8.1 Recurrence Relations

Definition:

A recurrence relation for the sequence $\left\{a_{n}\right\}$ is an equation that expresses a_{n} in terms of one or more previous terms of the sequence $a_{0}, a_{1}, \ldots, a_{n-1}$. A sequence is called a solution of a recurrence relation if its terms satisfy the recurrence relation.

The recurrence relation together with the initial conditions uniquely determines a sequence, i.e., a solution.
e.g. Consider the recurrence relation (Fibonacci numbers):
$a_{n}=a_{n-1}+a_{n-2}, n \geq 2$
where $a_{0}=0$ and $a_{1}=1$.
Then $\{0,1,1,2,3,5,8, \ldots\}$ is the solution.
Question: Is it possible to find an explicit formula for a_{n} ? In some conditions yes!

8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$.

8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$.
Basic approach is to look for a solution of the form $a_{n}=r^{n}$.
$\Rightarrow r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k}$

8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$.
Basic approach is to look for a solution of the form $a_{n}=r^{n}$.
$\Rightarrow r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k}$
Divide both sides by r^{n-k}
$\Rightarrow r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$

8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k with constant coefficients is a recurrence relation of the form
$a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\ldots+c_{k} a_{n-k}$ where $c_{1}, c_{2}, \ldots, c_{k}$ are real numbers and $c_{k} \neq 0$.
Basic approach is to look for a solution of the form $a_{n}=r^{n}$.
$\Rightarrow r^{n}=c_{1} r^{n-1}+c_{2} r^{n-2}+\cdots+c_{k} r^{n-k}$
Divide both sides by r^{n-k}
$\Rightarrow r^{k}-c_{1} r^{k-1}-c_{2} r^{k-2}-\cdots-c_{k-1} r-c_{k}=0$: Characteristic equation
\Rightarrow If r is a solution of the characteristic equation, then $\left\{a_{n}\right\}$ with $a_{n}=r^{n}$, is a solution of the recurrence relation.

Theorem:

Consider the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$. Suppose that $r^{2}-c_{1} r-c_{2}$ has two distinct roots r_{1} and r_{2}. Then the solution is given by $a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}$, where α_{1} and α_{2} are real constants.
Proof: See page 462 in the textbook $6^{\text {th }}$ edition (page 499 in the textbook $7^{\text {th }}$ edition).
e.g. Solve $f_{n}=f_{n-1}+f_{n-2}$, where $f_{0}=0$ and $f_{1}=1$, i.e., find an explicit formula for Fibonacci numbers.

The roots of the characteristic equation $r^{2}-r-1=0$ are

$$
r_{1}=(1+\sqrt{5}) / 2 \text { and } r_{2}=(1-\sqrt{5}) / 2 .
$$

e.g. Solve $f_{n}=f_{n-1}+f_{n-2}$, where $f_{0}=0$ and $f_{1}=1$, i.e., find an explicit formula for Fibonacci numbers.

The roots of the characteristic equation $r^{2}-r-1=0$ are

$$
r_{1}=(1+\sqrt{5}) / 2 \text { and } r_{2}=(1-\sqrt{5}) / 2 .
$$

By the theorem, $f_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}$ for some α_{1} and α_{2}.
e.g. Solve $f_{n}=f_{n-1}+f_{n-2}$, where $f_{0}=0$ and $f_{1}=1$, i.e., find an explicit formula for Fibonacci numbers.

The roots of the characteristic equation $r^{2}-r-1=0$ are

$$
r_{1}=(1+\sqrt{5}) / 2 \text { and } r_{2}=(1-\sqrt{5}) / 2 .
$$

By the theorem, $f_{n}=\alpha_{1} r_{1}{ }^{n}+\alpha_{2} r_{2}{ }^{n}$ for some α_{1} and α_{2}.
Using the initial conditions $f_{0}=0$ and $f_{1}=1$,
$f_{0}=\alpha_{1}+\alpha_{2}=0$
$f_{1}=\alpha_{1}(1+\sqrt{5}) / 2+\alpha_{2}(1-\sqrt{5}) / 2=1$
$\Rightarrow \alpha_{1}=1 / \sqrt{5}$ and $\alpha_{2}=-1 / \sqrt{5}$
$\Rightarrow \quad f_{n}=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$.

Theorem:

Consider the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$. Suppose that $r^{2}-c_{1} r-c_{2}$ has only one root r_{0} with multiplicity 2 . Then the solution is given by $a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}$, where α_{1} and α_{2} are real constants.

Theorem:

Consider the recurrence relation $a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}$. Suppose that $r^{2}-c_{1} r-c_{2}$ has only one root r_{0} with multiplicity 2 . Then the solution is given by $a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}$, where α_{1} and α_{2} are real constants.
e.g. Solve the recurrence relation $a_{n}=6 a_{n-1}-9 a_{n-2}$ with $a_{0}=1$ and $a_{1}=6$.

Characteristic equation: $r^{2}-6 r+9=0$, which is $(r-3)^{2}=0 \Rightarrow r_{0}=3$
Solution is then given by $a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n}$

$$
\begin{aligned}
& a_{0}=\alpha_{1} r_{0}{ }^{0}+\alpha_{2} 0 r_{0}{ }^{0}=\alpha_{1} 3^{0}=\alpha_{1}=1 \\
& a_{1}=\alpha_{1} r_{0}{ }^{1}+\alpha_{2} 1 r_{0}{ }^{1}=\alpha_{1} 3^{1}+\alpha_{2} 13^{1}=3 \alpha_{1}+3 \alpha_{2}=6 \\
& \quad \Rightarrow \alpha_{2}=1 \\
& a_{n}=\alpha_{1} r_{0}{ }^{n}+\alpha_{2} n r_{0}{ }^{n} \\
& a_{n}=3^{n}+n 3^{n}
\end{aligned}
$$

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve $a_{n}=8 a_{n-1}+10^{n-1}$ with initial condition $a_{0}=1$.
(a_{n} corresponds to the number of valid code words of length n, supposing that a valid code word is an n-digit number in decimal notation containing an even number of 0 s .)

Can't use characteristic equation in this case because the recurrence relation is not linear.

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve $a_{n}=8 a_{n-1}+10^{n-1}$ with initial condition $a_{0}=1$.
(a_{n} corresponds to the number of valid code words of length n, supposing that a valid code word is an n-digit number in decimal notation containing an even number of 0 s .)

Can't use characteristic equation in this case because the recurrence relation is not linear.
One possible way is to use generating functions:

Definition:

The generating function for the sequence $a_{0}, a_{1}, \ldots, a_{k}, \ldots$ of real numbers is the infinite power series
$G(x)=a_{0}+a_{1} x+\ldots+a_{k} x^{k}+\ldots=\sum_{k=0}^{\infty} a_{k} x^{k}$

Example: Solve $a_{n}=8 a_{n-1}+10^{n-1}$ with initial condition $a_{0}=1$.
(a_{n} corresponds to the number of valid code words of length n, supposing that a valid code word is an n-digit number in decimal notation containing an even number of 0 s .)

Solution:
Let $G(x)$ be the generating function for the sequence $\left\{a_{n}\right\}$, that is, $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$

Example: Solve $a_{n}=8 a_{n-1}+10^{n-1}$ with initial condition $a_{0}=1$.
(a_{n} corresponds to the number of valid code words of length n, supposing that a valid code word is an n-digit number in decimal notation containing an even number of 0 s .)

Solution:

Let $G(x)$ be the generating function for the sequence $\left\{a_{n}\right\}$, that is, $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
$\Rightarrow \quad G(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}=1+\sum_{n=1}^{\infty}\left(8 a_{n-1} x^{n}+10^{n-1} x^{n}\right)=1+8 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+x \sum_{n=1}^{\infty} 10^{n-1} x^{n-1}$

Example: Solve $a_{n}=8 a_{n-1}+10^{n-1}$ with initial condition $a_{0}=1$.
(a_{n} corresponds to the number of valid code words of length n, supposing that a valid code word is an n-digit number in decimal notation containing an even number of 0 s .)

Solution:

Let $G(x)$ be the generating function for the sequence $\left\{a_{n}\right\}$, that is, $G(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$
$\Rightarrow \quad G(x)=1+\sum_{n=1}^{\infty} a_{n} x^{n}=1+\sum_{n=1}^{\infty}\left(8 a_{n-1} x^{n}+10^{n-1} x^{n}\right)=1+8 x \sum_{n=1}^{\infty} a_{n-1} x^{n-1}+x \sum_{n=1}^{\infty} 10^{n-1} x^{n-1}$ $=1+8 x \sum_{n=0}^{\infty} a_{n} x^{n}+x \sum_{n=0}^{\infty} 10^{n} x^{n}=1+8 x \cdot G(x)+x /(1-10 x) \quad$ since by geometric series:
$\Rightarrow G(x)=\frac{1-9 x}{(1-8 x)(1-10 x)}=\frac{1}{2}\left(\frac{1}{1-8 x}\right)+\frac{1}{2}\left(\frac{1}{1-10 x}\right) \quad 1 /(1-r x)=\sum_{k=0}^{\infty} r^{k} x^{k}$
$=\frac{1}{2}\left(\sum_{n=0}^{\infty} 8^{n} x^{n}+\sum_{n=0}^{\infty} 10^{n} x^{n}\right)=\sum_{n=0}^{\infty} \frac{1}{2}\left(8^{n}+10^{n}\right) x^{n}$
$\Rightarrow a_{n}=\frac{1}{2}\left(8^{n}+10^{n}\right)$

Example: Solve $a_{k}=3 a_{k-1}$ with initial condition $a_{0}=2$.
(You could solve this recurrence relation by using its characteristic equation, but we'll try using generating functions.)

Example: Solve $a_{k}=3 a_{k-1}$ with initial condition $a_{0}=2$.
(You could solve this recurrence relation by using its characteristic equation, but we'll try using generating functions.)
Let $G(x)$ be the generating function for the sequence $\left\{a_{k}\right\}$, that is, $G(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$.
$G(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=2+\sum_{k=1}^{\infty} 3 a_{k-1} x^{k}$ (by the recurrence relation $a_{k}=3 a_{k-1}$)
$=2+3 x \sum_{k=1}^{\infty} a_{k-1} x^{k-1}=2+3 x \cdot G(x)$
$\Rightarrow \quad G(x)-3 x \cdot G(x)=(1-3 x) \cdot G(x)=2$
$\Rightarrow \quad G(x)=2 /(1-3 x)$
Using the identity, $\quad 1 /(1-r x)=\sum_{k=0}^{\infty} r^{k} x^{k}$,

$$
G(x)=2 \cdot \sum_{k=0}^{\infty} 3^{k} x^{k}=\sum_{k=0}^{\infty} 2 \cdot 3^{k} x^{k} \therefore \quad a_{k}=2 \cdot 3^{k}
$$

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.
Recall binary search: (from Chapter 3)
Search x in the list $a_{0}, a_{1}, \ldots, a_{n-1}$ where $a_{0}<a_{1}<\ldots<a_{n-1}$.

1. Compare x with the middle term of the sequence, a_{m}, where $m=\lfloor(n-1) / 2\rfloor$.
2. If $x>a_{m}$, search x on the second half $\left\{a_{m+1}, a_{m+2}, \ldots a_{n}\right\}$ else search x on the first half $\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size $n / 2$, assuming n is even.

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.
Recall binary search: (from Chapter 3)
Search x in the list $a_{0}, a_{1}, \ldots, a_{n-1}$ where $a_{0}<a_{1}<\ldots<a_{n-1}$.

1. Compare x with the middle term of the sequence, a_{m}, where $m=\lfloor(n-1) / 2\rfloor$.
2. If $x>a_{m}$, search x on the second half $\left\{a_{m+1}, a_{m+2}, \ldots a_{n}\right\}$ else search x on the first half $\left\{a_{1}, a_{2}, \ldots a_{m}\right\}$
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size $n / 2$, assuming n is even.

Two comparisons are needed at each iteration (one to determine which half of the list to use and the other to determine whether any terms of the list remain).
$\Rightarrow f(n)=f(n / 2)+2, \quad f(1)=2$
$f(n)$: \# of operations (comparisons) for a search sequence of size n.

Definition:

The recurrence relation

$$
f(n)=a \cdot f(n / b)+g(n)
$$

is called a divide-and-conquer recurrence relation.
Sometimes we aren't really interested in solving a given recurrence relation, but we rather want to find the complexity of the function.
e.g. The problem of finding the maximum element of a sequence, $a_{1}, a_{2}, \ldots, a_{n}$, can be solved using a divide-and-conquer algorithm:

- If $n=1$ then a_{1} is the maximum.
- If $n>1$, split the sequence into two sequences. The overall maximum is maximum of the maximum elements of these two sub-sequences. The problem is hence reduced to finding the maximum of each of the two smaller sequences.
e.g. The problem of finding the maximum element of a sequence, $a_{1}, a_{2}, \ldots, a_{n}$, can be solved using a divide-and-conquer algorithm:
- If $n=1$ then a_{1} is the maximum.
- If $n>1$, split the sequence into two sequences. The overall maximum is maximum of the maximum elements of these two sub-sequences. The problem is hence reduced to finding the maximum of each of the two smaller sequences.

```
int MAX(int a[], int i, int j) {
if (i == j)
    p = a[i];
else{
    max1 = MAX(a, i,(i+j)/2));
    max2 = MAX(a,((i+j)/2)+1,j);
    if (max1 > max2) p = max1;
    else p = max2;
    }
return p;
}
// initially i=0,j=n-1
```


Complexity analysis:

Let $f(n)$ be the number of comparisons to find the maximum of the sequence with n elements. Using two comparisons (one to compare the current maxima, and one to determine whether any terms of the list remain at each iteration), $f(n)=2 f(n / 2)+2, \quad f(1)=1$, where n is even.

```
int MAX(int a[], int i, int j) {
if (i == j)
    p = a[i];
else{
    max1 = MAX(a, i,(i+j)/2));
    max2 = MAX(a,((i+j)/2)+1,j);
    if (max1 > max2) p = max1;
    else p = max2;
    }
return p;
}
// initially i=0,j=n-1
```

Theorem: Let f be an increasing function that satisfies the recurrence relation:

$$
f(n)=a \cdot f(n / b)+c
$$

where n is divisible by $b, a \geq 1, b$ is an integer greater than 1 and c is a positive real number. Then
$f(n)= \begin{cases}0\left(n^{\log _{b} a}\right) & \text { if } a>1 \\ 0(\log n) & \text { if } a=1\end{cases}$

Theorem: Let f be an increasing function that satisfies the recurrence relation:

$$
f(n)=a \cdot f(n / b)+c
$$

where n is divisible by $b, a \geq 1, b$ is an integer greater than 1 and c is a positive real number. Then
$f(n)= \begin{cases}0\left(n^{\log _{b} a}\right) & \text { if } a>1 \\ 0(\log n) & \text { if } a=1\end{cases}$
$e . g$. Finding the maximum with $f(n)=2 \cdot f(n / 2)+2, n$ is even
By the theorem $f(n)$ is $O\left(n^{\log _{2} 2}\right)=O(n)$.

Theorem: Let f be an increasing function that satisfies the recurrence relation:

$$
f(n)=a \cdot f(n / b)+c
$$

where n is divisible by $b, a \geq 1, b$ is an integer greater than 1 and c is a positive real number. Then
$f(n)= \begin{cases}0\left(n^{\log _{b} a}\right) & \text { if } a>1 \\ 0(\log n) & \text { if } a=1\end{cases}$
$e . g$. Finding the maximum with $f(n)=2 \cdot f(n / 2)+2, n$ is even
By the theorem $f(n)$ is $O\left(n^{\log _{2} 2}\right)=O(n)$.
e.g. Binary search with $f(n)=f(n / 2)+2, n$ is even

From the theorem, $f(n)$ is $O(\log n)$.

$$
\begin{aligned}
& \underline{\text { Proof: }} \text { Let } n=b^{k} \\
& \begin{aligned}
\Rightarrow f(n) & =a \cdot f(n / b)+c \\
= & a^{2} \cdot f\left(n / b^{2}\right)+a c+c \\
& \vdots \\
& =a^{k} \cdot f\left(n / b^{k}\right)+\sum_{j=0}^{k-1} a^{j} c \\
\Rightarrow f(n) & =a^{k} \cdot f(1)+c \sum_{j=0}^{k-1} a^{j}
\end{aligned}
\end{aligned}
$$

Case i:

Let $a=1$, then $f(n)=f(1)+c k=f(1)+c \cdot \log _{b} n \quad \therefore \quad f(n)$ is $0(\log n)$

When n is not a power of b, we have $b^{k}<n<b^{k+1}$ for some k.
Since f is an increasing function,

$$
\begin{aligned}
f(n) & \leq f\left(b^{k+1}\right)=f(1)+c(k+1)=f(1)+c+c k \\
& \leq f(1)+c+c \cdot \log _{b} n \quad \therefore f(n) \text { is } 0(\log n) \quad \text { in both cases. }
\end{aligned}
$$

Case ii:

Let $a>1$ and $n=b^{k}$

$$
\begin{aligned}
& \begin{aligned}
f(n) & =a^{k} \cdot f(1)+c \cdot\left(a^{k}-1\right) /(a-1) \quad(\text { from geometric series, see Section 2.4) } \\
& =a^{k}[f(1)+c /(a-1)]-c /(a-1) \\
& \left.=C_{1} \cdot n^{\log _{b} a}+C_{2} \quad \text { (Note that in general } \quad n^{\log a}=a^{\log n}\right)
\end{aligned} \\
& \text { where } C_{1}=f(1)+c /(a-1) \text { and } C_{2}=-c /(a-1) . \\
& \therefore \quad f(n) \text { is } 0\left(n^{\log _{b} a}\right)
\end{aligned}
$$

Suppose that $n \neq b^{k}$, then $b^{k}<n<b^{k+1}$

$$
\begin{aligned}
\Rightarrow \quad f(n) & \leq f\left(b^{k+1}\right)=C_{1} a^{k+1}+C_{2} \\
& \leq\left(C_{1} a\right) a^{\log _{b} n}+C_{2} \quad \text { since } \quad k \leq \log _{b} n<k+1 \\
& \leq\left(C_{1} a\right) n^{\log _{b} a}+C_{2}
\end{aligned}
$$

Hence $f(n)$ is $0\left(n^{\log _{b} a}\right)$.

Master Theorem: Let $f(n)$ be an increasing function that satisfies

$$
f(n)=a \cdot f(n / b)+c n^{d}
$$

where $n=b^{k}, k$ is a positive integer, $a \geq 1, b$ is an integer greater than $1, c$ and d are positive real numbers. Then
$f(n)= \begin{cases}O\left(n^{d}\right) & \text { if } a<b^{d} \\ O\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ 0\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}$

See the textbook for the proof.

Master Theorem: Let $f(n)$ be an increasing function that satisfies

$$
f(n)=a \cdot f(n / b)+c n^{d}
$$

where $n=b^{k}, k$ is a positive integer, $a \geq 1, b$ is an integer greater than $1, c$ and d are positive real numbers. Then
$f(n)= \begin{cases}0\left(n^{d}\right) & \text { if } a<b^{d} \\ 0\left(n^{d} \log n\right) & \text { if } a=b^{d} \\ 0\left(n^{\log _{b} a}\right) & \text { if } a>b^{d}\end{cases}$

See the textbook for the proof.
e.g., Merge Sort
$f(n)=2 f(n / 2)+n$, which is $O(n \log n)$.

