
 1

8.1 Recurrence Relations
Definition:
A recurrence relation for the sequence {an} is an equation that expresses an in terms of
one or more previous terms of the sequence a0, a1, ..., an-1. A sequence is called a
solution of a recurrence relation if its terms satisfy the recurrence relation.

The recurrence relation together with the initial conditions uniquely determines a
sequence, i.e., a solution.

 2

e.g. Consider the recurrence relation (Fibonacci numbers):

an = an-1 + an-2 , n ≥ 2
where a0 = 0 and a1 = 1.

Then {0,1,1,2,3,5,8,…} is the solution.

Question: Is it possible to find an explicit formula for an?
In some conditions yes!

 3

8.2 Solving Recurrence Relations

Definition:
A linear homogeneous recurrence relation of degree k with constant coefficients is a
recurrence relation of the form
an = c1an-1 + c2an-2 + ××× + ckan-k where c1, c2, ..., ck are real numbers and ck ¹ 0.

 4

8.2 Solving Recurrence Relations

Definition:
A linear homogeneous recurrence relation of degree k with constant coefficients is a
recurrence relation of the form
an = c1an-1 + c2an-2 + ××× + ckan-k where c1, c2, ..., ck are real numbers and ck ¹ 0.

Basic approach is to look for a solution of the form an = rn.

Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k

 5

8.2 Solving Recurrence Relations

Definition:
A linear homogeneous recurrence relation of degree k with constant coefficients is a
recurrence relation of the form
an = c1an-1 + c2an-2 + ××× + ckan-k where c1, c2, ..., ck are real numbers and ck ¹ 0.

Basic approach is to look for a solution of the form an = rn.

Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k

Divide both sides by rn-k
Þ rk - c1rk-1 - c2rk-2 - ××× - ck-1r - ck = 0

 6

8.2 Solving Recurrence Relations

Definition:
A linear homogeneous recurrence relation of degree k with constant coefficients is a
recurrence relation of the form
an = c1an-1 + c2an-2 + ××× + ckan-k where c1, c2, ..., ck are real numbers and ck ¹ 0.

Basic approach is to look for a solution of the form an = rn.

Þ rn = c1rn-1 + c2rn-2 + ××× + ckrn-k

Divide both sides by rn-k
Þ rk - c1rk-1 - c2rk-2 - ××× - ck-1r - ck = 0: Characteristic equation

Þ If r is a solution of the characteristic equation, then{an} with an= rn, is a solution of
the recurrence relation.

 7

Theorem:
Consider the recurrence relation an = c1an-1 + c2 an-2 . Suppose that r2 - c1r - c2 has two
distinct roots r1 and r2. Then the solution is given by an = a1r1n + a2r2n, where a1 and a2

are real constants.
Proof: See page 462 in the textbook 6th edition (page 499 in the textbook 7th edition).

 8

e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation r2- r - 1= 0 are

r1 = (1+)/2 and r2 = (1-)/2.

5 5

 9

e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation r2- r - 1= 0 are

r1 = (1+)/2 and r2 = (1-)/2.

By the theorem, ƒn = a1r1n + a2r2n for some a1 and a2.

5 5

 10

e.g. Solve ƒn = ƒn-1 + ƒn-2, where ƒ0 = 0 and ƒ1 = 1, i.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation r2- r - 1= 0 are

r1 = (1+)/2 and r2 = (1-)/2.

By the theorem, ƒn = a1r1n + a2r2n for some a1 and a2.

Using the initial conditions ƒ0 = 0 and ƒ1 = 1,
ƒ0 = a1 + a2 = 0
ƒ1 = a1 (1+)/2 + a2 (1-)/2 = 1
Þ a1=1/ and a2 = -1/

Þ .

5 5

5 5
5 5

nn

nf ÷
÷
ø

ö
ç
ç
è

æ -
-÷

÷
ø

ö
ç
ç
è

æ +
=

2
51

5
1

2
51

5
1

 11

Theorem:
Consider the recurrence relation an = c1an-1 + c2an-2 . Suppose that r2 - c1r - c2 has only
one root r0 with multiplicity 2. Then the solution is given by an = a1r0n + a2nr0n, where
a1and a2 are real constants.

 12

Theorem:
Consider the recurrence relation an = c1an-1 + c2an-2 . Suppose that r2 - c1r - c2 has only
one root r0 with multiplicity 2. Then the solution is given by an = a1r0n + a2nr0n, where
a1and a2 are real constants.

e.g. Solve the recurrence relation an = 6an-1 - 9an-2 with a0 = 1 and a1 = 6.

Characteristic equation: r2- 6r +9 = 0, which is (r-3)2 = 0 Þ r0 = 3

Solution is then given by an = a1r0n + a2nr0n

a0 = a1r00 + a20r00 = a130 = a1 = 1
a1 = a1r01 + a21r01 = a131 + a2131 = 3a1 + 3a2 = 6
Þ a2 = 1

an = a1r0n + a2nr0n

an = 3n + n3n

 13

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve with initial condition
(an corresponds to the number of valid code words of length n, supposing that a valid
code word is an n-digit number in decimal notation containing an even number of 0s.)

Can’t use characteristic equation in this case because the recurrence relation is not
linear.

1
1 108 -
- += n
nn aa .10 =a

 14

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve with initial condition
(an corresponds to the number of valid code words of length n, supposing that a valid
code word is an n-digit number in decimal notation containing an even number of 0s.)

Can’t use characteristic equation in this case because the recurrence relation is not
linear.
One possible way is to use generating functions:

Definition:
The generating function for the sequence of real numbers is the infinite
power series

1
1 108 -
- += n
nn aa .10 =a

,...,...,, 10 kaaa

å
¥

=

=++++=
0

10)(
k

k
k

k
k xaxaxaaxG

 15

Example: Solve with initial condition
(an corresponds to the number of valid code words of length n, supposing that a valid
code word is an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence { }, that is,

1
1 108 -
- += n
nn aa .10 =a

an G(x) = anx
n

n=0

∞

∑

 16

Example: Solve with initial condition
(an corresponds to the number of valid code words of length n, supposing that a valid
code word is an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence { }, that is,

1
1 108 -
- += n
nn aa .10 =a

an G(x) = anx
n

n=0

∞

∑

⇒ G(x) =1+ anx
n

n=1

∞

∑ =1+ (8an−1x
n +

n=1

∞

∑ 10n−1xn) =1+8x an−1x
n−1

n=1

∞

∑ + x 10n−1xn−1
n=1

∞

∑

 17

Example: Solve with initial condition
(an corresponds to the number of valid code words of length n, supposing that a valid
code word is an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence { }, that is,

 since by geometric series:

1
1 108 -
- += n
nn aa .10 =a

an G(x) = anx
n

n=0

∞

∑

⇒ G(x) =1+ anx
n

n=1

∞

∑ =1+ (8an−1x
n +

n=1

∞

∑ 10n−1xn) =1+8x an−1x
n−1

n=1

∞

∑ + x 10n−1xn−1
n=1

∞

∑

=1+8x anx
n

n=0

∞

∑ + x 10n xn
n=0

∞

∑ =1+8x ⋅G(x)+ x (1−10x)

÷
ø
ö

ç
è
æ
-

+÷
ø
ö

ç
è
æ
-

=
--

-
=Þ

xxxx
xxG

101
1

2
1

81
1

2
1

)101)(81(
91)(

0
1/(1) k k

k
rx r x

¥

=

- =å

÷
ø

ö
ç
è

æ
+= åå

¥

=

¥

= 00
108

2
1

n

nn

n

nn xx n

n

nn xå
¥

=

+=
0

)108(
2
1

)108(
2
1 nn

na +=Þ

 18

Example: Solve with initial condition

(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)

13 -= kk aa 0 2.a =

 19

Example: Solve with initial condition
(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)

Let G(x) be the generating function for the sequence { }, that is,

 (by the recurrence relation)

Using the identity, ,

13 -= kk aa 0 2.a =

ka
0

() .kk
k

G x a x
¥

=

=å

1
0 1

() 2 3k k
k k

k k
G x a x a x

¥ ¥

-
= =

= = +å å 13 -= kk aa

1
1

1
2 3 k

k
k
x a x

¥
-

-
=

= + å 2 3 ()x G x= + ×

2)()31()(3)(=×-=×-Þ xGxxGxxG
() 2 /(1 3)G x xÞ = -

0
1/(1) k k

k
rx r x

¥

=

- =å

åå
¥

=

¥

=

×=×=
00
3232)(

k

kk

k

kk xxxG k
ka 32 ×=\

 20

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list a0, a1, …, an-1 where a0 < a1 < … < an-1.

1. Compare x with the middle term of the sequence, am, where m = ë(n–1) / 2û.
2. If x > am, search x on the second half {am+1, am+2, … an}

else search x on the first half {a1, a2, … am}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming n is even.

 21

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list a0, a1, …, an-1 where a0 < a1 < … < an-1.

1. Compare x with the middle term of the sequence, am, where m = ë(n–1) / 2û.
2. If x > am, search x on the second half {am+1, am+2, … an}

else search x on the first half {a1, a2, … am}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming n is even.

Two comparisons are needed at each iteration (one to determine which half of the list
to use and the other to determine whether any terms of the list remain).

f (n): # of operations (comparisons) for a search sequence of size n.

2)1(,2)2/()(=+=Þ fnfnf

 22

Definition:
The recurrence relation

is called a divide-and-conquer recurrence relation.

Sometimes we aren’t really interested in solving a given recurrence relation, but we
rather want to find the complexity of the function.

() (/) ()f n a f n b g n= × +

 23

e.g. The problem of finding the maximum element of a sequence, can be
solved using a divide-and-conquer algorithm:
• If n = 1 then a1 is the maximum.
• If n > 1, split the sequence into two sequences. The overall maximum is

maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.

1 2, ,..., ,na a a

 24

e.g. The problem of finding the maximum element of a sequence, can be
solved using a divide-and-conquer algorithm:
• If n = 1 then a1 is the maximum.
• If n > 1, split the sequence into two sequences. The overall maximum is

maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.

int MAX(int a[], int i, int j) {

if (i == j)
 p = a[i];
else{

max1 = MAX(a, i,(i+j)/2));
max2 = MAX(a,((i+j)/2)+1,j);
if (max1 > max2) p = max1;

 else p = max2;
}

return p;
}

// initially i=0,j=n-1

1 2, ,..., ,na a a

 25

Complexity analysis:
Let f (n) be the number of comparisons to find the maximum of the sequence with n
elements. Using two comparisons (one to compare the current maxima, and one to
determine whether any terms of the list remain at each iteration),

int MAX(int a[], int i, int j) {

if (i == j)
 p = a[i];
else{

max1 = MAX(a, i,(i+j)/2));
max2 = MAX(a,((i+j)/2)+1,j);
if (max1 > max2) p = max1;

 else p = max2;
}

return p;
}

// initially i=0,j=n-1

() 2 (/ 2) 2, (1) 1, where is even.f n f n f n= + =

 26

Theorem: Let f be an increasing function that satisfies the recurrence relation:

where n is divisible by b, a ≥ 1, b is an integer greater than 1 and c is a positive real
number. Then

 if a > 1 f(n) =
 if a = 1

f (n) = a ⋅ f (n / b)+ c

)(log abn0
)(log n0{

 27

Theorem: Let f be an increasing function that satisfies the recurrence relation:

where n is divisible by b, a ≥ 1, b is an integer greater than 1 and c is a positive real
number. Then

 if a > 1 f(n) =
 if a = 1

e.g. Finding the maximum with , n is even
By the theorem .

f (n) = a ⋅ f (n / b)+ c

)(log abn0
)(log n0

() 2 (/ 2) 2f n f n= × +

)()(is)(2log2 nOnOnf =

{

 28

Theorem: Let f be an increasing function that satisfies the recurrence relation:

where n is divisible by b, a ≥ 1, b is an integer greater than 1 and c is a positive real
number. Then

 if a > 1 f(n) =
 if a = 1

e.g. Finding the maximum with , n is even
By the theorem .

e.g. Binary search with , n is even
From the theorem, f (n) is O(log n).

f (n) = a ⋅ f (n / b)+ c

)(log abn0
)(log n0

() 2 (/ 2) 2f n f n= × +

)()(is)(2log2 nOnOnf =

() (/ 2) 2f n f n= +

{

 29

Proof: Let

Case i:
Let a =1, then

When n is not a power of b, we have for some k.
Since f is an increasing function,

 in both cases.

kbn =
() (/)f n a f n b cÞ = × +

2 2(/)a f n b ac c= × + +

!
1

0
(/)

k
k k j

j
a f n b a c

-

=

= × +å
1

0
() (1)

k
k j

j
f n a f c a

-

=

Þ = × + å

ncfckfnf blog)1()1()(×+=+=)(log is)(n0nf\

1+<< kk bnb

ckcfkcfbfnf k ++=++=£ +)1()1()1()()(1

)(log is)(log)1(n0nfnccf b \×++£

 30

Case ii:

Let a >1 and

 (from geometric series, see Section 2.4)

 (Note that in general)

where and .

Suppose that , then

 since

 Hence f(n) is .

kbn =
() (1) (1) /(1)k kf n a f c a a= × + × - -

[](1) /(1) /(1)ka f c a c a= + - - -

2
log

1 CnC ab +×= na an loglog =

1 (1) /(1)C f c a= + - 2 /(1)C c a= - -

)(is)(log abn0nf\

kbn ¹ 1+<< kk bnb

2
1

1
1)()(CaCbfnf kk +=£Þ ++

2
log

1)(CaaC nb +£ 1log +<£ knk b

2
log

1)(CnaC ab +£

)(log abn0

 31

Master Theorem: Let f (n) be an increasing function that satisfies

where , k is a positive integer, a ≥ 1, b is an integer greater than 1, c and d are
positive real numbers. Then

 if

 if f(n)=

 if

See the textbook for the proof.

() (/) df n a f n b cn= × +
kbn =

)(dn0 dba <
)log(nn0 d dba =

)(log abn0 dba >
{

 32

Master Theorem: Let f (n) be an increasing function that satisfies

where , k is a positive integer, a ≥ 1, b is an integer greater than 1, c and d are
positive real numbers. Then

 if

 if f(n)=

 if

See the textbook for the proof.

e.g., Merge Sort

f(n) = 2 f (n/2) + n, which is O(n log n).

() (/) df n a f n b cn= × +
kbn =

)(dn0 dba <
)log(nn0 d dba =

)(log abn0 dba >
{

