t. $b=a c$ (where a is a factor of b).
Notation:
$a \nmid b$
$a \quad b \quad a$ does not divide b.

Theorem 1: Let a, b, c be integers.

1. If $a|b \wedge a| c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid b c \quad \forall c$.
3. If $a|b \wedge b| c$, then $a \mid c$.

Theorem 1: Let a, b, c be integers.

1. If $a|b \wedge a| c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid b c \quad \forall c$.
3. If $a|b \wedge b| c$, then $a \mid c$.

Proof:

1. If $a|b \wedge a| c$ then $\exists k_{1}, k_{2}$ integers s.t.
$b=k_{1} a \wedge c=k_{2} a \Rightarrow b+c=\left(k_{1}+k_{2}\right) a \Rightarrow a \mid(b+c)$.

Theorem 1: Let a, b, c be integers.

1. If $a|b \wedge a| c$ then $a \mid(b+c)$.
2. If $a \mid b$ then $a \mid b c \quad \forall c$.
3. If $a|b \wedge b| c$, then $a \mid c$.

Proof:

1. If $a|b \wedge a| c$ then $\exists k_{1}, k_{2}$ integers s.t.
$b=k_{1} a \wedge c=k_{2} a \Rightarrow b+c=\left(k_{1}+k_{2}\right) a \Rightarrow a \mid(b+c)$.
2. $\exists k_{1}, k_{2}$ s.t. $b=k_{1} a, c=k_{2} b=k_{2} k_{1} a \Rightarrow a \mid c$.
3. Prove as an exercise

Prime Number: (Definition)

An integer $p>1$ is called prime iff the only positive factors of p are 1 and p. If p is not prime, then it is composite.

Prime Number: (Definition)

An integer $p>1$ is called prime iff the only positive factors of p are 1 and p. If p is not prime, then it is composite.

Prime numbers were of interest,

for philosophical reasons	(ancient)
for practical reasons	(today)
(such as cryptography)	

How to find prime numbers? How to devise an efficient algorithm to determine whether a given integer is not? These are important problems in number theory.

Hunt for the largest prime:

The integer $2^{p}-1$, where p is prime, is called Mersenne Prime if it is prime.
e.g.
$2^{2}-1=3,2^{3}-1=7,2^{5}-1=31$ are Mersenne primes
$2^{11}-1=2047=23 \times 89$ is not a Mersenne prime

Hunt for the largest prime:

The integer $2^{p}-1$, where p is prime, is called Mersenne Prime if it is prime.
e.g.
$2^{2}-1=3,2^{3}-1=7,2^{5}-1=31 \quad$ are Mersenne primes
$2^{11}-1=2047=23 \times 89$ is not a Mersenne prime
The largest Mersenne Prime:

(as of 2005)	$2^{25,964,951}-1$	$7,816,230$ digits
(as of 2007)	$2^{32,582,657}-1$	$9,808,358$ digits
(as of 2010)	$2^{43,182,609}-1$	$12,978,189$ digits
(as of 2013)	$2^{57,885,161}-1$	$17,425,170$ digits
(as of 2017)	$2^{74,207,281}-1$	$22,338,618$ digits
(as of 2018)	$2^{82,589,933}-1$	$24,862,048$ digits
(as of 2019) check it out!		

Theorem: Fundamental Theorem of Arithmetic

"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes."

$$
\begin{aligned}
100 & =2 \times 2 \times 5 \times 5 \\
999 & =3 \times 3 \times 3 \times 37 \\
7 & =7
\end{aligned}
$$

We will prove this important theorem later...

Theorem: There are infinitely many primes.
Proof (by contradiction):
Assume otherwise that all the primes are: $p_{1}, p_{2}, \ldots, p_{n}$ (with n finite)

Theorem: There are infinitely many primes.
Proof (by contradiction):
Assume otherwise that all the primes are: $p_{1}, p_{2}, \ldots, p_{n}$ (with n finite)
Let $q=p_{1} p_{2} \ldots p_{n}+1$
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a product of primes.

- If q is prime, it is a new prime number so we have contradiction!

Theorem: There are infinitely many primes.

Proof (by contradiction):
Assume otherwise that all the primes are: $p_{1}, p_{2}, \ldots, p_{n}$ (with n finite)
Let $q=p_{1} p_{2} \ldots p_{n}+1$
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a product of primes.

- If q is prime, it is a new prime number so we have contradiction!
- If q is not prime, we can write it as a product of primes. But no prime p_{i} divides q since it would mean $p_{i} \mid 1$, which is not possible for integers larger than 1 . Thus q must have another prime divisor $p \neq p_{i} \quad \forall \mathrm{i} 1 \leq i \leq n$. Contradiction!

Theorem: There are infinitely many primes.

Proof (by contradiction):
Assume otherwise that all the primes are: $p_{1}, p_{2}, \ldots, p_{n}$ (with n finite)
Let $q=p_{1} p_{2} \ldots p_{n}+1$
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a product of primes.

- If q is prime, it is a new prime number so we have contradiction!
- If q is not prime, we can write it as a product of primes. But no prime p_{i} divides q since it would mean $p_{i} \mid 1$, which is not possible for integers larger than 1 . Thus q must have another prime divisor $p \neq p_{i} \quad \forall \mathrm{i} 1 \leq i \leq n$. Contradiction!

We have contradiction in both cases. So our initial assumption was false. There are indeed infinitely many prime numbers.

Greatest Common Divisor: (Definition)

Let a, b be integers, not both zero.
The largest integer d s.t. $d|a \wedge d| b$ is called g.c.d of a and b.

$$
d=\operatorname{gcd}(a, b)
$$

Greatest Common Divisor: (Definition)

Let a, b be integers, not both zero.
The largest integer d s.t. $d|a \wedge d| b$ is called g.c.d of a and b.

$$
d=\operatorname{gcd}(a, b)
$$

Definition: Integers $a_{1}, a_{2}, \ldots, a_{n}$ are pairwise relatively prime iff $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1 \quad \forall i, j, 1 \leq i<j \leq n$.

How to find gcd of two numbers?
One possible way:

$$
\begin{aligned}
& a=p_{1}{ }^{a_{l}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}, \quad b=p_{1}{ }^{b_{l}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}} \text {, where } p_{i}^{\prime} \text { s are prime. } \\
& \operatorname{gcd}(a, b)=p_{1}{ }^{\min \left(a_{p}, b_{l}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}{ }^{\min \left(a_{n} b_{n}\right)}
\end{aligned}
$$

How to find gcd of two numbers?

One possible way:

$$
\begin{aligned}
& a=p_{1}^{a_{l}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}, \quad b=p_{1}^{b_{1}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}}, \text { where } p_{i}^{\prime} \text { s are prime. } \\
& \operatorname{gcd}(a, b)=p_{1}{ }^{\min \left(a_{l}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}^{\min \left(a_{n}, b_{n}\right)}
\end{aligned}
$$

e.g.
$\operatorname{gcd}(120,500)=?$

$$
\begin{aligned}
& 120=2^{3} \cdot 3 \cdot 5 \quad 500=2^{2} \cdot 5^{3} \\
& \operatorname{gcd}(120,500)=2^{2} \cdot 3^{0} \cdot 5^{1}=20
\end{aligned}
$$

How to find gcd of two numbers?
One possible way:

$$
\begin{aligned}
& a=p_{1}{ }^{a_{l}} p_{2}^{a_{2}} \ldots p_{n}^{a_{n}}, \quad b=p_{1}{ }^{b_{l}} p_{2}^{b_{2}} \ldots p_{n}^{b_{n}} \text {, where } p_{i}{ }^{\prime} \text { s are prime. } \\
& \operatorname{gcd}(a, b)=p_{1}^{\min \left(a_{1}, b_{1}\right)} p_{2}^{\min \left(a_{2}, b_{2}\right)} \ldots p_{n}{ }^{\min \left(a_{n}, b_{n}\right)}
\end{aligned}
$$

e.g.
$\operatorname{gcd}(120,500)=?$

$$
\begin{aligned}
& 120=2^{3} \cdot 3 \cdot 5 \quad 500=2^{2} \cdot 5^{3} \\
& \operatorname{gcd}(120,500)=2^{2} \cdot 3^{0} \cdot 5^{1}=20
\end{aligned}
$$

But how to find the greatest common divisor of two integers on a computer, especially when the integers are very large?

The Euclidean Algorithm

An efficient method for finding the greatest common divisor of two integers.

Example: Find gcd $(287,91)$
$287=91 \cdot 3+14$
$a|287 \wedge a| 91 \Rightarrow a \mid 14$

The Euclidean Algorithm

An efficient method for finding the greatest common divisor of two integers.

Example: Find gcd $(287,91)$
$287=91 \cdot 3+14$
$a|287 \wedge a| 91 \Rightarrow a \mid 14$
$\therefore \operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$

The Euclidean Algorithm

An efficient method for finding the greatest common divisor of two integers.

Example: Find gcd $(287,91)$
$287=91 \cdot 3+14$
$a|287 \wedge a| 91 \Rightarrow a \mid 14$
$\therefore \operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$
$91=14 \cdot 6+7$
$\therefore \operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)=7$

Example: Find gcd $(287,91)$
$287=91 \cdot 3+14$
$a|287 \wedge a| 91 \Rightarrow a \mid 14$
$\therefore \operatorname{gcd}(287,91)=\operatorname{gcd}(91,14)$
$91=14 \cdot 6+7$
$\therefore \operatorname{gcd}(91,14)=\operatorname{gcd}(14,7)=7$

Lemma:
Let $a=b q+r$, where a, b, q and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.

Lemma: Let $a=b q+r$, where a, b, q and r are integers. Then $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
Based on this Lemma, we can develop an algorithm:
Let a, b positive integers s.t. $a \geq b$.
Let $r_{0}=a$ and $r_{1}=b$.

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3}, & 0 \leq r_{3}<r_{2} \\
\quad \cdot & \\
\quad r_{n-2}=r_{n-1} q_{n-1}+r_{n}, & 0 \leq r_{n}<r_{n-1} \\
r_{n-1}=r_{n} q_{n} & \\
a=r_{0}>r_{1}>r_{2}>\cdots \geq 0 &
\end{array}
$$

At most in a steps, remainder will be zero.

$$
\begin{aligned}
& \therefore \operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right) \\
& \quad=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
\end{aligned}
$$

Based on this Lemma, we can develop an algorithm:
Let a, b positive integers s.t. $a \geq b$.
Let $r_{0}=a$ and $r_{1}=b$.

$$
\begin{array}{ll}
r_{0}=r_{1} q_{1}+r_{2} & 0 \leq r_{2}<r_{1} \\
r_{1}=r_{2} q_{2}+r_{3}, & 0 \leq r_{3}<r_{2} \\
\quad \cdot & \\
\quad \cdot & 0 \leq r_{n}<r_{n-1} \\
r_{n-2}=r_{n-1} q_{n-1}+r_{n}, & \\
r_{n-1}=r_{n} q_{n} & \\
a=r_{0}>r_{1}>r_{2}>\cdots \geq 0 &
\end{array}
$$

Example:

$155=125 \cdot 1+30$
$125=30 \cdot 4+5$
$30=5.6$
$\therefore \operatorname{gcd}(155,125)=5$
At most in a steps, remainder will be zero.

$$
\begin{aligned}
& \therefore \operatorname{gcd}(a, b)=\operatorname{gcd}\left(r_{0}, r_{1}\right)=\operatorname{gcd}\left(r_{1}, r_{2}\right) \\
& \quad=\cdots=\operatorname{gcd}\left(r_{n-1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, 0\right)=r_{n}
\end{aligned}
$$

Code:

```
int gcd(int a, int b)
{
    int x,y,r;
    x = a;
    y = b;
    while (y != 0){
        r = x % y;
        x = y;
        y = r;
        }
    return x;
}
```


Example:

$$
\begin{aligned}
& 155=125 \cdot 1+30 \\
& 125=30 \cdot 4+5 \\
& 30=5 \cdot 6 \\
& \therefore \operatorname{gcd}(155,125)=5
\end{aligned}
$$

Code:

```
int gcd(int a, int b)
{
        int x,y,r;
        x = a;
        y = b;
        while (y != 0){
            r = x % y;
            X = Y;
            y = r;
        }
    return x;
}
```


Example:

$$
155=125 \cdot 1+30
$$

$$
125=30 \cdot 4+5
$$

$$
30=5.6
$$

$$
\therefore \operatorname{gcd}(155,125)=5
$$

Complexity is $\mathrm{O}(\log b)$, but we'll study it later.

Modular Arithmetic

In some situations we do care about the remainder.
e.g.

When will be the next quiz?
Ans: 169 hours from now.

Modular Arithmetic

In some situations we do care about the remainder.
e.g.

When will be the next quiz?
Ans: 169 hours from now.
Definition: Modulo
$a \bmod m=r$ iff $a=m q+r \quad 0 \leq r<m$

Modular Arithmetic

In some situations we do care about the remainder.
e.g.

When will be the next quiz?
Ans: 169 hours from now.
Definition: Modulo
$a \bmod m=r$ iff $a=m q+r \quad 0 \leq r<m$

Definition:

If $a \equiv b(\bmod m)$, then a is congruent to b modulo m.

Modular Arithmetic

In some situations we do care about the remainder.
e.g.

When will be the next quiz?
Ans: 169 hours from now.
Definition: Modulo
$a \bmod m=r$ iff $a=m q+r \quad 0 \leq r<m$

Definition:

If $a \equiv b(\bmod m)$, then a is congruent to b modulo m.
Note that

$$
\begin{aligned}
a \equiv b(\bmod m) & \leftrightarrow(a \bmod m)=(b \bmod m) \\
a \equiv b(\bmod m) & \leftrightarrow m \mid a-b
\end{aligned}
$$

Modular Arithmetic

In some situations we do care about the remainder.
e.g.

When will be the next quiz?
Ans: 169 hours from now.
Definition: Modulo
$a \bmod m=r$ iff $a=m q+r \quad 0 \leq r<m$

Definition:

If $a \equiv b(\bmod m)$, then a is congruent to b modulo m.
Note that

$$
\begin{aligned}
& a \equiv b(\bmod m) \leftrightarrow(a \bmod m)=(b \bmod m) \\
& a \equiv b(\bmod m) \leftrightarrow m \mid a-b
\end{aligned}
$$

Theorem:

$$
a \equiv b(\bmod m) \leftrightarrow a=b+k m, \quad k \text { is some integer }
$$

Theorem:
If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then
$a+c \equiv b+d(\bmod m)$ and $a c \equiv b d(\bmod m)$.

We will now see a series of theorems and lemmas, that will help us understand the well-known RSA cryptosystem:

Theorem 1:
Let $a, b>0$, then $\exists s, t$ integers such that $\operatorname{gcd}(a, b)=s a+t b$.

Theorem 1:

Let $a, b>0$, then $\exists s, t$ integers such that $\operatorname{gcd}(a, b)=s a+t b$.
We won't prove this theorem formally, but the example below shows us that by reversing the Euclidean algorithm, we can always find such integers s and t.

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad \begin{aligned}
& \operatorname{gcd}(22,6)=2 \\
& 22=3 \cdot 6+4 \\
& 6=1 \cdot 4+2 \\
& 4=2 \cdot 2
\end{aligned} \\
& 2=6-1 \cdot 4 \\
& =6-(22-3 \cdot 6) \\
& \\
& =4 \cdot 6-22
\end{aligned} .
$$

Theorem 1:

Let $a, b>0$, then $\exists s, t$ integers such that $\operatorname{gcd}(a, b)=s a+t b$.
We won't prove this theorem formally, but the example below shows us that by reversing the Euclidean algorithm, we can always find such integers s and t.

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad \begin{aligned}
& \operatorname{gcd}(22,6)=2 \\
& 22=3 \cdot 6+4 \\
& 6=1 \cdot 4+2 \\
& 4=2 \cdot 2
\end{aligned} \\
& 2=6-1 \cdot 4 \\
& =6-(22-3 \cdot 6) \\
& \\
& =4 \cdot 6-22
\end{aligned} .
$$

This theorem has two important consequences, namely Lemma 1 and Lemma 2:

Lemma 1:

If $a, b, c>0$ integers s.t. $\operatorname{gcd}(a, b)=1$ and $a \mid b c$,
then $a \mid c$.

Lemma 1:

If $a, b, c>0$ integers s.t. $\operatorname{gcd}(a, b)=1$ and $a \mid b c$,
then $a \mid c$.
Proof:
$\exists s, t \operatorname{gcd}(a, b)=1=s a+t b \quad$ (by Thm 1 above)
$\Rightarrow s a c+t b c=c$
(multiply both sides by c)
$\Rightarrow a \mid t b c$ and $a \mid s a c$
(by Thm 1 of Section 4.1 and also since $a \mid b c$)
$\therefore a \mid c$

Lemma 1 leads to an important theorem:
Theorem 2:
Let $m>0$ and a, b, c integers.
If $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$.

Lemma 1 leads to an important theorem:
Theorem 2:
Let $m>0$ and a, b, c integers.
If $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$.
Proof:
Since $a c \equiv b c(\bmod m), m \mid a c-b c=c(a-b)$
By Lemma 1, $\operatorname{gcd}(c, m)=1 \Rightarrow m \mid a-b$

$$
\therefore a \equiv b(\bmod m)
$$

Lemma 1 leads to an important theorem:
Theorem 2:
Let $m>0$ and a, b, c integers.
If $a c \equiv b c(\bmod m)$ and $\operatorname{gcd}(c, m)=1$, then $a \equiv b(\bmod m)$.
Proof:
Since $a c \equiv b c(\bmod m), m \mid a c-b c=c(a-b)$
By Lemma 1, $\operatorname{gcd}(c, m)=1 \Rightarrow m \mid a-b$

$$
\therefore a \equiv b(\bmod m)
$$

Remark: You can not simply eliminate equal factors from both sides of the congruence as in usual arithmetic!

Lemma 2:

If p is a prime and $p \mid a_{1} a_{2} \ldots a_{n}$, where each a_{i} is integer, then $p \mid a_{i}$ for some i.

Lemma 2:

If p is a prime and $p \mid a_{1} a_{2} \ldots a_{n}$, where each a_{i} is integer, then $p \mid a_{i}$ for some i.
(Proof can be done based on Lemma 1 using induction, see Exercise 60 in Chapter 4.1 of $6^{\text {th }}$ edition or Exercise 52, Chapter 5.1, $7^{\text {th }}$ edition)

Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:
"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes,"

Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:
"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes," but we'll prove this only partly:

Factorization of an integer into primes is unique.

Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:
"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes," but we'll prove this only partly:

Factorization of an integer into primes is unique.
Proof:
Assume two different prime factorizations:
$n=p_{1} p_{2} \ldots p_{s} \quad$ and $n=q_{1} q_{2} \ldots q_{t}$
Remove all common primes:

$$
p_{i_{1}} p_{i_{2}} \cdots p_{i_{u}}=q_{j_{1}} q_{j_{2}} \cdots q_{j_{v}} \quad u, v>0
$$

Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:
"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes," but we'll prove this only partly:

Factorization of an integer into primes is unique.
Proof:
Assume two different prime factorizations:
$n=p_{1} p_{2} \ldots p_{s} \quad$ and $n=q_{1} q_{2} \ldots q_{t}$
Remove all common primes:
$p_{i_{1}} p_{i_{2}} \cdots p_{i_{u}}=q_{j_{1}} q_{j_{2}} \cdots q_{j_{v}} \quad u, v>0$
by Lemma 2, $p_{i_{1}}$ divides $q_{j_{k}}$ for some k.
Since a prime number can not divide another prime, we have contradiction!
\therefore Factorization is unique

Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:
"Every positive integer, greater than 1, is either prime or can be written uniquely as the product of primes," but we'll prove this only partly:

Factorization of an integer into primes is unique.
Proof:
Assume two different prime factorizations:
$n=p_{1} p_{2} \ldots p_{s} \quad$ and $n=q_{1} q_{2} \ldots q_{t}$
Remove all common primes:
$p_{i_{1}} p_{i_{2}} \cdots p_{i_{u}}=q_{j_{1}} q_{j_{2}} \cdots q_{j_{v}} \quad u, v>0$
by Lemma 2, $p_{i_{1}}$ divides $q_{j_{k}}$ for some k.
Since a prime number can not divide another prime, we have contradiction!
\therefore Factorization is unique
(Existence of factorization will be proved later).

4.4 Solving Linear Congruences

$$
\begin{array}{ll}
a x \equiv b(\bmod m) \quad m>0, & a, b \text { integers } \\
x \text { is a variable }
\end{array}
$$

How to find \boldsymbol{x} that satisfy this congruence?

Definition:

\bar{a} : inverse of a in modulo m
 s.t. $a \bar{a} \equiv 1(\bmod m)$

Definition:

\bar{a} : inverse of a in modulo m
 s.t. $a \bar{a} \equiv 1(\bmod m)$

Theorem:
If a and m are relatively prime, and $m>1$, then \bar{a} exists. Furthermore it is unique (in modulo m).

Definition:

\bar{a} : inverse of a in modulo m
s.t. $a \bar{a} \equiv 1(\bmod m)$

Theorem:
If a and m are relatively prime, and $m>1$, then \bar{a} exists.
Furthermore it is unique (in modulo m).
Proof: (Existence)

$$
\operatorname{gcd}(a, m)=1
$$

$\exists s, t \quad s a+t m=1$ (by Thm 1)
$\Rightarrow \quad s a+t m \equiv 1(\bmod m)$
since $t m \equiv 0(\bmod m)$
$s a \equiv 1(\bmod m)$
$\therefore \quad s=\bar{a}$

Definition:

\bar{a} : inverse of a in modulo m
s.t. $a \bar{a} \equiv 1(\bmod m)$

Theorem:
If a and m are relatively prime, and $m>1$, then \bar{a} exists.
Furthermore it is unique (in modulo m).
Proof: (Existence)

$$
\operatorname{gcd}(a, m)=1
$$

$\exists s, t \quad s a+t m=1$ (by Thm 1)
$\Rightarrow \quad s a+t m \equiv 1(\bmod m)$
since $t m \equiv 0(\bmod m)$
$s a \equiv 1(\bmod m)$
$\therefore \quad s=\bar{a}$
Remark: Inverse does not exist if $\operatorname{gcd}(a, m) \neq 1$.
e.g. Find the inverse of 3 modulo 7 .

Solution:
Since $\operatorname{gcd}(3,7)=1$, inverse exists.
$7=2 \cdot 3+1 \Rightarrow-2 \cdot 3+1 \cdot 7=1$
$\therefore-2$ is an inverse of $3 \bmod 7$.
Also of 5, $-9,12$, so on.

Solution for linear congruence:

$$
\begin{aligned}
& a x \equiv b(\bmod m) \\
& \Rightarrow \bar{a} a x \equiv \bar{a} b(\bmod m) \\
& \Rightarrow x \equiv \bar{a} b(\bmod m)
\end{aligned}
$$

Solution for linear congruence:

$$
\begin{aligned}
& a x \equiv b(\bmod m) \\
& \Rightarrow \bar{a} a x \equiv \bar{a} b(\bmod m) \\
& \Rightarrow x \equiv \bar{a} b(\bmod m)
\end{aligned}
$$

e.g.

$$
\begin{aligned}
3 x & \equiv 4(\bmod 7) \\
\therefore x & \equiv-2 \cdot 4(\bmod 7) \\
& \equiv-8 \equiv 6(\bmod 7)
\end{aligned}
$$

e.g. Solve $75 x \equiv 5(\bmod 13)$
e.g. Solve $75 x \equiv 5(\bmod 13)$

Solution:
Since $\operatorname{gcd}(75,13)=1$, inverse exists.
$75=13 \cdot 5+10 \Rightarrow 13=10 \cdot 1+3 \Rightarrow 10=3 \cdot 3+1$ (by Euclidean algorithm)
e.g. Solve $75 x \equiv 5(\bmod 13)$

Solution:
Since $\operatorname{gcd}(75,13)=1$, inverse exists.
$75=13 \cdot 5+10 \Rightarrow 13=10 \cdot 1+3 \Rightarrow 10=3 \cdot 3+1$ (by Euclidean algorithm)
Reversing the steps of the Euclidean algorithm:
$1=10-3 \cdot 3=10-3 \cdot(13-10 \cdot 1)=(75-13 \cdot 5)-3 \cdot(13-75+13 \cdot 5)$
$=4 \cdot 75-23 \cdot 13$
\therefore Inverse of 75 modulo 13 is 4 .
e.g. Solve $75 x \equiv 5(\bmod 13)$

Solution:
Since gcd $(75,13)=1$, inverse exists.
$75=13 \cdot 5+10 \Rightarrow 13=10 \cdot 1+3 \Rightarrow 10=3 \cdot 3+1$ (by Euclidean algorithm)
Reversing the steps of the Euclidean algorithm:

$$
\begin{aligned}
1 & =10-3 \cdot 3=10-3 \cdot(13-10 \cdot 1)=(75-13 \cdot 5)-3 \cdot(13-75+13 \cdot 5) \\
& =4 \cdot 75-23 \cdot 13
\end{aligned}
$$

\therefore Inverse of 75 modulo 13 is 4 .

$$
\begin{aligned}
75 x & \equiv 5(\bmod 13) \\
4 \cdot 75 x & \equiv 4 \cdot 5(\bmod 13) \\
x & \equiv 20 \equiv 7(\bmod 13)
\end{aligned}
$$

$\therefore \quad x=7$ is a solution and so are $20,33,46 \ldots$
e.g. Solve $75 x \equiv 5(\bmod 13)$

Solution:
Since gcd $(75,13)=1$, inverse exists.
$75=13 \cdot 5+10 \Rightarrow 13=10 \cdot 1+3 \Rightarrow 10=3 \cdot 3+1$ (by Euclidean algorithm)
Reversing the steps of the Euclidean algorithm:
$1=10-3 \cdot 3=10-3 \cdot(13-10 \cdot 1)=(75-13 \cdot 5)-3 \cdot(13-75+13 \cdot 5)$

$$
=4 \cdot 75-23 \cdot 13
$$

\therefore Inverse of 75 modulo 13 is 4 .

$$
\begin{aligned}
75 x & \equiv 5(\bmod 13) \\
4 \cdot 75 x & \equiv 4 \cdot 5(\bmod 13) \\
x & \equiv 20 \equiv 7(\bmod 13)
\end{aligned}
$$

$\therefore \quad x=7$ is a solution and so are $20,33,46 \ldots$
Remark: If an inverse exists, the linear congruence has a unique solution in modulo m. However, if an inverse does not exist, there may still be a solution! (e.g. $2 x \equiv 4 \bmod 6$)

Remark: Inverse of an integer in modulo m, if exists, can always be found by reversing the Euclidean algorithm.

In fact there is an efficient algorithm to do this, which is called extended Euclidean algorithm (see Exercise 30, Chapter 4.3, $7^{\text {th }}$ edition).

The Chinese Remainder Problem

The original problem was
How many soldiers are there in Han Xin's army? - If you let them parade in rows of 3 soldiers, two soldiers will be left. If you let them parade in rows of 5,3 will be left, and in rows of 7,2 will be left.

The Chinese Remainder Problem

The original problem was

How many soldiers are there in Han Xin's army? - If you let them parade in rows of 3 soldiers, two soldiers will be left. If you let them parade in rows of 5,3 will be left, and in rows of 7,2 will be left.
$x \equiv 2(\bmod 3)$
$x \equiv 3(\bmod 5)$
$x \equiv 2(\bmod 7)$
What is x then?

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
x \equiv a_{1}\left(\bmod m_{1}\right)
$$

$x \equiv a_{2}\left(\bmod m_{2}\right)$
$x \equiv a_{n}\left(\bmod m_{n}\right)$
has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
x \equiv a_{1}\left(\bmod m_{1}\right)
$$

$$
x \equiv a_{2}\left(\bmod m_{2}\right)
$$

$x \equiv a_{n}\left(\bmod m_{n}\right)$
has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.
e.g.

Since 3,5 and 7 are pairwise relatively prime in the previous example, by Chinese Remainder Thm., there is only one solution for x between $0 \leq x<105$.

OK, but what is this x ?

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
x \equiv a_{1}\left(\bmod m_{1}\right)
$$

$$
x \equiv a_{2}\left(\bmod m_{2}\right)
$$

$x \equiv a_{n}\left(\bmod m_{n}\right)$
has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.

Solution:
Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$.
Hence $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, and
$\exists y_{k}$ inverse of M_{k} s.t. $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$ by the previous theorem.

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv a_{n}\left(\bmod m_{n}\right)
$$

has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.
Solution:
Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$.
Hence $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, and
$\exists y_{k}$ inverse of M_{k} s.t. $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$ by the previous theorem.
A solution can then be given as:

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n} \quad \text { Why? }
$$

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv a_{n}\left(\bmod m_{n}\right)
$$

has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.
Solution:
Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$.
Hence $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, and
$\exists y_{k}$ inverse of M_{k} s.t. $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$ by the previous theorem.
A solution can then be given as:

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n} \quad \text { Why? }
$$

Since $M_{i} \equiv 0\left(\bmod m_{k}\right)$ whenever $i \neq k$ and $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$,

$$
x \equiv a_{k} M_{k} y_{k}+0+\ldots+0 \equiv a_{k}\left(\bmod m_{k}\right) .
$$

The Chinese Remainder Theorem

Let $m_{1}, m_{2}, \ldots, m_{n}$ be pairwise relatively prime positive integers. The system

$$
\begin{aligned}
& x \equiv a_{1}\left(\bmod m_{1}\right) \\
& x \equiv a_{2}\left(\bmod m_{2}\right)
\end{aligned}
$$

$$
x \equiv a_{n}\left(\bmod m_{n}\right)
$$

has a unique solution in modulo $m=m_{1} \cdot m_{2} \cdot \ldots m_{n}$.
Solution:
Let $M_{k}=m / m_{k}$ for $k=1,2, \ldots, n$.
Hence $\operatorname{gcd}\left(m_{k}, M_{k}\right)=1$, and
$\exists y_{k}$ inverse of M_{k} s.t. $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$ by the previous theorem.
A solution can then be given as:

$$
x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+\ldots+a_{n} M_{n} y_{n} \quad \text { Why? }
$$

Since $M_{i} \equiv 0\left(\bmod m_{k}\right)$ whenever $i \neq k$ and $M_{k} y_{k} \equiv 1\left(\bmod m_{k}\right)$,

$$
x \equiv a_{k} M_{k} y_{k}+0+\ldots+0 \equiv a_{k}\left(\bmod m_{k}\right) .
$$

Remark: Uniqueness can be proved using proof by contradiction.

Example:

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 14) \quad x=?
\end{aligned}
$$

$$
m=3 \cdot 5 \cdot 14=210
$$

Example:

$$
\begin{aligned}
& x \equiv 2(\bmod 3) \\
& x \equiv 3(\bmod 5) \\
& x \equiv 2(\bmod 14) \quad x=?
\end{aligned}
$$

$m=3 \cdot 5 \cdot 14=210$
Note that 3,5 and 14 are pairwise relatively prime, so we can apply Chinese Rem. Th:
$M_{1}=m / 3=70, M_{2}=42, M_{3}=15$
$M_{1}=70 \equiv 1(\bmod 3) \quad y_{1}=1$
$M_{2}=42 \equiv 2(\bmod 5) \quad y_{2}=3$
$M_{3}=15 \equiv 1(\bmod 14) \quad y_{3}=1$
$x=a_{1} M_{1} y_{1}+a_{2} M_{2} y_{2}+a_{3} M_{3} y_{3}=2 \cdot 70 \cdot 1+3 \cdot 42 \cdot 3+2 \cdot 15 \cdot 1=548 \equiv 128(\bmod 210)$.
Note that 128 is the only solution in $\bmod 210$, that means there is no other number between 0 and 209, which satisfies the above congruences.

Pseudoprimes

Is there an efficient way to determine whether an integer is prime or not?
Ancient Chinese believed that

$$
n \text { is prime } \leftrightarrow 2^{n-1} \equiv 1(\bmod n)
$$

Pseudoprimes

Is there an efficient way to determine whether an integer is prime or not?
Ancient Chinese believed that

$$
n \text { is prime } \leftrightarrow 2^{n-1} \equiv 1(\bmod n)
$$

Reasons:
i) they observed this holds when n is prime
ii) they couldn't find a composite number for which the congruence holds

Pseudoprimes

Is there an efficient way to determine whether an integer is prime or not?
Ancient Chinese believed that

$$
n \text { is prime } \leftrightarrow 2^{n-1} \equiv 1(\bmod n)
$$

Reasons:
i) they observed this holds when n is prime
ii) they couldn't find a composite number for which the congruence holds

However they were wrong: e.g., $\quad 2^{340} \equiv 1(\bmod 341)$ and $341=11 \cdot 31$
Hence 341 is a pseudoprime!

Pseudoprimes

Is there an efficient way to determine whether an integer is prime or not?
Ancient Chinese believed that

$$
n \text { is prime } \leftrightarrow 2^{n-1} \equiv 1(\bmod n)
$$

Reasons:
i) they observed this holds when n is prime
ii) they couldn't find a composite number for which the congruence holds

However they were wrong: e.g., $\quad 2^{340} \equiv 1(\bmod 341)$ and $341=11 \cdot 31$
Hence 341 is a pseudoprime!

But how to compute $2^{340}(\bmod 341) ? 2^{340}$ is too large!

How to compute $2^{340}(\bmod 341) ? 2^{340}$ is too large!
$\frac{\text { One way of doing it: }}{2^{340} \bmod 341}$ Compute successively $2 \bmod 341,2^{2} \bmod 341,2^{3} \bmod 341, \ldots$, $2^{340} \bmod 341$

Note that all computations above are in modulo 341, hence numbers never exceed 340.
$2 \bmod 341=2$, Compute $2^{2} \bmod 341=4,2^{3} \bmod 341=8,2^{4} \bmod 341=16$, $2^{5} \bmod 341=32, \ldots, 2^{8} \bmod 341=256$,
$2^{9} \equiv 2 \cdot 256 \equiv 512 \equiv 171(\bmod 341) \Rightarrow 2^{9} \bmod 341=171$
$2^{10} \equiv 2 \cdot 171 \equiv 342 \equiv 1(\bmod 341) \Rightarrow 2^{10} \bmod 341=1, \ldots$ and so on

How to compute $2^{340}(\bmod 341) ? 2^{340}$ is too large!
$\frac{\text { One way of doing it: }}{2^{340} \bmod 341}$ Compute successively $2 \bmod 341,2^{2} \bmod 341,2^{3} \bmod 341, \ldots$, $2^{340} \bmod 341$

Note that all computations above are in modulo 341, hence numbers never exceed 340.
$2 \bmod 341=2$, Compute $2^{2} \bmod 341=4,2^{3} \bmod 341=8,2^{4} \bmod 341=16$,
$2^{5} \bmod 341=32, \ldots, 2^{8} \bmod 341=256$,
$2^{9} \equiv 2 \cdot 256 \equiv 512 \equiv 171(\bmod 341) \Rightarrow 2^{9} \bmod 341=171$
$2^{10} \equiv 2 \cdot 171 \equiv 342 \equiv 1(\bmod 341) \Rightarrow 2^{10} \bmod 341=1, \ldots$ and so on

Another (better) way to use (in general): Compute $2 \bmod 341,2^{2} \bmod 341,2^{4} \bmod$ $341,2^{8} \bmod 341, \ldots, 2^{340} \bmod 341$

Yet a better way to compute $b^{a} \bmod m$ is to write the prime factorization of m and then to use Chinese Remainder Theorem and Fermat's Little Theorem (if possible):

Fermat's Little Theorem:
If p is prime and a is an integer not divisible by p, then

$$
a^{p-1} \equiv 1(\bmod p)
$$

Furthermore for every integer $a, a^{p} \equiv a(\bmod p)$
Remark: For proof, see Exercise 19 in Chapter 4.4 of your textbook, $7^{\text {th }}$ edition.

To compute $2^{340}(\bmod 341)$,
$341=11.31 \quad($ prime factorization $)$
(i) $2^{10} \equiv 1(\bmod 11)$ by Fermat's Little Theorem $2^{340}=\left(2^{10}\right)^{34} \equiv 1(\bmod 11)$
(ii) $2^{30} \equiv 1(\bmod 31)$ by Fermat's Little Theorem $2^{330}=\left(2^{30}\right)^{11} \equiv 1(\bmod 31)$
$2^{10}=2^{5} 2^{5} \equiv 1(\bmod 31)$ since $2^{5}=32 \equiv 1(\bmod 31)$
Hence $2^{340}=2^{330} 2^{10} \equiv 1(\bmod 31)$

To compute $2^{340}(\bmod 341)$,
$341=11 \cdot 31 \quad($ prime factorization $)$
(i) $2^{10} \equiv 1(\bmod 11)$ by Fermat's Little Theorem
$2^{340}=\left(2^{10}\right)^{34} \equiv 1(\bmod 11)$
(ii) $2^{30} \equiv 1(\bmod 31)$ by Fermat's Little Theorem $2^{330}=\left(2^{30}\right)^{11} \equiv 1(\bmod 31)$
$2^{10}=2^{5} 2^{5} \equiv 1(\bmod 31)$ since $2^{5}=32 \equiv 1(\bmod 31)$
Hence $2^{340}=2^{330} 2^{10} \equiv 1(\bmod 31)$
Then by Chinese Remainder Thm, (i) $\wedge(i i) \rightarrow 2^{340} \equiv 1(\bmod 341)$

To compute $2^{340}(\bmod 341)$,
$341=11 \cdot 31 \quad($ prime factorization $)$
(i) $2^{10} \equiv 1(\bmod 11)$ by Fermat's Little Theorem
$2^{340}=\left(2^{10}\right)^{34} \equiv 1(\bmod 11)$
(ii) $2^{30} \equiv 1(\bmod 31)$ by Fermat's Little Theorem $2^{330}=\left(2^{30}\right)^{11} \equiv 1(\bmod 31)$
$2^{10}=2^{5} 2^{5} \equiv 1(\bmod 31)$ since $2^{5}=32 \equiv 1(\bmod 31)$
Hence $2^{340}=2^{330} 2^{10} \equiv 1(\bmod 31)$
Then by Chinese Remainder Thm, (i) $\wedge(i i) \rightarrow 2^{340} \equiv 1(\bmod 341)$
(If you have difficulty to understand this last statement, see Exercise 21, Chapter 4.4, $7^{\text {th }}$ edition, or Exercise 23, Ch. 3.7, $6^{\text {th }}$ edition)
You can reason in this way: The integer $x=2^{340}$ is congruent to $1 \operatorname{in} \bmod 11$ and 31.
Chinese Remainder Thm states that there exists only one such integer in modulo 341 (that is between 0 and 340), and 1 already satisfies these congruences. So $x=2^{340} \equiv 1$ $(\bmod 341)$.

4.6 Cryptography

Earliest known cryptology was used by J. Caesar:
$h(p)=(p+k) \bmod 26$, where p is an integer code for alphabet letters, and k is the key.
YES $\Rightarrow \mathrm{AGU}$ (for $k=2$)

A: 0
B: 1

Z: 25
$h(p)=(p+2) \bmod 26$, where p is an integer code for alphabet letters not very high level of security!

A better alternative: $h(p)=(a p+b) \bmod 26$ choose a and b s.t. $h(p)$ is 1-to-1.
$h(p)=(p+2) \bmod 26$, where p is an integer code for alphabet letters not very high level of security!

A better alternative: $h(p)=(a p+b) \bmod 26$ choose a and b s.t. $h(p)$ is 1-to-1.

Still not a secure encryption scheme:
Generally broken using frequency analysis: Given an encrypted sentence, guess that the most commonly used letter represents " E " since it is the most common letter used in English. Then continue...
$h(p)=(p+2) \bmod 26$, where p is an integer code for alphabet letters not very high level of security!

A better alternative: $h(p)=(a p+b) \bmod 26$ choose a and b s.t. $h(p)$ is 1-to-1.

Still not a secure encryption scheme:
Generally broken using frequency analysis: Given an encrypted sentence, guess that the most commonly used letter represents "E" since it is the most common letter used in English. Then continue...

There exist of course much better recent cryptography methods. Next we'll learn one of them, which is RSA: A "Public Key" Cryptosystem.

First let's see what "public key" means...

Private key vs Public key

Private key cryptology:
e.g.

Encryption: $C=(M+k)(\bmod 26) \quad M$: original message code

Decryption: $M=(C-k)(\bmod 26) \quad C$: encrypted message code
k : private key (used for both encryption and decryption)

Private key vs Public key

Private key cryptology:
e.g.

Encryption: $C=(M+k)(\bmod 26) \quad M$: original message code
Decryption: $M=(C-k)(\bmod 26) \quad C$: encrypted message code
k : private key (used for both encryption and decryption)
Everybody knows the encryption method but nobody, supposedly, can get the original message without knowing the private key k.
Problem: How to share the secret key between two parties?

Private key vs Public key

Private key cryptology:
e.g.

Encryption: $C=(M+k)(\bmod 26) \quad M$: original message code
Decryption: $M=(C-k)(\bmod 26) \quad C$: encrypted message code
k : private key (used for both encryption and decryption)
Everybody knows the encryption method but nobody, supposedly, can get the original message without knowing the private key k.

Problem: How to share the secret key between two parties?

Public key cryptology:
Encryption and decryption keys are different!
Everybody knows the encryption method and the public encryption key, but nobody can get the original message without knowing the private decryption key.

RSA - A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT
Let p, q be large primes (~ 200 digits) and e be relatively prime to $(p-1)(q-1)$ and $n=p q$.

Encryption: $C=\left(M^{e} \bmod n\right) \quad e$: public encryption key
Decryption: $M=\left(C^{d} \bmod n\right) \quad d$: private decryption key
Decryption key d is the inverse of e modulo $(p-1)(q-1)$.
Inverse exists since $\operatorname{gcd}(e,(p-1)(q-1))=1$.

RSA - A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT

Let p, q be large primes (~ 200 digits) and e be relatively prime to $(p-1)(q-1)$ and $n=p q$.

Encryption: $C=\left(M^{e} \bmod n\right) \quad e$: public encryption key
Decryption: $M=\left(C^{d} \bmod n\right) \quad d$: private decryption key
Decryption key d is the inverse of e modulo $(p-1)(q-1)$.
Inverse exists since $\operatorname{gcd}(e,(p-1)(q-1))=1$.
Remark: Almost impossible to find d although one knows e and $n=p q$ since these are very large numbers. No polynomial time algorithm exists for prime factorization.

$$
\begin{aligned}
& \text { e.g. } \\
& p=43, q=59 \quad n=43 \cdot 59=2537 \quad e=13 \\
& \Rightarrow \quad \operatorname{gcd}(13,58 \cdot 42)=1
\end{aligned}
$$

Let $M=1819 \quad 1415 \quad$ (STOP) $M_{1} \quad M_{2}$
$C_{1} \equiv 1819^{13}(\bmod 2537)=2081$
$C_{2} \equiv 1415^{13}(\bmod 2537)=2182$
$d=937 \quad$ (inverse of 13 modulo 42.58)
$M_{1}=C_{1}{ }^{937}(\bmod 2537)=1819$
$M_{2}=C_{2}^{937}(\bmod 2537)=1415$

Use Examples of RSA Cryptosystem

Encryption

Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by exponentiating s.t. $C=M^{e} \bmod n$, where e and n are Bob's public keys. She sends C to Bob. To decrypt, Bob also exponentiates but with d s.t. $M=C^{d} \bmod n$; the relationship between e and d ensures that Bob correctly recovers M. Since only Bob knows d, only Bob can decrypt this message.

Use Examples of RSA Cryptosystem

Encryption

Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by exponentiating s.t. $C=M^{e} \bmod n$, where e and n are Bob's public keys. She sends C to Bob. To decrypt, Bob also exponentiates but with d s.t. $M=C^{d} \bmod n$; the relationship between e and d ensures that Bob correctly recovers M. Since only Bob knows d, only Bob can decrypt this message.

Digital Signature

Suppose Alice wants to send a message M to Bob in such a way that Bob is assured the message is both authentic, has not been tampered with, and from Alice. Alice creates a digital signature S by exponentiating s.t. $S=M^{e} \bmod n$, where e is Alice's private key. She sends M and S to Bob. To verify the signature, Bob exponentiates and checks whether the message M is recovered by $M=S^{d} \bmod n$, where d and n are Alice's public keys.

Use Examples of RSA Cryptosystem

Encryption

Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by exponentiating s.t. $C=M^{e} \bmod n$, where e and n are Bob's public keys. She sends C to Bob. To decrypt, Bob also exponentiates but with d s.t. $M=C^{d} \bmod n$; the relationship between e and d ensures that Bob correctly recovers M. Since only Bob knows d, only Bob can decrypt this message.

Digital Signature

Suppose Alice wants to send a message M to Bob in such a way that Bob is assured the message is both authentic, has not been tampered with, and from Alice. Alice creates a digital signature S by exponentiating s.t. $S=M^{e} \bmod n$, where e is Alice's private key. She sends M and S to Bob. To verify the signature, Bob exponentiates and checks whether the message M is recovered by $M=S^{d} \bmod n$, where d and n are Alice's public keys.

Thus encryption and authentication here take place without any sharing of private keys: each person uses only another's public key or their own private key. Anyone can send an encrypted message or verify a signed message, but only someone in possession of the correct private key can decrypt or sign a message.

RSA - A Public Key Cryptosystem

Let p, q be large primes (~ 200 digits) and e be relatively prime to $(p-1)(q-1)$ and $n=p q$.

Encryption: $C=\left(M^{e} \bmod n\right) \quad e$: public encryption key
Decryption: $M=\left(C^{d} \bmod n\right) \quad d$: private decryption key
Decryption key d is the inverse of e modulo $(p-1)(q-1)$.
But why is C^{d} equal to M in modulo $n=p q$?
We can show this by using what we have learned so far.....

Why is C^{d} equal to M in modulo $n=p q$?

By Fermat's Little Thm,

$$
\begin{aligned}
& M^{p-1} \equiv 1(\bmod p) \quad \text { assuming } p \text { and } q \text { does not divide } M(p, q \text { are very large }) \\
& M^{q-1} \equiv 1(\bmod q)
\end{aligned}
$$

Why is C^{d} equal to M in modulo $n=p q$?

By Fermat's Little Thm,

$$
\left.\begin{array}{rl}
M^{p-1} & \equiv 1(\bmod p) \quad \text { assuming } p \text { and } q \text { does not divide } M(p, q \text { are very large }) \\
M^{q-1} & \equiv 1(\bmod q)
\end{array}\right] \begin{aligned}
\text { and } C^{d} \equiv\left(M^{e}\right)^{d}=M^{e d}=M^{1+k(p-1)(q-1)}(\bmod n) \quad \text { since } e d \equiv 1 \bmod (p-1)(q-1) .
\end{aligned}
$$

Why is C^{d} equal to M in modulo $n=p q$?

By Fermat's Little Thm,

$$
\left.\begin{array}{rl}
M^{p-1} & \equiv 1(\bmod p) \quad \text { assuming } p \text { and } q \text { does not divide } M(p, q \text { are very large }) \\
M^{q-1} & \equiv 1(\bmod q)
\end{array}\right] \begin{aligned}
\text { and } C^{d} \equiv\left(M^{e}\right)^{d}=M^{e d}=M^{1+k(p-1)(q-1)}(\bmod n) \quad \text { since } e d \equiv 1 \bmod (p-1)(q-1) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& C^{d} \equiv M\left(M^{p-1}\right)^{k(q-1)} \equiv M \cdot 1 \equiv M \quad(\bmod p) \\
& C^{d} \equiv M\left(M^{q-1}\right)^{k(p-1)} \equiv M \cdot 1 \equiv M \quad(\bmod q)
\end{aligned}
$$

Why is C^{d} equal to M in modulo $n=p q$?

By Fermat's Little Thm,

$$
\begin{aligned}
M^{p-1} & \equiv 1(\bmod p) \quad \text { assuming } p \text { and } q \text { does not divide } M(p, q \text { are very large }) \\
M^{q-1} & \equiv 1(\bmod q)
\end{aligned}
$$

and $C^{d} \equiv\left(M^{e}\right)^{d}=M^{e d}=M^{1+k(p-1)(q-1)}(\bmod n) \quad$ since $e d \equiv 1 \bmod (p-1)(q-1)$.
Hence

$$
\begin{aligned}
C^{d} \equiv M\left(M^{p-1}\right)^{k(q-1)} & \equiv M \cdot 1 \equiv M \quad(\bmod p) \\
C^{d} \equiv M\left(M^{q-1}\right)^{k(p-1)} & \equiv M \cdot 1 \equiv M \quad(\bmod q)
\end{aligned}
$$

Since $\operatorname{gcd}(p, q)=1$, by Chinese Remainder Thm

$$
C^{d} \equiv M(\bmod p q)
$$

