8.1 Recurrence Relations

Definition:

A recurrence relation for the sequence {a,} 1s an equation that expresses a, in terms of
one or more previous terms of the sequence ao, ai, ..., a,.1. A sequence 1s called a
solution of a recurrence relation if its terms satisfy the recurrence relation.

The recurrence relation together with the initial conditions uniquely determines a
sequence, 1.€., a solution.



e.g. Consider the recurrence relation (Fibonacci numbers):

An=0an1+ ana2,n>2
where ap=0and a; = 1.

Then {0,1,1,2,3,5,8,...} is the solution.

Question: Is it possible to find an explicit formula for a,?
In some conditions yes!



8.2 Solving Recurrence Relations

Definition:

A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.
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8.2 Solving Recurrence Relations

Definition.
A linear homogeneous recurrence relation of degree k& with constant coefficients is a
recurrence relation of the form

A, = Ci1an1 T C2ayo + -+ + cra,x Where cy, ¢, ..., ¢ are real numbers and ¢, # 0.

Basic approach is to look for a solution of the form a,= r".
= ' =c i+ e 4 e+ otk

Divide both sides by 7+
= rk— it — cprf?2 — - — ¢ — ¢ = 0: Characteristic equation

= If r 1s a solution of the characteristic equation, then{a,} with a,= r*, is a solution of
the recurrence relation.



Theorem:
Consider the recurrence relation a, = ci1a,.1 + ¢2 a,» . Suppose that > — c;r— ¢, has two

distinct roots r; and r,. Then the solution is given by a, = a,r," + ary”, where o and o,

are real constants.
Proof: See page 462 in the textbook 6™ edition (page 499 in the textbook 7 edition).



e.g.Solve f,= fu1+ fn2, where fo=0and f1 =1, 1.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation »’—r» — 1= 0 are
= (1+¥5)/2 and r, = (1— ¥5)/2.
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= (1+¥5)/2 and r, = (1— ¥5)/2.

By the theorem, f, = a.r "+ ory" for some o, and a,.



e.g.Solve f,= fu1+ fn2, where fo=0and f1 =1, 1.e., find an explicit formula for
Fibonacci numbers.

The roots of the characteristic equation »’—r» — 1= 0 are
= (1+¥5)/2 and r, = (1— ¥5)/2.

By the theorem, f, = a.r "+ ory" for some o, and a,.

Using the initial conditions fo=0 and fi =1,
fO =o;t+o=0

Ffr=ay (1+5)2 + az(1— ¥5)2 =1

= a,=1/+/5 and o, = —1/+/5

p_ L[5 1 (15
— S50 2 J5l 2 .
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Theorem:
Consider the recurrence relation a, = c¢i1a,.1 + c2a,2 . Suppose that > — ¢;7 — ¢, has only

one root ro with multiplicity 2. Then the solution is given by a, = ouro" + ownry", where

oand o, are real constants.
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Theorem:
Consider the recurrence relation a, = c¢i1a,.1 + c2a,2 . Suppose that > — ¢;7 — ¢, has only
one root ro with multiplicity 2. Then the solution is given by a, = ouro" + awnry”, where

oand o, are real constants.

e.g. Solve the recurrence relation a, = 6a,.1 — 9a,.» with ap = 1 and a, = 6.
Characteristic equation: 72— 6r +9 = 0, which is (r-3)’=0 = ro=3
Solution 1s then given by a, = oo™ + ownry”
ao = OL11”00+ Otzol”oo = OL130 =0 = 1
air=ouro' + oxlre! = oi3'+ 013 =30 + 30, = 6

=0 =1
an = Q11" + Olanrg”

an = 3"+ n3"
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8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve @, =38a, , + 10" with initial condition a, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s. )

Can’t use characteristic equation in this case because the recurrence relation is not
linear.
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8.4 Generating Functions

Using Generating Functions to solve recurrence relations

Example: Solve @, =38a, , + 10" with initial condition a, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s. )

Can’t use characteristic equation in this case because the recurrence relation is not
linear.
One possible way 1s to use generating functions:

Definition:
The generating function for the sequence 4,,4,,---,4;,-.- of real numbers 1s the
pOwer series

G(x)=a,+ax+..+ax"+..= Zakxk
k=0
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Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s. )

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx”
n=0

15



Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s. )

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx"
n=0

= Gx)=1+ Eanx” =1+ E(San_lx” +10"" x") =1+ Sann_lx"'l + xz 10" x"!
n=1 n=1 n=1 n=1
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Example: Solve a, =8a,;+10"" with initial condition @, =1.
(an corresponds to the number of valid code words of length 7, supposing that a valid
code word 1s an n-digit number in decimal notation containing an even number of 0s. )

Solution:

Let G(x) be the generating function for the sequence {4, }, that is, G(x) = Eanx"
n=0

= Gx)=1+ Eanx” =1+ E(San_lx” +10"" x") =1+ Sann_lx"'l + xz 10" x"!

=1+8x Y ax" +x D 10"X" _148x-G(x)+x/(1-10x)  since by geometric series:
n=0 n=0

= G(x)= 1-9x :l( ! j+l( l j 1/(1-rx) = Zka
(1-8x)(1-10x) 2{1-8x) 2\1-10x
1 o0 0 o0
:—(28%%210%"} Zl( +10")x"
2 n=0 n=0 n=02

= aq =%(8” +10")
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Example: Solve @, =3a,, with initial condition @, =2.
(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)
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Example: Solve @, =3a,_; with initial condition 4, = 2.

(You could solve this recurrence relation by using its characteristic equation, but we’ll
try using generating functions.)

Let G(x) be the generating function for the sequence {4 }, that is, C(*¥) = kZ_;akxk-

G(x)= Zakxk =2+

0.0 k |
o ;3ak—1x (by the recurrence relation @, =3a, )

= 2+3xz:azk_1xk_1 =2+3x-G(x)
k=1

= G(x)-3x-G(x)=1-3x)-G(x)=2
= G(x)=2/(1-3x)

Using the identity, 1/(1-m)= kz_(;’” £ :

G(x)=2-) 3" x"=>23"" - 4 =2.3"
k=0 k=0
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8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list ao, ai, ..., a,.1 where ap<a; < ... <au..
1. Compare x with the middle term of the sequence, am, where m = (n—1) / 2.
2. If x > a,, search x on the second half {am+1, amn+2, ... a}
else search x on the first half {a1, a2, ... an}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming 7 1s even.
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8.3 Divide-and-Conquer Recurrence Relations

Many algorithms divide a problem into one or more smaller problems.

Recall binary search: (from Chapter 3)
Search x in the list ao, ai, ..., a,.1 where ap<a; < ... <au..
1. Compare x with the middle term of the sequence, am, where m = (n—1) / 2.
2. If x > a,, search x on the second half {am+1, amn+2, ... a}
else search x on the first half {a1, a2, ... an}
3. Repeat the first two steps until a list with one single term is obtained.
4. Determine whether this one term is x or not.

Reduces the search in a sequence of size n to a search in a sequence of size n/2,
assuming 7 1s even.

Two comparisons are needed at each iteration (one to determine which half of the list
to use and the other to determine whether any terms of the list remain).

= f(n)=f(n/2)+2, f1)=2

f (n): # of operations (comparisons) for a search sequence of size n.
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Definition:
The recurrence relation
f(n)y=a-f(n/b)+g(n)

1s called a divide-and-conquer recurrence relation.

Sometimes we aren’t really interested in solving a given recurrence relation, but we
rather want to find the complexity of the function.

22



e.g. The problem of finding the maximum element of a sequence, 4,,4,,...,a,, can be
solved using a divide-and-conquer algorithm:
e If n =1 then a; 1s the maximum.
e If n> 1, split the sequence into two sequences. The overall maximum is
maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.
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e.g. The problem of finding the maximum element of a sequence, 4,,4,,...,a,, can be
solved using a divide-and-conquer algorithm:
e If n =1 then a; 1s the maximum.
e If n> 1, split the sequence into two sequences. The overall maximum is
maximum of the maximum elements of these two sub-sequences. The problem is
hence reduced to finding the maximum of each of the two smaller sequences.

int MAX(int al[], int i, int 7J) {

if (1 == 3J)
p = alil;

else(
maxl = MAX(a, i, (i+3)/2));
max?2 = MAX(a, ((i+3)/2)+1,7);
1f (maxl > max?2) p = maxl;

else p = max2;

}

return p;

}
// initially 1=0,j=n-1
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Complexity analysis:

Let f(n) be the number of comparisons to find the maximum of the sequence with n
elements. Using two comparisons (one to compare the current maxima, and one to
determine whether any terms of the list remain at each iteration),

f(n)y=2f(n/2)+2, f(1)=1, where n is even.

int MAX(int af], int 1, int 7J) {

if (1 == J)
p = alil;

else(
maxl = MAX(a, i, (i+3)/2));
max?2 = MAX(a, ((i+3)/2)+1,7);
1f (maxl > max?2) p = maxl;
else p = max2;

}

return p;
}
// initially 1=0,j=n-1
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Theorem: Let f be an increasing function that satisfies the recurrence relation:
f(n)y=a:f(n/b)+c

where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1
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Theorem: Let f be an increasing function that satisfies the recurrence relation:
f(n)y=a:f(n/b)+c

where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1

e.g. Finding the maximum with f(n)=2-f(n/2)+2 pnis even
By the theorem /(7)is O(n"***) = O(n) |
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Theorem: Let f be an increasing function that satisfies the recurrence relation:

f(n)y=a:f(n/b)+c
where 7 1s divisible by b, a > 1, b 1s an integer greater than 1 and c 1s a positive real
number. Then

fn) = { 0(n"®*) if a> 1
0(logn) if a=1

e.g. Finding the maximum with f(n)=2-f(n/2)+2 pnis even
By the theorem /(7)is O(n"***) = O(n) |

e.g. Binary search with f(n)=f(n/2)+2 niseven
From the theorem, f'(n) is O(log n).
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Proof: Let n =p*
= f(n)=a-f(n/b)+c

=a’- f(n/b*)+ac+c
=ak-f(n/bk)+kz_1:ajc
:>f(n)=ak-f(1)+ckz_1:aj

Case i:
Leta =1, then f(n)= f()+ck=f(1)+c-log,n .. f(n)is0O(logn)

When 7 is not a power of b, we have b <n <" for some k.
Since f1s an increasing function,

f(n)Sf(bk+l):f(1)+c(k+1):f(l)+c+ck
<f(M)+c+c-log,n . f(n)isO0(logn) in both cases.
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Case ii:

Leta>1 and n=>b"
f(n)y=a"-f(D+c-(a"-1/(a-1) (from geometric series, see Section 2.4)
=a" [f(1)+c/(a—l)]—c/(a—1)
=C,-n"*“+C, (Note that in general n"*“ =a"*")
where C, =f()+c/(@a-1) and C,=—c/(a-1),
f(n)is 0(n"**)

Suppose that n = 5", then b* <n < b

= f()< f0""H=Ca"" +C,
<(Cia)a"®" +C, since k<log,n<k+1
<(C,a)n*" +C,

Hence f(n) is 0(n"") :
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Master Theorem: Let f(n) be an increasing function that satisfies
f(m)y=a- f(n/b)+cn’

where n=b" kisa positive integer, a > 1, b 1s an integer greater than 1, ¢ and d are
positive real numbers. Then

0(n") if a<b*
f(n)= 0(n? logn) if q=p"
0(n"*** ") if a>b*

See the textbook for the proof.
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Master Theorem: Let f(n) be an increasing function that satisfies
f(m)y=a- f(n/b)+cn’

where n=b" kisa positive integer, a > 1, b 1s an integer greater than 1, ¢ and d are
positive real numbers. Then

0(n") if a<b*
f(n)= 0(n? logn) if q=p"
0(n"*** ") if a>b*

See the textbook for the proof.

e.g., Merge Sort

f(n) =2 f(n/2) + n, which 1s O(n log n).
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