8.1 Recurrence Relations

Definition:

A recurrence relation for the sequence {a,} 1s an equation that expresses a, in terms of
one or more previous terms of the sequence ao, ai, ..., a,.1. A sequence 1s called a
solution of a recurrence relation if its terms satisfy the recurrence relation.

The recurrence relation together with the initial conditions uniquely determines a
sequence, 1.€., a solution.

e.g. Consider the recurrence relation (Fibonacci numbers):

An=0an1+ ana2,n>2
where ap=0and a; = 1.

Then {0,1,1,2,3,5,8,...} is the solution.

Question: Is it possible to find an explicit formula for a,?
In some conditions yes!

8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.

8.2 Solving Recurrence Relations

Definition.
A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.

Basic approach is to look for a solution of the form a,= r".

= ' =c i+ e 4 e+ otk

8.2 Solving Recurrence Relations

Definition.
A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.

Basic approach is to look for a solution of the form a,= r".
= ' =c i+ e 4 e+ otk

Divide both sides by 7+
=rk—ckl—crk2— oo —cir — =0

8.2 Solving Recurrence Relations

Definition.
A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.

Basic approach is to look for a solution of the form a,= r".
= ' =c i+ e 4 e+ otk

Divide both sides by 7+
= rk— it — cprf?2 — - — ¢ — ¢ = 0: Characteristic equation

= If r 1s a solution of the characteristic equation, then{a,} with a,= r*, is a solution of
the recurrence relation.

Theorem:
Consider the recurrence relation a, = ci1a,.1 + ¢2 a,» . Suppose that > — c;r— ¢, has two

distinct roots r; and r,. Then the solution is given by a, = a,r," + ary”, where o and o,

are real constants.
Proof: See page 462 in the textbook 6™ edition (page 499 in the textbook 7 edition).

e.g.Solve f,= fu1+ fn2, where fo=0and f1 =1, 1.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation »’—r» — 1= 0 are
= (1+¥5)/2 and r, = (1— ¥5)/2.

e.g.Solve f,= fu1+ fn2, where fo=0and f1 =1, 1.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation »’—r» — 1= 0 are
= (1+¥5)/2 and r, = (1— ¥5)/2.

By the theorem, f, = a.r "+ ory" for some o, and a,.

e.g.Solve f,= fu1+ fn2, where fo=0and f1 =1, 1.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation »’—r» — 1= 0 are
= (1+¥5)/2 and r, = (1— ¥5)/2.

By the theorem, f, = a.r "+ ory" for some o, and a,.

Using the initial conditions fo=0 and fi =1,
fO =o;t+o=0

Ffr=ay (1+5)2 + az(1— ¥5)2 =1

= a,=1/+/5 and o, = —1/+/5

p_ L[5 1 (15
— S50 2 J5l 2 .

10

Theorem:
Consider the recurrence relation a, = c¢i1a,.1 + c2a,2 . Suppose that > — ¢;7 — ¢, has only

one root ro with multiplicity 2. Then the solution is given by a, = ouro" + ownry", where

oand o, are real constants.

11

Theorem:
Consider the recurrence relation a, = c¢i1a,.1 + c2a,2 . Suppose that > — ¢;7 — ¢, has only
one root ro with multiplicity 2. Then the solution is given by a, = ouro" + awnry”, where

oand o, are real constants.

e.g. Solve the recurrence relation a, = 6a,.1 — 9a,.» with ap = 1 and a, = 6.
Characteristic equation: 72— 6r +9 = 0, which is (r-3)’=0 = ro=3
Solution 1s then given by a, = oo™ + ownry”
ao = OL11”00+ Otzol”oo = OL130 =0 = 1
air=ouro' + oxlre! = oi3'+ 013 =30 + 30, = 6

=0 =1
an = Q11" + Olanrg”

an = 3"+ n3"

12

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve @, =38a, , + 10" with initial condition a, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s.)

Can’t use characteristic equation in this case because the recurrence relation is not
linear.

13

8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve @, =38a, , + 10" with initial condition a, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s.)

Can’t use characteristic equation in this case because the recurrence relation is not
linear.
One possible way 1s to use generating functions:

Definition:
The generating function for the sequence 4,,4,,---,4;,-.- of real numbers 1s the
pOwer series

G(x)=a,+ax+..+ax"+..= Zakxk
k=0

14

Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx”
n=0

15

Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx"
n=0

= Gx)=1+ Eanx” =1+ E(San_lx” +10"" x") =1+ Sann_lx"'l + xz 10" x"!
n=1 n=1 n=1 n=1

16

Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s.)

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx"
n=0

= Gx)=1+ Eanx” =1+ E(San_lx” +10"" x") =1+ Sann_lx"'l + xz 10" x"!

=1+8x Y ax" +x D 10"X" _148x-G(x)+x/(1-10x) since by geometric series:
n=0 n=0

= G(x)= 1-9x :l(! j+l(l j 1/(1-rx) = Zka
(1-8x)(1-10x) 2{1-8x) 2\1-10x
1 o0 0 o0
:—(28%%210%"} Zl(+10")x"
2 n=0 n=0 n=02

= aq =%(8” +10")

17

Example: Solve @, =3a,, with initial condition @, =2.
(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)

18

Example: Solve @, =3a,_; with initial condition 4, = 2.

(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)

Let G(x) be the generating function for the sequence {4 }, that is, C(*¥) = kZ_;akxk-

G(x)= Zakxk =2+

0.0 k |
o ;3ak—1x (by the recurrence relation @, =3a,)

= 2+3xz:azk_1xk_1 =2+3x-G(x)
k=1

= G(x)-3x-G(x)=1-3x)-G(x)=2
= G(x)=2/(1-3x)

Using the identity, 1/(1-m)= kz_(;’” £ :

G(x)=2-) 3" x"=>23"" - 4 =2.3"
k=0 k=0

19

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list ao, ai, ..., a,.1 where ap<a; < ... <au..
1. Compare x with the middle term of the sequence, am, where m = (n—1) / 2.
2. If x > a,, search x on the second half {am+1, amn+2, ... a}
else search x on the first half {a1, a2, ... an}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming 7 1s even.

20

8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list ao, ai, ..., a,.1 where ap<a; < ... <au..
1. Compare x with the middle term of the sequence, am, where m = (n—1) / 2.
2. If x > a,, search x on the second half {am+1, amn+2, ... a}
else search x on the first half {a1, a2, ... an}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming 7 1s even.

Two comparisons are needed at each iteration (one to determine which half of the list
to use and the other to determine whether any terms of the list remain).

= f(n)=f(n/2)+2, f1)=2

f (n): # of operations (comparisons) for a search sequence of size n.

21

Definition:
The recurrence relation
f(n)y=a-f(n/b)+g(n)

1s called a divide-and-conquer recurrence relation.

Sometimes we aren’t really interested in solving a given recurrence relation, but we
rather want to find the complexity of the function.

22

e.g. The problem of finding the maximum element of a sequence, 4,,4,,...,a,, can be
solved using a divide-and-conquer algorithm:
e If n =1 then a; 1s the maximum.
e If n> 1, split the sequence into two sequences. The overall maximum is
maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.

23

e.g. The problem of finding the maximum element of a sequence, 4,,4,,...,a,, can be
solved using a divide-and-conquer algorithm:
e If n =1 then a; 1s the maximum.
e If n> 1, split the sequence into two sequences. The overall maximum is
maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.

int MAX(int al[], int i, int 7J) {

if (1 == 3J)
p = alil;

else(
maxl = MAX(a, i, (i+3)/2));
max?2 = MAX(a, ((i+3)/2)+1,7);
1f (maxl > max?2) p = maxl;

else p = max2;

}

return p;

}
// initially 1=0,j=n-1

24

Complexity analysis:

Let f(n) be the number of comparisons to find the maximum of the sequence with n
elements. Using two comparisons (one to compare the current maxima, and one to
determine whether any terms of the list remain at each iteration),

f(n)y=2f(n/2)+2, f(1)=1, where n is even.

int MAX(int af], int 1, int 7J) {

if (1 == J)
p = alil;

else(
maxl = MAX(a, i, (i+3)/2));
max?2 = MAX(a, ((i+3)/2)+1,7);
1f (maxl > max?2) p = maxl;
else p = max2;

}

return p;
}
// initially 1=0,j=n-1

25

Theorem: Let f be an increasing function that satisfies the recurrence relation:
f(n)y=a:f(n/b)+c

where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1

26

Theorem: Let f be an increasing function that satisfies the recurrence relation:
f(n)y=a:f(n/b)+c

where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1

e.g. Finding the maximum with f(n)=2-f(n/2)+2 pnis even
By the theorem /(7)is O(n"***) = O(n) |

27

Theorem: Let f be an increasing function that satisfies the recurrence relation:

f(n)y=a:f(n/b)+c
where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1

e.g. Finding the maximum with f(n)=2-f(n/2)+2 pnis even
By the theorem /(7)is O(n"***) = O(n) |

e.g. Binary search with f(n)=f(n/2)+2 niseven
From the theorem, f'(n) is O(log n).

28

Proof: Let n =p*
= f(n)=a-f(n/b)+c

=a’- f(n/b*)+ac+c
=ak-f(n/bk)+kz_1:ajc
:>f(n)=ak-f(1)+ckz_1:aj

Case i:
Leta =1, then f(n)= f()+ck=f(1)+c-log,n .. f(n)is0O(logn)

When 7 is not a power of b, we have b <n <" for some k.
Since f1s an increasing function,

f(n)Sf(bk+l):f(1)+c(k+1):f(l)+c+ck
<f(M)+c+c-log,n . f(n)isO0(logn) in both cases.

29

Case ii:

Leta>1 and n=>b"
f(n)y=a"-f(D+c-(a"-1/(a-1) (from geometric series, see Section 2.4)
=a" [f(1)+c/(a—l)]—c/(a—1)
=C,-n"*“+C, (Note that in general n"*“ =a"*")
where C, =f()+c/(@a-1) and C,=—c/(a-1),
f(n)is 0(n"**)

Suppose that n = 5", then b* <n < b

= f()< f0""H=Ca"" +C,
<(Cia)a"®" +C, since k<log,n<k+1
<(C,a)n*" +C,

Hence f(n) is 0(n"") :

30

Master Theorem: Let f(n) be an increasing function that satisfies
f(m)y=a- f(n/b)+cn’

where n=b" kisa positive integer, a > 1, b 1s an integer greater than 1, ¢ and d are
positive real numbers. Then

0(n") if a<b*
f(n)= 0(n? logn) if q=p"
0(n"*** ") if a>b*

See the textbook for the proof.

31

Master Theorem: Let f(n) be an increasing function that satisfies
f(m)y=a- f(n/b)+cn’

where n=b" kisa positive integer, a > 1, b 1s an integer greater than 1, ¢ and d are
positive real numbers. Then

0(n") if a<b*
f(n)= 0(n? logn) if q=p"
0(n"*** ") if a>b*

See the textbook for the proof.

e.g., Merge Sort

f(n) =2 f(n/2) + n, which 1s O(n log n).

32

