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8.1 Recurrence Relations 
Definition: 
A recurrence relation for the sequence {an} is an equation that expresses an in terms of 
one or more previous terms of the sequence a0, a1, ..., an-1. A sequence is called a 
solution of a recurrence relation if its terms satisfy the recurrence relation. 
 
The recurrence relation together with the initial conditions uniquely determines a 
sequence, i.e., a solution. 
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e.g. Consider the recurrence relation (Fibonacci numbers): 
 
an = an-1 + an-2 , n ≥ 2 
where  a0 = 0 and a1 = 1. 
 
Then {0,1,1,2,3,5,8,…} is the solution. 
 
Question: Is it possible to find an explicit formula for an?  
In some conditions yes! 
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8.2 Solving Recurrence Relations 
 
Definition: 
A linear homogeneous recurrence relation of degree k with constant coefficients is a 
recurrence relation of the form 
an = c1an-1 + c2an-2 + ××× + ckan-k   where c1, c2, ..., ck are real numbers and ck ¹ 0. 
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8.2 Solving Recurrence Relations 
 
Definition: 
A linear homogeneous recurrence relation of degree k with constant coefficients is a 
recurrence relation of the form 
an = c1an-1 + c2an-2 + ××× + ckan-k   where c1, c2, ..., ck are real numbers and ck ¹ 0. 
 
Basic approach is to look for a solution of the form an = rn. 
 
Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k   
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8.2 Solving Recurrence Relations 
 
Definition: 
A linear homogeneous recurrence relation of degree k with constant coefficients is a 
recurrence relation of the form 
an = c1an-1 + c2an-2 + ××× + ckan-k   where c1, c2, ..., ck are real numbers and ck ¹ 0. 
 
Basic approach is to look for a solution of the form an = rn. 
 
Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k   
  
Divide both sides by rn-k   
Þ rk - c1rk-1 - c2rk-2 - ××× - ck-1r  - ck = 0  
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8.2 Solving Recurrence Relations 
 
Definition: 
A linear homogeneous recurrence relation of degree k with constant coefficients is a 
recurrence relation of the form 
an = c1an-1 + c2an-2 + ××× + ckan-k   where c1, c2, ..., ck are real numbers and ck ¹ 0. 
 
Basic approach is to look for a solution of the form an = rn. 
 
Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k   
  
Divide both sides by rn-k   
Þ rk - c1rk-1 - c2rk-2 - ××× - ck-1r  - ck = 0: Characteristic equation 
 
Þ If r is a solution of the characteristic equation, then{an} with an= rn, is a solution of 
the recurrence relation.  
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Theorem:  
Consider the recurrence relation an = c1an-1 + c2 an-2 . Suppose that r2 - c1r - c2 has two 
distinct roots r1 and r2. Then the solution is given by an = a1r1n + a2r2n, where a1 and a2 

are real constants. 
Proof: See page 462 in the textbook 6th edition (page 499 in the textbook 7th edition). 
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e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for 
Fibonacci numbers.  
 
The roots of the characteristic equation r2- r - 1= 0 are  

r1 = (1+ )/2 and r2 = (1- )/2.  
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e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for 
Fibonacci numbers.  
 
The roots of the characteristic equation r2- r - 1= 0 are  

r1 = (1+ )/2 and r2 = (1- )/2.  
 
By the theorem, ƒn = a1r1n + a2r2n for some a1 and a2. 
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e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for 
Fibonacci numbers.  
 
The roots of the characteristic equation r2- r - 1= 0 are  

r1 = (1+ )/2 and r2 = (1- )/2.  
 
By the theorem, ƒn = a1r1n + a2r2n for some a1 and a2. 

 
Using the initial conditions ƒ0 = 0 and ƒ1 = 1, 
ƒ0 = a1 + a2 = 0 
ƒ1 = a1 (1+ )/2 + a2 (1- )/2 = 1 
Þ a1=1/   and a2 = -1/  
 

Þ     . 
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Theorem: 
Consider the recurrence relation an = c1an-1 + c2an-2 . Suppose that r2 - c1r - c2 has only 
one root r0 with multiplicity 2. Then the solution is given by an = a1r0n + a2nr0n, where 
a1and a2 are real constants. 
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Theorem: 
Consider the recurrence relation an = c1an-1 + c2an-2 . Suppose that r2 - c1r - c2 has only 
one root r0 with multiplicity 2. Then the solution is given by an = a1r0n + a2nr0n, where 
a1and a2 are real constants. 
 
e.g. Solve the recurrence relation an = 6an-1 - 9an-2 with a0 = 1 and a1 = 6. 
 
Characteristic equation: r2- 6r +9 = 0, which is (r-3)2 = 0  Þ r0 = 3 
 
Solution is then given by an = a1r0n + a2nr0n 
 
a0 = a1r00 + a20r00  = a130 = a1 = 1 
a1 = a1r01 + a21r01  = a131 + a2131 = 3a1 + 3a2 = 6 
Þ a2 = 1 

 
an = a1r0n + a2nr0n 

 
an = 3n + n3n 
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8.4 Generating Functions 
 
Using Generating Functions to solve recurrence relations 
 
Example:  Solve  with initial condition  
(an corresponds to the number of valid code words of length n, supposing that a valid 
code word is an n-digit number in decimal notation containing an even number of 0s. ) 
 
Can’t use characteristic equation in this case because the recurrence relation is not 
linear. 
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8.4 Generating Functions 
 
Using Generating Functions to solve recurrence relations 
 
Example:  Solve  with initial condition  
(an corresponds to the number of valid code words of length n, supposing that a valid 
code word is an n-digit number in decimal notation containing an even number of 0s. ) 
 
Can’t use characteristic equation in this case because the recurrence relation is not 
linear. 
One possible way is to use generating functions: 
 
Definition: 
The generating function for the sequence  of real numbers is the infinite 
power series 
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Example:  Solve  with initial condition  
(an corresponds to the number of valid code words of length n, supposing that a valid 
code word is an n-digit number in decimal notation containing an even number of 0s. ) 
 
Solution:   

Let G(x) be the generating function for the sequence { }, that is,  
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Example:  Solve  with initial condition  
(an corresponds to the number of valid code words of length n, supposing that a valid 
code word is an n-digit number in decimal notation containing an even number of 0s. ) 
 
Solution:   

Let G(x) be the generating function for the sequence { }, that is,  

  

           
 
 
 
 
 
 
 
 
 
 
 
 
 

1
1 108 -
- += n
nn aa .10 =a

an G(x) = anx
n

n=0

∞

∑

⇒ G(x) =1+ anx
n

n=1

∞

∑ =1+ (8an−1x
n +

n=1

∞

∑ 10n−1xn ) =1+8x an−1x
n−1

n=1

∞

∑ + x 10n−1xn−1
n=1

∞

∑



 17 

Example:  Solve  with initial condition  
(an corresponds to the number of valid code words of length n, supposing that a valid 
code word is an n-digit number in decimal notation containing an even number of 0s. ) 
 
Solution:   

Let G(x) be the generating function for the sequence { }, that is,  

  

          since by geometric series:   
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Example:  Solve  with initial condition  

(You could solve this recurrence relation by using its characteristic equation, but we’ll 
try using generating functions.) 
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Example:  Solve  with initial condition  
(You could solve this recurrence relation by using its characteristic equation, but we’ll 
try using generating functions.) 

Let G(x) be the generating function for the sequence { }, that is,  

 (by the recurrence relation ) 
 

  
 

 
 

Using the identity, , 
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8.3 Divide-and-Conquer Recurrence Relations 
 

Many algorithms divide a problem into one or more smaller problems. 
 
Recall binary search: (from Chapter 3) 
Search x in the list a0, a1, …, an-1 where a0 < a1 < … < an-1. 

1. Compare x with the middle term of the sequence, am, where m = ë(n–1) / 2û. 
2. If x > am, search x on the second half {am+1, am+2, … an} 

else search x on the first half {a1, a2, … am} 
3. Repeat the first two steps until a list with one single term is obtained. 
4. Determine whether this one term is x or not. 

 

Reduces the search in a sequence of size n to a search in a sequence of size n/2, 
assuming n is even. 
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8.3 Divide-and-Conquer Recurrence Relations 
 

Many algorithms divide a problem into one or more smaller problems. 
 
Recall binary search: (from Chapter 3) 
Search x in the list a0, a1, …, an-1 where a0 < a1 < … < an-1. 

1. Compare x with the middle term of the sequence, am, where m = ë(n–1) / 2û. 
2. If x > am, search x on the second half {am+1, am+2, … an} 

else search x on the first half {a1, a2, … am} 
3. Repeat the first two steps until a list with one single term is obtained. 
4. Determine whether this one term is x or not. 

 

Reduces the search in a sequence of size n to a search in a sequence of size n/2, 
assuming n is even. 
 
Two comparisons are needed at each iteration (one to determine which half of the list 
to use and the other to determine whether any terms of the list remain). 

 
f (n): # of operations (comparisons) for a search sequence of size n. 

 

2)1(    ,2)2/()( =+=Þ fnfnf
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Definition: 
The recurrence relation 
       
is called a divide-and-conquer recurrence relation. 
 
Sometimes we aren’t really interested in solving a given recurrence relation, but we 
rather want to find the complexity of the function. 
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e.g. The problem of finding the maximum element of a sequence,  can be 
solved using a divide-and-conquer algorithm: 
• If n = 1 then a1 is the maximum. 
• If n > 1, split the sequence into two sequences.  The overall maximum is 

maximum of  the maximum elements of these two sub-sequences. The problem is 
hence reduced to finding the maximum of each of the two smaller sequences. 
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e.g. The problem of finding the maximum element of a sequence,  can be 
solved using a divide-and-conquer algorithm: 
• If n = 1 then a1 is the maximum. 
• If n > 1, split the sequence into two sequences.  The overall maximum is 

maximum of  the maximum elements of these two sub-sequences. The problem is 
hence reduced to finding the maximum of each of the two smaller sequences. 

 
 
int MAX(int a[], int i, int j) { 
 
if (i == j) 
  p = a[i]; 
else{ 

max1 = MAX(a, i,(i+j)/2)); 
max2 = MAX(a,((i+j)/2)+1,j); 
if (max1 > max2) p = max1;  

    else p = max2; 
} 
 

return p; 
} 

// initially i=0,j=n-1 

1 2, ,..., ,na a a
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Complexity analysis: 
Let f (n) be the number of comparisons to find the maximum of the sequence with n 
elements.  Using two comparisons (one to compare the current maxima, and one to 
determine whether any terms of the list remain at each iteration), 
       
 
 
 
int MAX(int a[], int i, int j) { 
 
if (i == j) 
  p = a[i]; 
else{ 

max1 = MAX(a, i,(i+j)/2)); 
max2 = MAX(a,((i+j)/2)+1,j); 
if (max1 > max2) p = max1;  

    else p = max2; 
} 
 

return p; 
} 

// initially i=0,j=n-1 

( ) 2 ( / 2) 2,     (1) 1,   where  is even.f n f n f n= + =
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Theorem:  Let f  be an increasing function that satisfies the recurrence relation: 
 

where n is divisible by b,  a ≥ 1, b is an integer greater than 1 and c is a positive real 
number. Then 
  

  if  a > 1 f(n) = 
         if  a = 1 

 
 
 
 
 
 
 
 
 
 
 

f (n) = a ⋅ f (n / b)+ c

)( log abn0
)(log n0{
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Theorem:  Let f  be an increasing function that satisfies the recurrence relation: 
 

where n is divisible by b,  a ≥ 1, b is an integer greater than 1 and c is a positive real 
number. Then 
  

  if  a > 1 f(n) = 
         if  a = 1 

 
 
e.g. Finding the maximum with , n is even   
By the theorem  . 
 
 
 
 
 
 
 

f (n) = a ⋅ f (n / b)+ c

)( log abn0
)(log n0

( ) 2 ( / 2) 2f n f n= × +
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Theorem:  Let f  be an increasing function that satisfies the recurrence relation: 
 

where n is divisible by b,  a ≥ 1, b is an integer greater than 1 and c is a positive real 
number. Then 
  

  if  a > 1 f(n) = 
         if  a = 1 

 
 
e.g. Finding the maximum with , n is even   
By the theorem  . 
 
 
e.g. Binary search with , n is even 
From the theorem, f (n) is O(log n). 
 
 
 

f (n) = a ⋅ f (n / b)+ c

)( log abn0
)(log n0

( ) 2 ( / 2) 2f n f n= × +

)()( is )( 2log2 nOnOnf =

( ) ( / 2) 2f n f n= +
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Proof:  Let  
 

    

             

      

 

 
Case i:  
Let a =1, then      

 
When n is not a power of b, we have  for some k. 
Since f is an increasing function, 

 
   in both cases. 
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Case ii:  
 
Let a >1 and  

     (from geometric series, see Section 2.4) 
 

 (Note that in general  ) 

where  and  .  
 

 
 
 
Suppose that , then  

 
    since   
 

 Hence f(n) is . 
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Master Theorem:  Let f (n) be an increasing function that satisfies 
     
where , k is a positive integer, a ≥ 1, b is an integer greater than 1, c and d are 
positive real numbers. Then  
 

  if   

 if  f(n)= 

 if  
 
 
See the textbook for the proof. 
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Master Theorem:  Let f (n) be an increasing function that satisfies 
     
where , k is a positive integer, a ≥ 1, b is an integer greater than 1, c and d are 
positive real numbers. Then  
 

  if   

 if  f(n)= 

 if  
 
 
See the textbook for the proof. 
 
e.g., Merge Sort 
 
f(n) = 2 f (n/2) + n, which is O(n log n). 
 

( ) ( / ) df n a f n b cn= × +
kbn =

)( dn0 dba <
)log( nn0 d dba =

)( log abn0 dba >
{


