
1 

4. Number Theory (Chapter numbers are from the 7th edition of your textbook) 

 
 
Number theory has various applications in computer science; we will focus on 
cryptography. 
 
At the end of these lectures, we will be capable of understanding the basics of a 
cryptography system, namely the “RSA Public Key Cryptosystem”. 
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RSA – A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT 
 
Let p, q be large primes (~200 digits) and e be relatively prime to (p – 1)(q – 1) and  
n = pq. 
 
Encryption: C  =  M e  mod n  e: public encryption key 
 
Decryption:  M  =  C d  mod n  d: private decryption key 
 
Decryption key d is the inverse of e modulo (p – 1)(q – 1). 
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RSA – A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT 
 
Let p, q be large primes (~200 digits) and e be relatively prime to (p – 1)(q – 1) and  
n = pq. 
 
Encryption: C  =  M e  mod n  e: public encryption key 
 
Decryption:  M  =  C d  mod n  d: private decryption key 
 
Decryption key d is the inverse of e modulo (p – 1)(q – 1). 

 
To understand this, we first need to learn about prime numbers, greatest common 
divisor algorithms, and modular arithmetic. 
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4.1/4.2/4.3  Divisibility & Prime Numbers 
 
 
Divisibility:  (Definition) 
 
Let a and b are integers s.t. a ≠ 0, we say “a divides b” 

if $c integer  s.t.  b = ac  (where a is a factor of b). 
Notation:  a | b 
     a     b  a does not divide b. 
 

 
 
 
 
 
 
 
 
 



5 

 
Theorem 1:  Let a, b, c be integers.  
 

1. If a | b  Ù  a | c  then  a | (b + c). 
2. If a | b then a | bc "c. 
3. If a | b  Ù  b | c, then a | c. 
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Theorem 1:  Let a, b, c be integers.  
 

1. If a | b  Ù  a | c  then  a | (b + c). 
2. If a | b then a | bc "c. 
3. If a | b  Ù  b | c, then a | c. 

 
Proof: 
1. If a | b  Ù  a | c then $k1,k2 integers s.t.  
 b = k1a  Ù c = k2a  Þ  b + c = (k1 + k2)a Þ a | (b + c). 
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Theorem 1:  Let a, b, c be integers.  
 

1. If a | b  Ù  a | c  then  a | (b + c). 
2. If a | b then a | bc "c. 
3. If a | b  Ù  b | c, then a | c. 

 
Proof: 
1. If a | b  Ù  a | c then $k1,k2 integers s.t.  
 b = k1a  Ù c = k2a  Þ  b + c = (k1 + k2)a Þ a | (b + c). 
 
3. $k1,k2  s.t.  b = k1a, c = k2b = k2k1a Þ a | c. 
 
2. Prove as an exercise 
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Prime Number:  (Definition) 
 
An integer p > 1 is called prime iff the only positive factors of p are 1 and p. 
If p is not prime, then it is composite. 
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Prime Number:  (Definition) 
 
An integer p > 1 is called prime iff the only positive factors of p are 1 and p. 
If p is not prime, then it is composite. 
 
Prime numbers were of interest, 
    

for philosophical reasons  (ancient) 
   for practical reasons   (today) 
    (such as cryptography) 
 
 
 
How to find prime numbers? How to devise an efficient algorithm to determine 
whether a given integer is not? These are important problems in number theory. 
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Hunt for the largest prime: 
 
The integer 2p – 1, where p is prime, 

is called Mersenne Prime if it is prime. 
 
e.g. 
 
22 – 1 = 3, 23 – 1 = 7, 25 – 1 = 31 are Mersenne primes 
211 – 1 = 2047 = 23 × 89 is not a Mersenne prime 
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Hunt for the largest prime: 
 
The integer 2p – 1, where p is prime, 

is called Mersenne Prime if it is prime. 
 
e.g. 
 
22 – 1 = 3, 23 – 1 = 7, 25 – 1 = 31 are Mersenne primes 
211 – 1 = 2047 = 23 × 89 is not a Mersenne prime 
 
The largest Mersenne Prime: 
 
(as of 2005)  225,964,951   – 1   7,816,230 digits 
(as of 2007)  232,582,657   – 1   9,808,358 digits 
(as of 2010) 2 43,112,609  – 1   12,978,189 digits 
(as of 2013) 2 57,885,161  – 1   17,425,170 digits 
(as of 2017) 2 74,207,281  – 1   22,338,618 digits 
(as of 2018) 2 82,589,933 – 1   24,862,048 digits 
(as of 2019) check it out! 
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Theorem: Fundamental Theorem of Arithmetic 
  
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes.” 
 
  100 = 2×2×5×5 
  999 = 3×3×3×37 
      7 = 7 
 
We will prove this important theorem later… 
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Theorem: There are infinitely many primes. 
 
Proof (by contradiction):  
Assume otherwise that all the primes are: p1, p2, …, pn  (with n finite) 
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Theorem: There are infinitely many primes. 
 
Proof (by contradiction):  
Assume otherwise that all the primes are: p1, p2, …, pn  (with n finite) 
 
Let q = p1p2 … pn + 1 
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a 
product of primes. 
 
• If q is prime, it is a new prime number so we have contradiction! 
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Theorem: There are infinitely many primes. 
 
Proof (by contradiction):  
Assume otherwise that all the primes are: p1, p2, …, pn  (with n finite) 
 
Let q = p1p2 … pn + 1 
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a 
product of primes. 
 
• If q is prime, it is a new prime number so we have contradiction! 

 
• If q is not prime, we can write it as a product of primes. But no prime pi divides q 

since it would mean pi | 1, which is not possible for integers larger than 1. Thus q 
must have another prime divisor p ≠  pi   "i 1 ≤ i ≤ n. Contradiction! 
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Theorem: There are infinitely many primes. 
 
Proof (by contradiction):  
Assume otherwise that all the primes are: p1, p2, …, pn  (with n finite) 
 
Let q = p1p2 … pn + 1 
By the Fundamental Theorem of Arithmetic, q is either prime or can be written as a 
product of primes. 
 
• If q is prime, it is a new prime number so we have contradiction! 

 
• If q is not prime, we can write it as a product of primes. But no prime pi divides q 

since it would mean pi | 1, which is not possible for integers larger than 1. Thus q 
must have another prime divisor p ≠  pi   "i 1 ≤ i ≤ n. Contradiction! 

 
We have contradiction in both cases. So our initial assumption was false. There are 
indeed infinitely many prime numbers. 
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Greatest Common Divisor:  (Definition) 
 
Let a, b be integers, not both zero. 
The largest integer d s.t.  d | a  Ù  d | b is called g.c.d of a and b. 
 
  d = gcd (a, b)  
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Greatest Common Divisor:  (Definition) 
 
Let a, b be integers, not both zero. 
The largest integer d s.t.  d | a  Ù  d | b is called g.c.d of a and b. 
 
  d = gcd (a, b)  
 
 
 
Definition: Integers a1, a2, …, an are pairwise relatively prime  
iff gcd (ai, aj) = 1  "i, j, 1 £ i < j £ n. 
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How to find gcd of two numbers? 
 
One possible way: 
 
  a = p1a1 p2a2 … pnan,  b = p1b1 p2b2 … pnbn  , where pi’s are prime. 
 
  gcd (a, b) = p1min (a1, b1) p2min (a2, b2) … pnmin (an, bn)  
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How to find gcd of two numbers? 
 
One possible way: 
 
  a = p1a1 p2a2 … pnan,  b = p1b1 p2b2 … pnbn  , where pi’s are prime. 
 
  gcd (a, b) = p1min (a1, b1) p2min (a2, b2) … pnmin (an, bn)  
 
e.g. 
 
gcd(120, 500) = ? 
 

120 = 23 ∙ 3 ∙ 5   500 = 22 ∙ 53 
 gcd (120, 500) = 22 ∙ 30 ∙ 51 = 20 
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How to find gcd of two numbers? 
 
One possible way: 
 
  a = p1a1 p2a2 … pnan,  b = p1b1 p2b2 … pnbn  , where pi’s are prime. 
 
  gcd (a, b) = p1min (a1, b1) p2min (a2, b2) … pnmin (an, bn)  
 
e.g. 
 
gcd(120, 500) = ? 
 

120 = 23 ∙ 3 ∙ 5   500 = 22 ∙ 53 
 gcd (120, 500) = 22 ∙ 30 ∙ 51 = 20 
 
 
But how to find the greatest common divisor of two integers on a computer, especially 
when the integers are very large? 
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The Euclidean Algorithm 
 
An efficient method for finding the greatest common divisor of two integers. 
 
 
Example: Find gcd (287, 91) 
 
287 = 91∙3 + 14 
 
a | 287 Ù a | 91 Þ a | 14 
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The Euclidean Algorithm 
 
An efficient method for finding the greatest common divisor of two integers. 
 
 
Example: Find gcd (287, 91) 
 
287 = 91∙3 + 14 
 
a | 287 Ù a | 91 Þ a | 14 
 
 
\ gcd (287, 91) = gcd (91, 14) 
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The Euclidean Algorithm 
 
An efficient method for finding the greatest common divisor of two integers. 
 
 
Example: Find gcd (287, 91) 
 
287 = 91∙3 + 14 
 
a | 287 Ù a | 91 Þ a | 14 
 
 
\ gcd (287, 91) = gcd (91, 14) 
   
91 = 14∙6 + 7 
 
\ gcd (91, 14) = gcd (14, 7) = 7 
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Example: Find gcd (287, 91) 
 
287 = 91∙3 + 14 
 
a | 287 Ù a | 91 Þ a | 14 
 
 
\ gcd (287, 91) = gcd (91, 14) 
   
91 = 14∙6 + 7 
 
\ gcd (91, 14) = gcd (14, 7) = 7 
 
 
Lemma: 
   
Let a = bq + r, where a, b, q and r are integers. Then  gcd(a, b) = gcd(b, r). 
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Lemma: Let a = bq + r, where a, b, q and r are integers. Then  gcd(a, b) = gcd(b, r). 
 
Based on this Lemma, we can develop an algorithm: 
 
Let a, b positive integers s.t. a ³ b. 
Let r0 = a  and  r1 = b. 
 
 r0 = r1 q1 + r2          0 £ r2 < r1 
 r1 = r2 q2 + r3,   0 £ r3 < r2 

  . 

  . 

 rn-2 = rn-1 qn-1 + rn,  0 £ rn < rn-1 

 rn-1 = rn qn  
 
 a = r0 > r1 > r2 > ∙∙∙ ³ 0 
 
At most in a steps, remainder will be zero. 
 
\ gcd (a,b) = gcd (r0, r1) = gcd (r1, r2)  

= ∙∙∙ = gcd (rn-1, rn) = gcd (rn, 0) = rn 
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Lemma: Let a = bq + r, where a, b, q and r are integers. Then  gcd(a, b) = gcd(b, r). 
 
Based on this Lemma, we can develop an algorithm: 
 
Let a, b positive integers s.t. a ³ b. 
Let r0 = a  and  r1 = b. 
 
 r0 = r1 q1 + r2          0 £ r2 < r1 
 r1 = r2 q2 + r3,   0 £ r3 < r2 

  . 

  . 

 rn-2 = rn-1 qn-1 + rn,  0 £ rn < rn-1 

 rn-1 = rn qn  
 
 a = r0 > r1 > r2 > ∙∙∙ ³ 0 
 
At most in a steps, remainder will be zero. 
 
\ gcd (a,b) = gcd (r0, r1) = gcd (r1, r2)  

= ∙∙∙ = gcd (rn-1, rn) = gcd (rn, 0) = rn 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Code: 
 
 int gcd(int a, int b)   
 {  
  int x,y,r;  
  x = a; 
  y = b; 
  while (y != 0){ 
   r = x % y; 
   x = y; 
   y = r; 
  } 
 
  return x; 
 } 
 
 
 
 
 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
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Code: 
 
 int gcd(int a, int b)   
 {  
  int x,y,r;  
  x = a; 
  y = b; 
  while (y != 0){ 
   r = x % y; 
   x = y; 
   y = r; 
  } 
 
  return x; 
 } 
 
Complexity is O(log b), but we’ll study it later. 
 
 
 

Example:   
 
155 = 125×1 + 30 
125 = 30×4 + 5 
 30  = 5×6 
\ gcd (155, 125) = 5 
 



30 

Modular Arithmetic 
In some situations we do care about the remainder. 
e.g. 
  When will be the next quiz? 
  Ans: 169 hours from now. 
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Modular Arithmetic 
In some situations we do care about the remainder. 
e.g. 
  When will be the next quiz? 
  Ans: 169 hours from now. 
 
Definition: Modulo 
 a mod m  = r   iff   a = mq + r  0 £ r < m 
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Modular Arithmetic 
In some situations we do care about the remainder. 
e.g. 
  When will be the next quiz? 
  Ans: 169 hours from now. 
 
Definition: Modulo 
 a mod m  = r   iff   a = mq + r  0 £ r < m 
 
Definition: 
If a º b (mod m), then a is congruent to b modulo m. 
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Modular Arithmetic 
In some situations we do care about the remainder. 
e.g. 
  When will be the next quiz? 
  Ans: 169 hours from now. 
 
Definition: Modulo 
 a mod m  = r   iff   a = mq + r  0 £ r < m 
 
Definition: 
If a º b (mod m), then a is congruent to b modulo m. 
Note that  
 a º b (mod m)   ↔   (a mod m) = (b mod m) 
 a º b (mod m)   ↔   m | a–b  
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Modular Arithmetic 
In some situations we do care about the remainder. 
e.g. 
  When will be the next quiz? 
  Ans: 169 hours from now. 
 
Definition: Modulo 
 a mod m  = r   iff   a = mq + r  0 £ r < m 
 
Definition: 
If a º b (mod m), then a is congruent to b modulo m. 
Note that  
 a º b (mod m)   ↔   (a mod m) = (b mod m) 
 a º b (mod m)   ↔   m | a–b  
 
Theorem: 
 a º b (mod m)   ↔   a = b + km,     k is some integer 
Theorem: 
If a º b (mod m)   and   c º d (mod m) then  
    a + c º b + d (mod m)   and   ac º bd (mod m). 
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We will now see a series of theorems and lemmas, that will help us understand the 
well-known RSA cryptosystem: 
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Theorem 1: 
 
Let a, b > 0, then $s,t integers such that gcd(a,b) = sa + tb. 
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Theorem 1: 
 
Let a, b > 0, then $s,t integers such that gcd(a,b) = sa + tb. 
 
We won’t prove this theorem formally, but the example below shows us that by 
reversing the Euclidean algorithm, we can always find such integers s and t. 
 
 e.g. 
  gcd (22, 6) = 2 
   
  22 = 3∙6 + 4 
    6 = 1∙4 +2 
    4 = 2∙2 
 
  2 = 6 – 1∙4 
     = 6 – (22 – 3∙6) 
     = 4∙6 – 22 
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Theorem 1: 
 
Let a, b > 0, then $s,t integers such that gcd(a,b) = sa + tb. 
 
We won’t prove this theorem formally, but the example below shows us that by 
reversing the Euclidean algorithm, we can always find such integers s and t. 
 
 e.g. 
  gcd (22, 6) = 2 
   
  22 = 3∙6 + 4 
    6 = 1∙4 +2 
    4 = 2∙2 
 
  2 = 6 – 1∙4 
     = 6 – (22 – 3∙6) 
     = 4∙6 – 22 
 
 
This theorem has two important consequences, namely Lemma 1 and Lemma 2: 
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Lemma 1: 
 
If a, b, c > 0 integers s.t. gcd (a,b) = 1 and a | bc,    

then a | c. 
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Lemma 1: 
 
If a, b, c > 0 integers s.t. gcd (a,b) = 1 and a | bc,    

then a | c. 
 
Proof: 
   
$s,t  gcd(a, b) = 1 = sa + tb  (by Thm 1 above) 
Þ sac + tbc = c     (multiply both sides by c) 
Þ a | tbc  and  a | sac  (by Thm 1 of Section 4.1 and also since a | bc) 
 
\ a | c 
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Lemma 1 leads to an important theorem: 
 
Theorem 2: 
 
Let m > 0 and a, b, c integers.  
If ac º bc (mod m) and gcd(c, m) = 1, then a º b (mod m). 
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Lemma 1 leads to an important theorem: 
 
Theorem 2: 
 
Let m > 0 and a, b, c integers.  
If ac º bc (mod m) and gcd(c, m) = 1, then a º b (mod m). 
 
Proof: 
 
Since ac º bc (mod m),  m | ac – bc = c (a – b) 
By Lemma 1, gcd (c, m) = 1 Þ m | a – b 
          \ a º b (mod m) 
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Lemma 1 leads to an important theorem: 
 
Theorem 2: 
 
Let m > 0 and a, b, c integers.  
If ac º bc (mod m) and gcd(c, m) = 1, then a º b (mod m). 
 
Proof: 
 
Since ac º bc (mod m),  m | ac – bc = c (a – b) 
By Lemma 1, gcd (c, m) = 1 Þ m | a – b 
          \ a º b (mod m) 
 
Remark: You can not simply eliminate equal factors from both sides of the congruence 
as in usual arithmetic! 
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Lemma 2: 
 
If p is a prime and p | a1a2 … an, where each ai  is integer, then p | ai for some i. 
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Lemma 2: 
 
If p is a prime and p | a1a2 … an, where each ai  is integer, then p | ai for some i. 
 
(Proof can be done based on Lemma 1 using induction, see Exercise 60 in Chapter 4.1 
of 6th edition or Exercise 52, Chapter 5.1, 7th edition) 
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Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:  
 
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes,”   
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Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:  
 
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes,”  but we’ll prove this only partly: 
 

Factorization of an integer into primes is unique. 
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Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:  
 
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes,”  but we’ll prove this only partly: 
 

Factorization of an integer into primes is unique. 
 
Proof: 
Assume two different prime factorizations: 
n = p1 p2 … ps   and  n = q1q2 … qt 

 
Remove all common primes: 
pi1 pi2 ∙∙∙ piu = qj1qj2 ∙∙∙ qjv              u, v > 0 
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Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:  
 
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes,”  but we’ll prove this only partly: 
 

Factorization of an integer into primes is unique. 
 
Proof: 
Assume two different prime factorizations: 
n = p1 p2 … ps   and  n = q1q2 … qt 

 
Remove all common primes: 
pi1 pi2 ∙∙∙ piu = qj1qj2 ∙∙∙ qjv              u, v > 0 
  
by Lemma 2,  pi1 divides qjk for some k. 
Since a prime number can not divide another prime, we have contradiction!   
\ Factorization is unique 
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Using Lemma 2, we can prove the Fundamental Theorem of Arithmetic:  
 
“Every positive integer, greater than 1, is either prime or can be written uniquely as the 
product of primes,”  but we’ll prove this only partly: 
 

Factorization of an integer into primes is unique. 
 
Proof: 
Assume two different prime factorizations: 
n = p1 p2 … ps   and  n = q1q2 … qt 

 
Remove all common primes: 
pi1 pi2 ∙∙∙ piu = qj1qj2 ∙∙∙ qjv              u, v > 0 
  
by Lemma 2,  pi1 divides qjk for some k. 
Since a prime number can not divide another prime, we have contradiction!   
\ Factorization is unique 
 
(Existence of factorization will be proved later). 



51 

4.4 Solving Linear Congruences 
 
 ax º b (mod m)   m > 0,  a, b integers 
       x is a variable 
 
How to find x that satisfy this congruence? 
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Definition: 
 
  ā : inverse of a in modulo m  
  s.t.  aā º 1 (mod m) 
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Definition: 
 
  ā : inverse of a in modulo m  
  s.t.  aā º 1 (mod m) 
 
Theorem: 
 
 If a and m are relatively prime, and m > 1, then ā exists. 
 Furthermore it is unique (in modulo m). 
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Definition: 
 
  ā : inverse of a in modulo m  
  s.t.  aā º 1 (mod m) 
 
Theorem: 
 
 If a and m are relatively prime, and m > 1, then ā exists. 
 Furthermore it is unique (in modulo m). 
 
 Proof: (Existence) 
    gcd (a, m) = 1 
 $s,t   sa + tm = 1 (by Thm 1) 

Þ   sa + tm º 1 (mod m) 
since tm º 0 (mod m) 
  sa º 1 (mod m) 
\ s = ā                                    
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Definition: 
 
  ā : inverse of a in modulo m  
  s.t.  aā º 1 (mod m) 
 
Theorem: 
 
 If a and m are relatively prime, and m > 1, then ā exists. 
 Furthermore it is unique (in modulo m). 
 
 Proof: (Existence) 
    gcd (a, m) = 1 
 $s,t   sa + tm = 1 (by Thm 1) 

Þ   sa + tm º 1 (mod m) 
since tm º 0 (mod m) 
  sa º 1 (mod m) 
\ s = ā                                    

 
Remark: Inverse does not exist if gcd(a, m) ≠ 1. 
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e.g. Find the inverse of 3 modulo 7. 
 
 
 
Solution:   
 
Since gcd (3, 7) = 1, inverse exists. 
7 = 2∙3 + 1 Þ –2∙3 + 1∙7 = 1 
\ –2 is an inverse of 3 mod 7. 
 
Also of 5, –9, 12, so on. 
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Solution for linear congruence:  
 
ax º b (mod m) 
Þ ā a x º ā b (mod m) 
Þ x º ā b (mod m)  
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Solution for linear congruence:  
 
ax º b (mod m) 
Þ ā a x º ā b (mod m) 
Þ x º ā b (mod m)  
  
e.g. 
  3x º 4 (mod 7) 
 
 \ x º –2∙4 (mod 7) 
  º –8 º 6 (mod 7) 
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e.g. Solve 75x º 5 (mod 13) 
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e.g. Solve 75x º 5 (mod 13) 
 
Solution:   
Since gcd (75, 13) = 1, inverse exists. 
75 = 13∙5 + 10 Þ 13 = 10∙1 + 3 Þ 10 = 3∙3 + 1 (by Euclidean algorithm) 
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e.g. Solve 75x º 5 (mod 13) 
 
Solution:   
Since gcd (75, 13) = 1, inverse exists. 
75 = 13∙5 + 10 Þ 13 = 10∙1 + 3 Þ 10 = 3∙3 + 1 (by Euclidean algorithm) 
 
Reversing the steps of the Euclidean algorithm: 
1 = 10 - 3∙3 = 10 - 3∙(13 - 10∙1) = (75 - 13∙5) - 3∙(13 - 75 + 13∙5) 
   = 4∙75 - 23∙13 
\ Inverse of 75 modulo 13 is 4. 
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e.g. Solve 75x º 5 (mod 13) 
 
Solution:   
Since gcd (75, 13) = 1, inverse exists. 
75 = 13∙5 + 10 Þ 13 = 10∙1 + 3 Þ 10 = 3∙3 + 1 (by Euclidean algorithm) 
 
Reversing the steps of the Euclidean algorithm: 
1 = 10 - 3∙3 = 10 - 3∙(13 - 10∙1) = (75 - 13∙5) - 3∙(13 - 75 + 13∙5) 
   = 4∙75 - 23∙13 
\ Inverse of 75 modulo 13 is 4. 
 
     75x º 5 (mod 13) 
 4∙75 x º 4∙5  (mod 13) 
       x º 20 º 7 (mod 13)   
  
\  x = 7 is a solution and so are 20,33, 46…. 
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e.g. Solve 75x º 5 (mod 13) 
 
Solution:   
Since gcd (75, 13) = 1, inverse exists. 
75 = 13∙5 + 10 Þ 13 = 10∙1 + 3 Þ 10 = 3∙3 + 1 (by Euclidean algorithm) 
 
Reversing the steps of the Euclidean algorithm: 
1 = 10 - 3∙3 = 10 - 3∙(13 - 10∙1) = (75 - 13∙5) - 3∙(13 - 75 + 13∙5) 
   = 4∙75 - 23∙13 
\ Inverse of 75 modulo 13 is 4. 
 
     75x º 5 (mod 13) 
 4∙75 x º 4∙5  (mod 13) 
       x º 20 º 7 (mod 13)   
  
\  x = 7 is a solution and so are 20,33, 46…. 
 
Remark: If an inverse exists, the linear congruence has a unique solution in modulo m. 
However, if an inverse does not exist, there may still be a solution! (e.g. 2x º 4 mod 6) 
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Remark: Inverse of an integer in modulo m, if exists, can always be found by reversing 
the Euclidean algorithm. 
 
In fact there is an efficient algorithm to do this, which is called extended Euclidean 
algorithm ( see Exercise 30, Chapter 4.3, 7th edition). 
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The Chinese Remainder Problem 
  
The original problem was 
 
How many soldiers are there in Han Xin's army? – If you let them parade in rows of 3 soldiers, 
two soldiers will be left. If you let them parade in rows of 5, 3 will be left, and in rows of 7, 2 will 
be left. 
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The Chinese Remainder Problem 
  
The original problem was 
 
How many soldiers are there in Han Xin's army? – If you let them parade in rows of 3 soldiers, 
two soldiers will be left. If you let them parade in rows of 5, 3 will be left, and in rows of 7, 2 will 
be left. 
 
 
x º 2 (mod 3) 
x º 3 (mod 5) 
x º 2 (mod 7)   
 
What is x then? 
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
 
 
e.g. 
 
Since 3, 5 and 7 are pairwise relatively prime in the previous example, by Chinese 
Remainder Thm., there is only one solution for x between 0 ≤ x < 105. 
 
OK, but what is this x? 
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
 
Solution: 
Let Mk = m / mk for k = 1, 2, …, n. 
Hence gcd (mk, Mk) = 1, and 

$yk inverse of Mk  s.t.  Mk yk º 1 (mod mk) by the previous theorem. 
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
 
Solution: 
Let Mk = m / mk for k = 1, 2, …, n. 
Hence gcd (mk, Mk) = 1, and 

$yk inverse of Mk  s.t.  Mk yk º 1 (mod mk) by the previous theorem. 
A solution can then be given as: 
 x = a1 M1 y1 + a2 M2 y2 + … + an Mn yn     Why? 
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
 
Solution: 
Let Mk = m / mk for k = 1, 2, …, n. 
Hence gcd (mk, Mk) = 1, and 

$yk inverse of Mk  s.t.  Mk yk º 1 (mod mk) by the previous theorem. 
A solution can then be given as: 
 x = a1 M1 y1 + a2 M2 y2 + … + an Mn yn     Why? 
Since Mi º 0 (mod mk) whenever i ¹ k  and  Mk yk º 1 (mod mk), 

x º ak Mk yk + 0 +… +0 º ak (mod mk).   
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The Chinese Remainder Theorem 
Let m1, m2, …, mn be pairwise relatively prime positive integers. The system  
 x º a1 (mod m1) 
 x º a2 (mod m2) 
  . 
  . 
 x º an (mod mn) 
has a unique solution in modulo m = m1 ∙ m2 ∙… mn. 
 
Solution: 
Let Mk = m / mk for k = 1, 2, …, n. 
Hence gcd (mk, Mk) = 1, and 

$yk inverse of Mk  s.t.  Mk yk º 1 (mod mk) by the previous theorem. 
A solution can then be given as: 
 x = a1 M1 y1 + a2 M2 y2 + … + an Mn yn     Why? 
Since Mi º 0 (mod mk) whenever i ¹ k  and  Mk yk º 1 (mod mk), 

x º ak Mk yk + 0 +… +0 º ak (mod mk).   
 
Remark: Uniqueness can be proved using proof by contradiction. 
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Example: 
  x º 2 (mod 3) 
  x º 3 (mod 5) 
  x º 2 (mod 14)  x = ? 
 
m = 3∙5∙14 = 210   
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Example: 
  x º 2 (mod 3) 
  x º 3 (mod 5) 
  x º 2 (mod 14)  x = ? 
 
m = 3∙5∙14 = 210  
 
Note that 3, 5 and 14 are pairwise relatively prime, so we can apply Chinese Rem. Th: 
 
M1 = m/3 = 70, M2 = 42, M3 = 15 
 
M1 = 70 º 1 (mod 3)  y1 = 1 
M2 = 42 º 2 (mod 5)  y2 = 3 
M3 = 15 º 1 (mod 14)  y3 = 1 
 
x = a1M1 y1 + a2M2 y2 + a3M3 y3 = 2∙70∙1 + 3∙42∙3 + 2∙15∙1 = 548 º 128 (mod 210). 
 
Note that 128 is the only solution in mod 210, that means there is no other number 
between 0 and 209, which satisfies the above congruences. 
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Pseudoprimes 
 
Is there an efficient way to determine whether an integer is prime or not? 
 
Ancient Chinese believed that  

n is prime ↔ 2n-1 º 1 (mod n) 
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Pseudoprimes 
 
Is there an efficient way to determine whether an integer is prime or not? 
 
Ancient Chinese believed that  

n is prime ↔ 2n-1 º 1 (mod n) 
 
Reasons: 

i) they observed this holds when n is prime 
ii) they couldn’t find a composite number for which the congruence holds 
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Pseudoprimes 
 
Is there an efficient way to determine whether an integer is prime or not? 
 
Ancient Chinese believed that  

n is prime ↔ 2n-1 º 1 (mod n) 
 
Reasons: 

i) they observed this holds when n is prime 
ii) they couldn’t find a composite number for which the congruence holds 

 
However they were wrong: e.g.,   2340 º 1 (mod 341) and 341=11∙31 
 
Hence 341 is a pseudoprime! 
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Pseudoprimes 
 
Is there an efficient way to determine whether an integer is prime or not? 
 
Ancient Chinese believed that  

n is prime ↔ 2n-1 º 1 (mod n) 
 
Reasons: 

i) they observed this holds when n is prime 
ii) they couldn’t find a composite number for which the congruence holds 

 
However they were wrong: e.g.,   2340 º 1 (mod 341) and 341=11∙31 
 
Hence 341 is a pseudoprime! 
 
 
But how to compute 2340  (mod 341) ?  2340 is too large! 
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How to compute 2340  (mod 341) ?  2340 is too large! 
 
 
One way of doing it: Compute successively 2 mod 341, 22 mod 341, 23 mod 341, …, 
2340 mod 341 
 
Note that all computations above are in modulo 341, hence numbers never exceed 340. 
 
 
2 mod 341 = 2,  Compute 22 mod 341 = 4, 23 mod 341 = 8, 24 mod 341 = 16, 
25 mod 341 = 32,…, 28 mod 341 = 256,  
29 º 2∙256 º 512º 171 (mod 341)  Þ 29 mod 341 = 171 
210 º 2∙171 º 342 º 1  (mod 341)   Þ 210 mod 341 = 1, … and so on 
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How to compute 2340  (mod 341) ?  2340 is too large! 
 
 
One way of doing it: Compute successively 2 mod 341, 22 mod 341, 23 mod 341, …, 
2340 mod 341 
 
Note that all computations above are in modulo 341, hence numbers never exceed 340. 
 
 
2 mod 341 = 2,  Compute 22 mod 341 = 4, 23 mod 341 = 8, 24 mod 341 = 16, 
25 mod 341 = 32,…, 28 mod 341 = 256,  
29 º 2∙256 º 512º 171 (mod 341)  Þ 29 mod 341 = 171 
210 º 2∙171 º 342 º 1  (mod 341)   Þ 210 mod 341 = 1, … and so on 
 
 
Another (better) way to use (in general): Compute 2 mod 341, 22 mod 341, 24 mod 
341, 28 mod 341, …, 2340 mod 341 
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Yet a better way to compute ba mod m is to write the prime factorization of m and then 
to use Chinese Remainder Theorem and Fermat’s Little Theorem (if possible):  
 
Fermat’s Little Theorem: 
 
If p is prime and a is an integer not divisible by p, then  
  ap-1 º 1 (mod p) 
 
Furthermore for every integer a, ap º a (mod p) 
 
Remark: For proof, see Exercise 19 in Chapter 4.4 of your textbook, 7th edition. 
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To compute 2340  (mod 341) , 
 
341 = 11∙31   (prime factorization) 
 
(i) 210  º 1 (mod 11)  by Fermat’s Little Theorem 
2340 = (210)34 º 1  (mod 11)   
 
(ii) 230  º 1 (mod 31)  by Fermat’s Little Theorem 
   2330 = (230)11 º 1  (mod 31) 
210 = 25 25 º 1 (mod 31)  since 25= 32 º 1 (mod 31)   
Hence 2340 = 2330210º 1  (mod 31)   
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To compute 2340  (mod 341) , 
 
341 = 11∙31   (prime factorization) 
 
(i) 210  º 1 (mod 11)  by Fermat’s Little Theorem 
2340 = (210)34 º 1  (mod 11)   
 
(ii) 230  º 1 (mod 31)  by Fermat’s Little Theorem 
   2330 = (230)11 º 1  (mod 31) 
210 = 25 25 º 1 (mod 31)  since 25= 32 º 1 (mod 31)   
Hence 2340 = 2330210º 1  (mod 31)   
 
Then by Chinese Remainder Thm, (i) Ù (ii) ® 2340 º 1  (mod 341)  
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To compute 2340  (mod 341) , 
 
341 = 11∙31   (prime factorization) 
 
(i) 210  º 1 (mod 11)  by Fermat’s Little Theorem 
2340 = (210)34 º 1  (mod 11)   
 
(ii) 230  º 1 (mod 31)  by Fermat’s Little Theorem 
   2330 = (230)11 º 1  (mod 31) 
210 = 25 25 º 1 (mod 31)  since 25= 32 º 1 (mod 31)   
Hence 2340 = 2330210º 1  (mod 31)   
 
Then by Chinese Remainder Thm, (i) Ù (ii) ® 2340 º 1  (mod 341)  
 
(If you have difficulty to understand this last statement, see Exercise 21, Chapter 4.4, 
7th edition, or Exercise 23, Ch. 3.7, 6th edition) 
You can reason in this way: The integer x =2340  is congruent to 1 in mod 11 and 31. 
Chinese Remainder Thm states that there exists only one such integer in modulo 341 
(that is between 0 and 340), and 1 already satisfies these congruences. So x = 2340   º 1 
(mod 341). 
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4.6 Cryptography 
 
 
Earliest known cryptology was used by J. Caesar: 
h(p) = (p + k) mod 26,   where p is an integer code for alphabet letters, and k is the key.  
 
YES  Þ  AGU   (for k = 2) 
 
 
A: 0 
B: 1 
… 
 
Z: 25 
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h(p) = (p + 2) mod 26,  where p is an integer code for alphabet letters  
not very high level of security! 
 
A better alternative:  h(p) = (ap + b) mod 26  
choose a and b s.t. h(p) is 1-to-1. 
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h(p) = (p + 2) mod 26,  where p is an integer code for alphabet letters  
not very high level of security! 
 
A better alternative:  h(p) = (ap + b) mod 26  
choose a and b s.t. h(p) is 1-to-1. 
 
Still not a secure encryption scheme: 
Generally broken using frequency analysis: Given an encrypted sentence, guess that 
the most commonly used letter represents “E” since it is the most common letter used 
in English. Then continue… 
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h(p) = (p + 2) mod 26,  where p is an integer code for alphabet letters  
not very high level of security! 
 
A better alternative:  h(p) = (ap + b) mod 26  
choose a and b s.t. h(p) is 1-to-1. 
 
Still not a secure encryption scheme: 
Generally broken using frequency analysis: Given an encrypted sentence, guess that 
the most commonly used letter represents “E” since it is the most common letter used 
in English. Then continue… 
 
There exist of course much better recent cryptography methods. Next we’ll learn one 
of them, which is RSA: A “Public Key” Cryptosystem.  
 
First let’s see what “public key” means… 
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Private key vs Public key 
 
Private key cryptology:  
 
e.g. 
Encryption:  C = (M + k) (mod 26)   M: original message code 
 
Decryption:  M = (C - k)  (mod 26)  C:  encrypted message code 
 
k: private key (used for both encryption and decryption) 
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Private key vs Public key 
 
Private key cryptology:  
 
e.g. 
Encryption:  C = (M + k) (mod 26)   M: original message code 
 
Decryption:  M = (C - k)  (mod 26)  C:  encrypted message code 
 
k: private key (used for both encryption and decryption) 
 
Everybody knows the encryption method but nobody, supposedly, can get the original 
message without knowing the private key k.  
Problem: How to share the secret key between two parties? 
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Private key vs Public key 
 
Private key cryptology:  
 
e.g. 
Encryption:  C = (M + k) (mod 26)   M: original message code 
 
Decryption:  M = (C - k)  (mod 26)  C:  encrypted message code 
 
k: private key (used for both encryption and decryption) 
 
Everybody knows the encryption method but nobody, supposedly, can get the original 
message without knowing the private key k.  
Problem: How to share the secret key between two parties? 
 
Public key cryptology:  
Encryption and decryption keys are different! 
 
Everybody knows the encryption method and the public encryption key, but nobody 
can get the original message without knowing the private decryption key. 
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RSA – A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT 
 
Let p, q be large primes (~200 digits) and e be relatively prime to (p – 1)(q – 1) and  
n = pq. 
 
Encryption: C  =  (M e  mod n)  e: public encryption key 
 
Decryption:  M  =  (C d  mod n)  d: private decryption key 
 
Decryption key d is the inverse of e modulo (p – 1)(q – 1). 
 
Inverse exists since gcd(e, ( p – 1)(q – 1)) = 1. 
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RSA – A Public Key Cryptosystem (Rivest, Shamir, Adleman) 76 MIT 
 
Let p, q be large primes (~200 digits) and e be relatively prime to (p – 1)(q – 1) and  
n = pq. 
 
Encryption: C  =  (M e  mod n)  e: public encryption key 
 
Decryption:  M  =  (C d  mod n)  d: private decryption key 
 
Decryption key d is the inverse of e modulo (p – 1)(q – 1). 
 
Inverse exists since gcd(e, ( p – 1)(q – 1)) = 1. 
 
Remark: Almost impossible to find d although one knows e and n = pq  since these are 
very large numbers. No polynomial time algorithm exists for prime factorization. 
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e.g. 
p = 43, q = 59 n = 43∙59 = 2537   e = 13 
Þ gcd (13, 58∙42) = 1 
 
Let M = 1819   1415    (STOP) 
    M1            M2 
 
   
C1 º 181913 (mod 2537) = 2081 
C2 º 141513 (mod 2537) = 2182 
 
 
d = 937  (inverse of 13 modulo 42∙58) 
 
M1 = C1

937 (mod 2537) = 1819  
M2 = C2

937 (mod 2537) = 1415  
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Use Examples of RSA Cryptosystem 
Encryption  
Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by 
exponentiating s.t. C = M e mod n, where e and n are Bob's public keys. She sends C 
to Bob. To decrypt, Bob also exponentiates but with d s.t. M = C d mod n; the 
relationship between e and d ensures that Bob correctly recovers M. Since only Bob 
knows d, only Bob can decrypt this message. 
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Use Examples of RSA Cryptosystem 
Encryption  
Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by 
exponentiating s.t. C = M e mod n, where e and n are Bob's public keys. She sends C 
to Bob. To decrypt, Bob also exponentiates but with d s.t. M = C d mod n; the 
relationship between e and d ensures that Bob correctly recovers M. Since only Bob 
knows d, only Bob can decrypt this message. 

Digital Signature  
Suppose Alice wants to send a message M to Bob in such a way that Bob is assured 
the message is both authentic, has not been tampered with, and from Alice. Alice 
creates a digital signature S by exponentiating s.t. S = M e mod n, where e is Alice's 
private key. She sends M and S to Bob. To verify the signature, Bob exponentiates and 
checks whether the message M is recovered by M = S d mod n, where d and n are 
Alice’s public keys. 
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Use Examples of RSA Cryptosystem 
Encryption  
Suppose Alice wants to send a message M to Bob. Alice creates the ciphertext C by 
exponentiating s.t. C = M e mod n, where e and n are Bob's public keys. She sends C 
to Bob. To decrypt, Bob also exponentiates but with d s.t. M = C d mod n; the 
relationship between e and d ensures that Bob correctly recovers M. Since only Bob 
knows d, only Bob can decrypt this message. 

Digital Signature  
Suppose Alice wants to send a message M to Bob in such a way that Bob is assured 
the message is both authentic, has not been tampered with, and from Alice. Alice 
creates a digital signature S by exponentiating s.t. S = M e mod n, where e is Alice's 
private key. She sends M and S to Bob. To verify the signature, Bob exponentiates and 
checks whether the message M is recovered by M = S d mod n, where d and n are 
Alice’s public keys. 
Thus encryption and authentication here take place without any sharing of private 
keys: each person uses only another's public key or their own private key. Anyone can 
send an encrypted message or verify a signed message, but only someone in 
possession of the correct private key can decrypt or sign a message. 
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RSA – A Public Key Cryptosystem  
 
Let p, q be large primes (~200 digits) and e be relatively prime to (p – 1)(q – 1) and  
n = pq. 
 
Encryption: C  =  (M e  mod n)  e: public encryption key 
 
Decryption:  M  =  (C d  mod n)  d: private decryption key 
 
Decryption key d is the inverse of e modulo (p – 1)(q – 1). 
 
But why is C d  equal to M in modulo n = pq?  
 
We can show this by using what we have learned so far….. 
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Why is C d  equal to M in modulo n = pq? 
 
By Fermat’s Little Thm, 
  
 M p – 1 º 1 (mod p)        assuming  p and q does not divide M  (p, q are very large) 
 M q – 1  º 1 (mod q)           
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Why is C d  equal to M in modulo n = pq? 
 
By Fermat’s Little Thm, 
  
 M p – 1 º 1 (mod p)        assuming  p and q does not divide M  (p, q are very large) 
 M q – 1  º 1 (mod q)           
 
and C d º (M e)d = M ed = M 1 + k(p – 1) (q – 1)   (mod n)     since ed º 1 mod (p – 1)(q – 1).  
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Why is C d  equal to M in modulo n = pq? 
 
By Fermat’s Little Thm, 
  
 M p – 1 º 1 (mod p)        assuming  p and q does not divide M  (p, q are very large) 
 M q – 1  º 1 (mod q)           
 
and C d º (M e)d = M ed = M 1 + k(p – 1) (q – 1)   (mod n)     since ed º 1 mod (p – 1)(q – 1).  
 
Hence 
 Cd  º M (M p – 1)k (q – 1) º M∙1 º M  (mod p) 
 Cd  º M (M q – 1)k (p – 1) º M∙1 º M  (mod q) 
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Why is C d  equal to M in modulo n = pq? 
 
By Fermat’s Little Thm, 
  
 M p – 1 º 1 (mod p)        assuming  p and q does not divide M  (p, q are very large) 
 M q – 1  º 1 (mod q)           
 
and C d º (M e)d = M ed = M 1 + k(p – 1) (q – 1)   (mod n)     since ed º 1 mod (p – 1)(q – 1).  
 
Hence 
 Cd  º M (M p – 1)k (q – 1) º M∙1 º M  (mod p) 
 Cd  º M (M q – 1)k (p – 1) º M∙1 º M  (mod q) 
 
Since gcd (p, q) = 1, by Chinese Remainder Thm 
 
 Cd º M (mod pq)  
 


