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9. Relations  
 
Relations are discrete structures that are used to represent relationships between 
elements of sets.  
 
Relations can be used to solve problems such as: 

• Determining which pairs of cities are linked by airline flights in a network, 
• Computing the distance between a pair of registered Facebook users. 
• Finding an efficient order for different phases of a complicated project, 
• Producing a useful way to store information in computer databases, etc. 
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9.1 Relations and Their Properties 
 
Definition: Binary relation 
Let A, B be sets. A binary relation R from A to B is a set of ordered pairs, hence a 
subset of A×B. 
 
Notation:  
a is “related to” b by R:    a R b :  (a,b)ÎR; aÎA, bÎB 
a is “not related to” b by R:  aR b : (a,b)ÏR 
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e.g.  
  A: set of cities 
  B: set of countries 
  R: (a, b)ÎR if city a is in country b. 
 
(Izmir, Turkey), (Paris, France) Î R 
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Function is a special case of relation 
 
A function ƒ from A to B can be thought of as the set of ordered pairs (a, b)  s.t. b = 
ƒ(a) 
 
Since the function ƒ is a subset of A × B, ƒ is a relation from A to B.  
 
Function is a special case of relation: Every element of A is the first element of exactly 
one ordered pair of the function ƒ. 
 
 0 •  • a 

 1 •  • b 

 2 • 

 
 
 
 

ƒ 
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Relations defined on a single set: 
 
Definition: 
A relation on a set A is a relation from A to A. 
 
e.g.  
  A = {1, 2, 3, 4} 
  R = {(a, b) |   a | b, (a, b)Î A×A} 
     = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 
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Relations defined on a single set: 
 
Definition: 
A relation on a set A is a relation from A to A. 
 
e.g.  
  A = {1, 2, 3, 4} 
  R = {(a, b) |   a | b, (a, b)Î A×A} 
     = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 4), (3, 3), (4, 4)} 
 
e.g. 
How many relations are there on a set with n elements? 
 |A×A| = n2 
 \ 2    (# of subsets of A×A) 
 
 
 
 
 

n2 
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Properties of Relations defined on a set: 
 
Definition: 
A relation R on a set A is called reflexive iff  
   (a, a)ÎR     "aÎA 
 
e.g. 
  A= {1, 2, 3} 
 
  R1 = {(1, 2), (2, 2), (1, 3)}     (not reflexive) 

       R2 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}     (reflexive) 
R3 = {(1, 3), (3, 1)}     (irreflexive) 
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Properties of Relations defined on a set: 
 
Definition: 
A relation R on a set A is called reflexive iff  
   (a, a)ÎR     "aÎA 
 
e.g. 
  A= {1, 2, 3} 
 
  R1 = {(1, 2), (2, 2), (1, 3)}     (not reflexive) 

       R2 = {(1, 1), (1, 3), (2, 2), (3, 1), (3, 3)}     (reflexive) 
R3 = {(1, 3), (3, 1)}     (irreflexive) 

 
e.g. 
R: The set of pairs of people having the same eye color   (reflexive) 
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Definition: 
A relation R on a set A is called  
 
  symmetric iff the following holds 

(b,a)ÎR  →  (a,b)ÎR     "a,bÎA 
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Definition: 
A relation R on a set A is called  
 
  symmetric iff the following holds 

(b,a)ÎR  →  (a,b)ÎR     "a,bÎA 
 
  anti-symmetric iff  the following holds 

(a,b)ÎR  and (b,a)ÎR   →  a = b    "a,bÎA  
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Definition: 
A relation R on a set A is called  
 
  symmetric iff the following holds 

(b,a)ÎR  →  (a,b)ÎR     "a,bÎA 
 
  anti-symmetric iff  the following holds 

(a,b)ÎR  and (b,a)ÎR   →  a = b    "a,bÎA  
 
e.g.  
Rt = {(a,b) | a is taller than b}  anti-symmetric  
 
R = {(a,b) | a+b+ab = 12; a,b Î Z}   symmetric 
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Definition: 
A relation R on a set A is called  
 
  symmetric iff the following holds 

(b,a)ÎR  →  (a,b)ÎR     "a,bÎA 
 
  anti-symmetric iff  the following holds 

(a,b)ÎR  and (b,a)ÎR   →  a = b    "a,bÎA  
 
e.g.  
Rt = {(a,b) | a is taller than b}  anti-symmetric  
 
R = {(a,b) | a+b+ab = 12; a,b Î Z}   symmetric 
 
asymmetric iff "a,bÎA  (a,b)ÎR  →  (b,a)ÏR 
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Definition: 
R on set A is called transitive iff 
     (a,b)ÎR  and  (b,c)ÎR   →  (a,c)ÎR     "a,b,c Î A. 
 
e.g. 
  Rt = {(a,b) | a is taller than b} transitive?    
 
 
 
 
 
 
 
 
 
 
 
 
 



 14 

Definition: 
R on set A is called transitive iff 
     (a,b)ÎR  and  (b,c)ÎR   →  (a,c)ÎR     "a,b,c Î A. 
 
e.g. 
  Rt = {(a,b) | a is taller than b} transitive?    
 
 
e.g. 
  A= {1, 2, 3} 
 
  R1 = {(1, 2), (2, 3), (1, 3)}     (transitive) 

       R2 = {(1, 2), (2, 3)}  (not transitive) 
R3 = {(1, 2)}     (?) 
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e.g. 
How many reflexive relations are there on a set with n elements? 
 
If R is reflexive, then: 
  there are n pairs such that (a,a)ÎR  
  and n(n–1)  pairs such that (a,b)ÎR  where a ¹ b 
Þ # of reflexive relations  =  2n(n-1) 
 
e.g. 
How many symmetric relations are there on a set with n elements? (Exercise) 
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Combining relations: 
  
 Let A = {a, b}  B = {1, 2, 3} 
 
 R1 = {(a, 1), (b, 3)} 
 R2 = {(a, 1), (a, 2), (b, 1), (b, 2)} 
 R3 = {(b, 1), (b, 2)} 
 R4 = {(a, 1), (b, 2)} 
  
 R1 È R3 = {(a, 1), (b, 1), (b, 2), (b, 3)} 
 R1 Ç R2 = {(a, 1)} 
 R2 – R3 = {(a, 1), (a, 2)} 
 R1 Å R4 = {(b, 2), (b, 3)} 
 
Å is called “symmetric difference”, acts like XOR 
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Definition: Let R: A→B and S: B→C. Then the composite relation of R and S,  
 

S○R: A → C   is defined s.t. 
 

(a, c)ÎS○R  iff  (a, b)ÎR and (b,c)ÎS. 
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Definition: Let R: A→B and S: B→C. Then the composite relation of R and S,  
 

S○R: A → C   is defined s.t. 
 

(a, c)ÎS○R  iff  (a, b)ÎR and (b,c)ÎS. 
 

 
Definition: 
Let R be a relation on A. 
The powers Rn, n = 1, 2, 3, …, are defined by 
R1 = R,  R2 = R○R,… Rn = Rn-1 ○ R. 
 
 

 
e.g.  R = {(a,b) | b is a parent of a} 
  Þ R2 = {(a,c) | c is a grand-parent of a}   why? 
since (a,b)ÎR means “b is a parent of a”, and (b,c)ÎR means “c is a parent of b”. 
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Theorem: 
R on a set A is transitive iff Rn Í R for all n = 1, 2, 3,… 
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Theorem: 
R on a set A is transitive iff Rn Í R for all n = 1, 2, 3,… 
 
Proof: 
 
If part: (if Rn Í R for n = 1, 2, 3,…, then R is transitive) 
If Rn Í R, in particular R2 Í R. 
Then, if (a,b)ÎR and (b,c)ÎR, by definition (a,c)ÎR2. Since R2 Í R, (a,c)ÎR.  
\ R is transitive. 
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Theorem: 
R on a set A is transitive iff Rn Í R for all n = 1, 2, 3,… 
 
Proof: 
 
If part: (if Rn Í R for n = 1, 2, 3,…, then R is transitive) 
If Rn Í R, in particular R2 Í R. 
Then, if (a,b)ÎR and (b,c)ÎR, by definition (a,c)ÎR2. Since R2 Í R, (a,c)ÎR.  
\ R is transitive. 
 
Only if part: (If R is transitive, then "n  Rn Í R)  Use induction on n. 
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Theorem: 
R on a set A is transitive iff Rn Í R for all n = 1, 2, 3,… 
 
Proof: 
 
If part: (if Rn Í R for n = 1, 2, 3,…, then R is transitive) 
If Rn Í R, in particular R2 Í R. 
Then, if (a,b)ÎR and (b,c)ÎR, by definition (a,c)ÎR2. Since R2 Í R, (a,c)ÎR.  
\ R is transitive. 
 
Only if part: (If R is transitive, then "n  Rn Í R)  Use induction on n. 
Basis step: R1 Í R; true for n = 1. 
Inductive step: Assume Rn Í R and R is transitive. Show Rn+1 Í R. 
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Theorem: 
R on a set A is transitive iff Rn Í R for all n = 1, 2, 3,… 
 
Proof: 
 
If part: (if Rn Í R for n = 1, 2, 3,…, then R is transitive) 
If Rn Í R, in particular R2 Í R. 
Then, if (a,b)ÎR and (b,c)ÎR, by definition (a,c)ÎR2. Since R2 Í R, (a,c)ÎR.  
\ R is transitive. 
 
Only if part: (If R is transitive, then "n  Rn Í R)  Use induction on n. 
Basis step: R1 Í R; true for n = 1. 
Inductive step: Assume Rn Í R and R is transitive. Show Rn+1 Í R. 
 
Let (a,b)ÎRn+1 = Rn ○ R. 
Then $xÎA  s.t. (a, x)ÎR and (x,b)ÎRn. Since Rn Í R, (x,b) Î R. 
Since R is transitive and (a, x)ÎR, we have (a,b)ÎR  
      \ Rn+1 Í R 
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Inverse and Complementary: 
 
Inverse of R:  R-1 = {(b, a) | (a, b) Î R} 
 
Complementary of R:     R = {(a, b) | (a, b) Î R } 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25 

Inverse and Complementary: 
 
Inverse of R:  R-1 = {(b, a) | (a, b) Î R} 
 
Complementary of R:     R = {(a, b) | (a, b) Î R } 
 
e.g. 
 
Let R = {(a, b) | a < b} R: A → B. 
 
Inverse of R:  R-1 = {(b, a) | a < b} 
Complementary of R:       R = {(a, b) | a ³ b} 
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e.g. 
R, S are reflexive relations on A. 
 

a) RÈS is reflexive?  Yes,  
b) RÇS is reflexive? ü 
c) RÅ S is irreflexive? ü 
d) R-S is irreflexive? ü 
e) S○R is reflexive?  ü 
f) R-1  is reflexive? 
g) Complementary of R is irreflexive? 

 
 
 
 
 
 
 
 
 

since (x, x) Î R 
so does R È S 
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e.g. 
Suppose R is irreflexive. Is R2 also irreflexive? 
No.  Counter-example: Let a ¹ b and R = {(a, b), (b, a)} 
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9.2 n-ary Relations and Their Applications 
 
Definition: 
Let A1, A2, …, An be sets.  
An n-ary relation on these sets is a subset of  A1×A2×…×An. 
 
The sets Ai : Domains of the relation 
n: Degree of the relation 
 
e.g. 
  R = {(a, b, c) | a < b < c} 
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Databases and Relations 
 
The way we organize information in a database is important. 
Operations such as add/delete record, update records, search for record, all have 
heavy computation. 
\ Various methods for representing databases exist. 
 
One method in particular is relational data model. 
 
A database consists of records of n-tuples, made up of domains (fields). 
e.g. Airflight Company    (Flight No, Departure, Destination, Date) 
 
You will have an elective database course in 3rd or 4th year. 
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9.3 Representing Relations 
 

Definition: A relation R can also be represented by a matrix MR = [mij]: 

  

 
e.g.  Let A = {1, 2}, B = {a, b,c}  and R: A→ B such that 
R = {(1, b), (2, a), (2, b), (2, c)} 
 

 MR =  

 
 
 
 
 

1     if ( , ) 
0     if ( , ) 

i j

i j

ij

a  b R
m

a  b R
Îìï= í Ïïî

0 1 0
1 1 1
é ù
ê ú
ë û
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9.3 Representing Relations 
 

Definition: A relation R can also be represented by a matrix MR = [mij]: 

  

 
e.g.  Let A = {1, 2}, B = {a, b,c}  and R: A→ B such that 
R = {(1, b), (2, a), (2, b), (2, c)} 
 

 MR =  

 
e.g. 
Let R be a relation defined on A = {1, 2, 3}:  R = {(1, 2), (2, 2), (1, 3)} 

       MR =       Note that we get a square matrix whenever R: A→ A. 

1     if ( , ) 
0     if ( , ) 

i j

i j

ij

a  b R
m

a  b R
Îìï= í Ïïî

0 1 0
1 1 1
é ù
ê ú
ë û

0 1 1
0 1 0
0 0 0

é ù
ê ú
ê ú
ê úë û
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- Reflexive relation R  s.t. (ai, ai)ÎR 
 Þ"i  mii = 1  

 i.e. ,  MR =   

 
 
 
 
 
 
 

 
 
 
 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

1
1

.
.

.
1

1

diagonal with 
all ones 
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- Reflexive relation R  s.t. (ai, ai)ÎR 
 Þ"i  mii = 1  

 i.e. ,  MR =   

- Symmetric relation R s.t. (ai, aj)ÎR ↔ (aj, ai)ÎR 
 Þ "i,j  mij = mji  

 MR =   

 
 
 
 
 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

1
1

.
.

.
1

1

ú
ú
û

ù

ê
ê
ë

é

0
01

1

diagonal with 
all ones 
 

Symmetric matrix 
(MR = MTR) 
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- Inverse and complementary relations: 
 
If MR = [mij] m×n, then   
 
Inverse:  MR –1 = [mji] n×m (transpose) 
Complementary:    M  = [¬mij] m×n  (negation) 
 
 
 
 
 
 
 
 
 
 
 
 
 

R
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Using Zero – One Matrices: 
 

A matrix with entries that are either 0 or 1 is called a zero-one matrix. 
 

Definition: 
 
A = [aij]   B = [bij]  m×n zero-one matrices 
 

Join of A, B:  A Ú B = [aij Ú bij] 
Meet of A, B: A Ù B = [aij Ù bij] 
 

e.g. 
  A =   B =    

A Ú B =  A Ù B =    

 
 
 
 
 

ú
ú

û

ù

ê
ê

ë

é

101
010

ú
ú

û

ù

ê
ê

ë

é

001
100

ú
ú

û

ù

ê
ê

ë

é

101
110

ú
ú

û

ù

ê
ê

ë

é

001
000
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Using Zero – One Matrices: 
 

A matrix with entries that are either 0 or 1 is called a zero-one matrix. 
 

Definition: 
 
A = [aij]   B = [bij]  m×n zero-one matrices 
 

Join of A, B:  A Ú B = [aij Ú bij] 
Meet of A, B: A Ù B = [aij Ù bij] 
 

e.g. 
  A =   B =    

A Ú B =  A Ù B =    

 
Remark:  Let R1: A→ B and R2: A→ B 

 =  Ú      

     =   Ù  

ú
ú

û

ù

ê
ê

ë

é

101
010

ú
ú

û

ù

ê
ê

ë

é

001
100

ú
ú

û

ù

ê
ê

ë

é

101
110

ú
ú

û

ù

ê
ê

ë

é

001
000

1 2R RÈM
1R

M
2R

M

1 2R RÇM
1R

M
2R

M
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Definition: Boolean product 
Let A = [aij] : m×k,  B = [bij] : k×n zero-one matrices  
 
 A    B = [cij] : m×n, where  
 
cij = (ai1 Ù b1j) Ú (ai2 Ù b2j) Ú …. Ú (aik Ù bkj)  
 

   

 

a11a1k


ai1aik


am1amk

!

"

#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&

b11b1 jb1n
              
bk1bkjbkn

!

"

#
#
#
#

$

%

&
&
&
&ith row 

jth column 
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e.g. 

  A =   B =  

 

A   B =  

 

   =  

 

 
 
 
 
 

ú
ú
ú

û

ù

ê
ê
ê

ë

é

01
10
01

ú
û

ù
ê
ë

é
110
011

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ÙÚÙÙÚÙÙÚÙ

ÙÚÙÙÚÙÙÚÙ

ÙÚÙÙÚÙÙÚÙ

)1(00)(1      1)(01)(1      0)(01)(1

1)(10)(0      1)(11)(0      0)(11)(0

1)(00)(1      1)(01)(1      0)(01)(1

ú
ú
ú

û

ù

ê
ê
ê

ë

é

011
110
011

3 x 2 
2 x 3 

3 x 3 
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e.g. 

  A =   B =  

 

A   B =  

 

   =  

 

 
 
Remark:  Let R: A→ B and S: B→ C 
 

MS○R  = MR     MS 

ú
ú
ú

û

ù

ê
ê
ê

ë

é

01
10
01

ú
û

ù
ê
ë

é
110
011

ú
ú
ú

û

ù

ê
ê
ê

ë

é

ÙÚÙÙÚÙÙÚÙ

ÙÚÙÙÚÙÙÚÙ

ÙÚÙÙÚÙÙÚÙ

)1(00)(1      1)(01)(1      0)(01)(1

1)(10)(0      1)(11)(0      0)(11)(0

1)(00)(1      1)(01)(1      0)(01)(1

ú
ú
ú

û

ù

ê
ê
ê

ë

é

011
110
011

3 x 2 
2 x 3 

3 x 3 
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Definition:  r th Boolean Power 
Let A be a square (n×n) zero-one matrix and r be a positive integer. 
 

Ar = A    A   …   A 
  r times 
 

A0  = In  
 

 
 
Remark:  Let R: A→ A  
 

 

 
 
 
 
 
 
 

M
Rn
= [MR ]

n
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Representing Relations Using Graphs: 
 
Pictorial representation. 
 
Definition: 
A directed graph (digraph) consists of a set V of vertices (or nodes) along with a set E 
of edges (or arcs) which are ordered pairs of vertices. 
 
Edge(a, b): a is initial vertex (node), b is terminal vertex (node) 
e.g. 
   
 
 
 
R = {(a, b), (b, c), (c, b), (c, c)} 
 
Relation R on a set A is defined with 
 i) elements of A:  vertices (nodes) 
 ii) ordered pairs (a, b)ÎR: edges 

     a 
 
 
 
b         c 

loop 
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Relation R is: 
- reflexive  iff every node has a loop 
- symmetric iff every edge between two nodes has an edge in the opposite 

direction. 
- transitive  iff edge (a, b) Ù edge (b, c) → edge (a, c)   "a,b,c 

e.g. 

  a.   .b 
 
 
      reflexive 

  c.  
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Example to graph representation of a relation: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Connectivity problems: 
 

1)  Which nodes are connected? 
2)  What is the shortest path between two nodes? 
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9.4 Closures of Relations 
 
 
e.g. Let R = {(1,1), (1, 2), (3, 2)} on A = {1, 2, 3} 
 
R is not reflexive; what is the smallest possible reflexive relation containing R? 
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9.4 Closures of Relations 
 
 
e.g. Let R = {(1,1), (1, 2), (3, 2)} on A = {1, 2, 3} 
 
R is not reflexive; what is the smallest possible reflexive relation containing R? 
 
 S = {(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)} 
 
S is the reflexive closure of R. 
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Definition: Closure 
Let R be a relation on A 
P: some property, such as symmetry, reflexivity, transitivity 
R may or may not have the property P. 
 
The closure S is the smallest possible set with property P, which contains R. 
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Definition: Closure 
Let R be a relation on A 
P: some property, such as symmetry, reflexivity, transitivity 
R may or may not have the property P. 
 
The closure S is the smallest possible set with property P, which contains R. 
 
 
More formal definition of closure:  
 
If there is a relation S with property P containing R s.t. S is the subset of every relation 
with property P containing R, then S is called the closure of R with P. 
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Reflexive Closure: 
 
Let R = {(1,1), (1, 2), (3, 2)} on A = {1, 2, 3} 
 
The smallest possible reflexive relation containing R: 
 
 S = {(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)} 
 
S = Reflexive closure of R = R È D, 
    where D = {(a, a) | a Î A} : diagonal relation 
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Reflexive Closure: 
 
Let R = {(1,1), (1, 2), (3, 2)} on A = {1, 2, 3} 
 
The smallest possible reflexive relation containing R: 
 
 S = {(1, 1), (1, 2), (3, 2), (2, 2), (3, 3)} 
 
S = Reflexive closure of R = R È D, 
    where D = {(a, a) | a Î A} : diagonal relation 
 
e.g. 
  R = {(a, b) | a < b},   reflexive closure? 
 
 R È D = {(a, b) | a < b} È {(a, a) | a Î Z} 
      = {(a, b) | a £ b} 
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Symmetric Closure: 
 
Let R = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)}  on A = {1, 2, 3} 
 

We should add all ordered pairs (b,a) , where (a, b) is in R and (b, a) is not in R. 
Symmetric closure of R = R È {(3, 2), (1, 3)} 
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Symmetric Closure: 
 
Let R = {(1, 1), (1, 2), (2, 1), (2, 3), (3, 1), (3, 3)}  on A = {1, 2, 3} 
 

We should add all ordered pairs (b,a) , where (a, b) is in R and (b, a) is not in R. 
Symmetric closure of R = R È {(3, 2), (1, 3)} 
 
 
 

Symmetric closure of R = R È R-1     (since R-1 = {(b, a) | (a, b) Î R}) 
 
 
 

e.g. 
R = {(a, b) | a < b} 
 
Symmetric closure of R = R È R-1  
     = {(a, b) | a < b} È {(b, a) | a < b} 
        = {(a, b) | a ¹ b} 
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Transitive Closure: 
 
Let R = {(1, 3), (1, 4), (2, 1), (3, 2)} on {1, 2, 3, 4} 
R is not transitive since there are pairs (a, c) Ï R although (a, b), (b, c) ÎR. 
 
(i)  R È {(1, 2), (2, 3), (2, 4), (3, 1)} 

Is it transitive?   
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Transitive Closure: 
 
Let R = {(1, 3), (1, 4), (2, 1), (3, 2)} on {1, 2, 3, 4} 
R is not transitive since there are pairs (a, c) Ï R although (a, b), (b, c) ÎR. 
 
(i)  R È {(1, 2), (2, 3), (2, 4), (3, 1)} 

Is it transitive?  NO! 
 

It has (3, 1),(1, 4), but not (3, 4). 
We have a more difficult problem!!! 
 
We might repeat step (i) until reaching a transitive relation. But there are better ways. 
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e.g.  Draw reflexive closure of  
 
 a.    .b 
 
 
 c.    .d 

 
 

How about symmetric closure? Transitive closure? 
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Paths in Directed Graphs 
We now introduce a new terminology that we will use in the construction of transitive 
closures. 
 

Definition: 
A path from a to b in the directed graph G is a sequence of edges (x0, x1), (x1, x2), … 
(xn-1, xn) in G where x0 = a and xn = b. This path is denoted by x0, x1, …, xn and has a 
length of n. 
If x0 = xn, the path is called a cycle or circuit. 
Two vertices are said to be connected if there’s a path between them. 
 e.g. 

a. .b 

 
c.   .d   .e  a is connected to e, but e is not connected to a. 

 
 

The term path also applies to relations. 
 
 
 

 

A path: 
a, b, d, a, c 
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Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

 
e.g. 

a. .b 

 
c.   .d   .e   

 
 

 
 
(a,e)ÎR3 since there is a path of length 3 between a and e. 
 
 
 
 
 
 

A path: 
a, b, d, e 
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Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

 
e.g. 

a. .b 

 
c.   .d   .e   

 
 

 
 
(a,e)ÎR3 since there is a path of length 3 between a and e. 
 
But also (a,e)ÎR6 since there is also another path of length 6 between a and e:  
     a,b,d,a,c,d,e 
 
 
 

A path: 
a, b, d, e 
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Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

Proof: Use induction. 
 
Basis step:  
By definition there is a path of length 1 from a to b iff (a, b)ÎR. Hence true for n = 1. 
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Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

Proof: Use induction. 
 
Basis step:  
By definition there is a path of length 1 from a to b iff (a, b)ÎR. Hence true for n = 1. 
 
Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1. 
 
There is a path of length n+1 from a to b iff  
    
$cÎA  s. t. there is a path of length 1 from a to c and a path of length n from c to b 
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Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

Proof: Use induction. 
 
Basis step:  
By definition there is a path of length 1 from a to b iff (a, b)ÎR. Hence true for n = 1. 
 
Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1. 
 
There is a path of length n+1 from a to b iff  
    
$cÎA  s. t. there is a path of length 1 from a to c and a path of length n from c to b 
that is, $cÎA  such that (a,c)ÎR and (c,b)ÎRn   (by inductive hypothesis) 
 
 
 
 
 



 61 

Theorem:  
Let R be a relation on A, then there is a path of length n from a to b iff (a, b)ÎRn. 
 

Proof: Use induction. 
 
Basis step:  
By definition there is a path of length 1 from a to b iff (a, b)ÎR. Hence true for n = 1. 
 
Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1. 
 
There is a path of length n+1 from a to b iff  
    
$cÎA  s. t. there is a path of length 1 from a to c and a path of length n from c to b 
that is, $cÎA  such that (a,c)ÎR and (c,b)ÎRn   (by inductive hypothesis) 
which implies (a, b)ÎRn+1  (by definition of composite relation). 
 
 
\ There is a path of length n +1 from a to b  iff (a, b)ÎRn+1 
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Transitive Closure: 
 
Finding transitive closure is equivalent to determining vertices that are connected 
through a path. 
 

Definition: 
Let R be a relation on A. 
Connectivity relation R* consists of all pairs (a, b) s.t. there’s a path between a and b 
in R.  
 
Since Rn includes all the paths of length n by the previous theorem,  
 

  𝑅∗ = ⋃ 𝑅%&
%'(  
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Transitive Closure: 
 
Finding transitive closure is equivalent to determining vertices that are connected 
through a path. 
 

Definition: 
Let R be a relation on A. 
Connectivity relation R* consists of all pairs (a, b) s.t. there’s a path between a and b 
in R.  
 
Since Rn includes all the paths of length n by the previous theorem,  
 

  𝑅∗ = ⋃ 𝑅%&
%'(  

 

e.g. 
Let R be a relation on the set of people in the world that contains (a,b) if a has met b. 

 
R2: ?  if (a, b) Î R2 then $c s.t. (a, c)ÎR  and (c, b)ÎR 
 
R*: ?  (a, b)ÎR* if there is a sequence of people, starting with a and ending with b. 
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
 
i. R* is transitive? 
If (a, b)ÎR*, there is a path from a to b. 
If (b, c)ÎR*, there is a path from b to c. 
\ There is a path from from a to c, which means (a, c)ÎR*. 

 
ii.  
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
 
i. R* is transitive? 
If (a, b)ÎR*, there is a path from a to b. 
If (b, c)ÎR*, there is a path from b to c. 
\ There is a path from from a to c, which means (a, c)ÎR*. 

 
ii. Let S be any transitive relation that contains R, i.e. R Í S. Show R*Í S. 
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
 
i. R* is transitive? 
If (a, b)ÎR*, there is a path from a to b. 
If (b, c)ÎR*, there is a path from b to c. 
\ There is a path from from a to c, which means (a, c)ÎR*. 

 
ii. Let S be any transitive relation that contains R, i.e. R Í S. Show R*Í S. 
Since S is transitive, Sn Í S        (by the theorem in Sec. 9.1)  
 
 
 
 
 
 



 69 

Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
 
i. R* is transitive? 
If (a, b)ÎR*, there is a path from a to b. 
If (b, c)ÎR*, there is a path from b to c. 
\ There is a path from from a to c, which means (a, c)ÎR*. 

 
ii. Let S be any transitive relation that contains R, i.e. R Í S. Show R*Í S. 
Since S is transitive, Sn Í S        (by the theorem in Sec. 9.1)  
 
Sn Í S  and  𝑆∗ = ⋃ 𝑆%&

%'(      Þ    S* Í S 
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Theorem: 
The transitive closure of a relation R equals to the connectivity relation R*. 
Proof: 
We must show that, (i) R* is transitive and (ii) any transitive relation that contains R 
contains also R*. 
 
i. R* is transitive? 
If (a, b)ÎR*, there is a path from a to b. 
If (b, c)ÎR*, there is a path from b to c. 
\ There is a path from from a to c, which means (a, c)ÎR*. 

 
ii. Let S be any transitive relation that contains R, i.e. R Í S. Show R*Í S. 
Since S is transitive, Sn Í S        (by the theorem in Sec. 9.1)  
 
Sn Í S  and  𝑆∗ = ⋃ 𝑆%&

%'(      Þ    S* Í S 
Since R Í S (given),  R* Í S*                            
 
\  R*Í S.  
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Thus any transitive relation S  that contains R contains also R*. ô Given R, how can we 
compute the connectivity relation R*? 
 
 
  𝑅∗ = ⋃ 𝑅%&

%'(  ? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 72 

ô Given R, how can we compute the connectivity relation R*? 
 
Lemma: 
Let R be a relation in A and  |A| = n. If there is a path from a to b in R, then one can 
always find a path from a to b with length not exceeding n. 
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ô Given R, how can we compute the connectivity relation R*? 
 
Lemma: 
Let R be a relation in A and  |A| = n. If there is a path from a to b in R, then one can 
always find a path from a to b with length not exceeding n. 
 
 
Proof: 
Suppose there is a path x0, x1, …, xm from x0 = a to xm = b with length m.  
If m > n, then there are at least two vertices on this path, equal to each other xi = xj such 
that 0 £ i < j £ m –1.    (by the pigeonhole principle) 
 
We can cut this circuit and form a new path 

 x0, x1, …, xi, xj+1, …, xm 
If we do the same for all such two vertices, we get a path of length £ n. 
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ô Given R, how can we compute the connectivity relation R*? 
 
Lemma: 
Let R be a relation in A and  |A| = n. If there is a path from a to b in R, then one can 
always find a path from a to b with length not exceeding n. 
 
 
 
Hence by the Lemma, 
 
 𝑅∗ = ⋃ 𝑅* =&

*'( ⋃ 𝑅*%
*'(  
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Theorem: 
 
Let MR be zero-one matrix of R on a set A with n elements. Then the zero-one matrix 
representation of R* is  

MR* = MR Ú M2RÚ M3R Ú … Ú MnR 

 
 
e.g. 
Let R = {(a, a), (a, c), (b, a), (c, a), (c, c)}. Find R*. 
 

MR =  M2R =   M3R =  

 

MR* = MR Ú M2R Ú M3R =    

 

ú
ú
ú

û

ù

ê
ê
ê

ë

é

101
001
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

101
101
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

101
101
101

ú
ú
ú

û

ù

ê
ê
ê

ë

é

101
101
101
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Algorithm for computation of connectivity relation: 
 
 Transitive closure (MR: zero-one matrix representation of R) 
  A = MR 
  B = A 
  for (i=2; i £ n ; i++) { 
   A = A    MR 
   B = B Ú A 
  } 
  return B 
 
 
 
 
Note that transitive closure is identical to connectivity relation. 
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Algorithm for computation of connectivity relation: 
 
 Transitive closure (MR: zero-one matrix representation of R) 
  A = MR 
  B = A 
  for (i=2; i £ n ; i++) { 
   A = A    MR 
   B = B Ú A 
  } 
  return B 
 
 
 
Note: Although in general S○R ≠ R○S, while computing powers of a relation, the order 
of compositions does not matter, hence 
 
Rn+1 = Rn ○ R = R○ Rn   Þ   Mn+1

R = Mn
R      MR = MR    Mn

R       
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Algorithm for computation of connectivity relation: 
 
 Transitive closure (MR: zero-one matrix representation of R) 
  A = MR 
  B = A 
  for (i=2; i £ n ; i++) { 
   A = A    MR 
   B = B Ú A 
  } 
  return B 
 
 
Complexity: 
 A    MR : (n + (n –1))n2   operations   
 B Ú A : n2 operations 
 
T(n) = (n -1) (n2(2n -1) + n2) = (n -1)(2n3) 
\ T(n)  is O(n4).   (Polynomial complexity) 
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e.g.  Let (a, b)ÎR if there is a non-stop flight from city a to b. 
 

When is (a, b) in  
 R2?  If $c s.t. (a, c) ÎR, (c, b)ÎR. 
 R3?  If $c,d s.t. (a, c) Î R, (c, d)ÎR, (d, b)ÎR. 
 R*?  If it is possible to fly from a to b. 
 
 
R* can be computed using the algorithm of the previous slide. 
 
  



 80 

9.5 Equivalence Relations 
e.g. Consider the relation R = {(a, b) ½ a º b  (mod 4)} 
R is symmetric, transitive and reflexive. 
 
Hence we say, R is an equivalence relation. 
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9.5 Equivalence Relations 
e.g. Consider the relation R = {(a, b) ½ a º b  (mod 4)} 
R is symmetric, transitive and reflexive. 
 
Hence we say, R is an equivalence relation. 
 
What matters? 
 
R divides (or partitions) the set of integers into four disjoint subsets: 
 

{…,-8,-4,0,4,8,…}, {…,-7,-3,1,5,9,…}, {…,-6,-2,2,6,10,…}, {…,-5,-1,3,7,11,…} 
 
where any two integers in a given subset is related with R, hence said to be 
“equivalent” to each other.  
 

(4,8)ÎR hence 4 is equivalent to 8, and so is (1,5). 
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Definition: Equivalence Relation 
If a relation is reflexive, symmetric and transitive then it is called an equivalence 
relation. 
Equivalent elements: Two elements that are related by an equivalence relation. 
 
§ R (defined previously) is an equivalence relation, more specifically a “modular” 

equivalence relation. 
§ (4,8)ÎR hence 4 is equivalent to 8, and so is (1,5). 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
 
§ R is reflexive since "a  L(a) = L(a) which implies that (a, a)ÎR. 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
 
§ R is reflexive since "a  L(a) = L(a) which implies that (a, a)ÎR. 
§ R is symmetric since "a,b   (a, b)ÎR ® L(a) = L(b) ® L(b) = L(a)  ® (b, a)ÎR 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
 
§ R is reflexive since "a  L(a) = L(a) which implies that (a, a)ÎR. 
§ R is symmetric since "a,b   (a, b)ÎR ® L(a) = L(b) ® L(b) = L(a)  ® (b, a)ÎR 
§ R is transitive since "a,b,c  (a, b)ÎR Ù (b, c)ÎR  ®  L(a) = L(b)  Ù  L(b) = L(c)    

                     ®  L(a) = L(c)  ® (a, c)ÎR                    
 
\ R is an equivalence relation. 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
 
§ R is reflexive since "a  L(a) = L(a) which implies that (a, a)ÎR. 
§ R is symmetric since "a,b   (a, b)ÎR ® L(a) = L(b) ® L(b) = L(a)  ® (b, a)ÎR 
§ R is transitive since "a,b,c  (a, b)ÎR Ù (b, c)ÎR  ®  L(a) = L(b)  Ù  L(b) = L(c)    

                     ®  L(a) = L(c)  ® (a, c)ÎR                    
 
\ R is an equivalence relation. 
 
“discrete” is equivalent to “computer” with respect to R. 
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Another relation example that defines an equivalence between strings: 
 
Let R be a relation on the set of strings : 

R = {(a, b) ½ L(a) = L(b)},  where L(x) is the length of string x. 
 
§ R is reflexive  
§ R is symmetric  
§ R is transitive  

 
 
 \ R is an equivalence relation. 
 
“discrete” is equivalent to “computer” with respect to R. 
 
§ R divides (or partitions) the set of strings into disjoint subsets, where each subset 

contains all strings of the same length. 
 
§ Any two strings in a given subset are equivalent to each other (with respect to the 

relation). 
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e.g. 
Relations on a set of people: 

a) {(a, b) ½ a and b are at the same age} 
b) {(a, b) ½ a and b speak a common language} 

 
Are they equivalence relations? 
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e.g. 
Relations on a set of people: 

a) {(a, b) ½ a and b are at the same age} Yes 
b) {(a, b) ½ a and b speak a common language} No 

 
Are they equivalence relations? 
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Equivalence Classes:  
 
e.g. 
  R = {(a, b) ½ a º b  (mod m)} 
 
What is the equivalence class of 1 with respect to R? 
 
1 is equivalent to 1-m, 1, 1+m, and so on. 
 
Hence, the equivalence class of 1:  

[1]R = {…., 1-m, 1, 1+m, 1+2m, ….} 
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Definition: Equivalence class 
Let R be an equivalence relation on A. 
The set of all elements that are related to an element a of A is called the equivalence 
class of a: 

[a]R = { s ½ (a, s)ÎR} 
 
 
 
e.g. 

 [1]R = {…., 1-m, 1, 1+m, 1+2m, ….} 
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e.g. Consider the equivalence relation on the set of strings. 
R = {(a, b) ½ L(a) = L(b)}, where L(x) is the length of string x. 
 
The equivalence class of the string “discrete” is the set of all strings with 8 characters. 
 
Let Sn denote the set of all strings with n characters. Then the above equivalence 
relation partitions the set of all strings S into infinitely many disjoint and nonempty 
subsets, S1, S2, S3, … 
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Equivalence Classes and Partitions: 
 
Equivalence classes partition (or divide) a set into disjoint, nonempty subsets. 
 

 
Proof: See Chapter 9.5 of your textbook, page 591 (7th edition). 
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Equivalence Classes and Partitions: 
 
Equivalence classes partition (or divide) a set into disjoint, nonempty subsets. 
 

 
e.g. 
  R = {(a, b) ½ a º b  (mod m)} 
 
m equivalence classes: 
[0]R , [1]R, ….., [m -1]R 
 

All are disjoint and form a partition. 
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Equivalence Classes and Partitions: 
 
Equivalence classes partition (or divide) a set into disjoint, nonempty subsets. 
 

 
e.g. 
 
Relation R on a set of people: {(a, b) ½ a and b are at the same age} 
 
R partitions the set of people into equivalence classes (hence into nonempty disjoint 
subsets). 
 
Each equivalence class is the set of people who are at the same age, for example [a]R is 
the set of people who are 18 years old (if a is 18 years old). 
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e.g. 
Let R be a relation on the set of positive real-number pairs s.t.  
      ((a, b), (c, d )) Î R ↔ ad = bc 
 

Show that R is an equivalence relation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 98 

e.g. 
Let R be a relation on the set of positive real-number pairs s.t.  
      ((a, b), (c, d )) Î R ↔ ad = bc 
 

Show that R is an equivalence relation. 
 
R is reflexive since "a,b   ab = ab, which implies that ((a, b), (a, b )) Î R 
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e.g. 
Let R be a relation on the set of positive real-number pairs s.t.  
      ((a, b), (c, d )) Î R ↔ ad = bc 
 

Show that R is an equivalence relation. 
 
R is reflexive since "a,b   ab = ab, which implies that ((a, b), (a, b )) Î R 
R is  symmetric since "a,b,c,d  ((a, b), (c, d )) Î R ® ad = bc ® da = cb  
® ((c, d), (a, b)) Î R. 
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e.g. 
Let R be a relation on the set of positive real-number pairs s.t.  
      ((a, b), (c, d )) Î R ↔ ad = bc 
 

Show that R is an equivalence relation. 
 
R is reflexive since "a,b   ab = ab, which implies that ((a, b), (a, b )) Î R 
R is  symmetric since "a,b,c,d  ((a, b), (c, d )) Î R ® ad = bc ® da = cb  
® ((c, d), (a, b)) Î R. 
 
R is transitive since "a,b,c,d,e,f   ((a, b), (c, d )) ÎR and ((c, d ), (e, f )) ÎR ® (ad = bc 
and cf = de) ® af = be ®  ((a, b), (e, f )) ÎR  
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e.g. 
Let R be a relation on the set of positive real-number pairs s.t.  
      ((a, b), (c, d )) Î R ↔ ad = bc 
 

Show that R is an equivalence relation. 
 
R is reflexive since "a,b   ab = ab, which implies that ((a, b), (a, b )) Î R 
R is  symmetric since "a,b,c,d  ((a, b), (c, d )) Î R ® ad = bc ® da = cb  
® ((c, d), (a, b)) Î R. 
 
R is transitive since "a,b,c,d,e,f   ((a, b), (c, d )) ÎR and ((c, d ), (e, f )) ÎR ® (ad = bc 
and cf = de) ® af = be ®  ((a, b), (e, f )) ÎR  
 
 
Thus, equivalence classes for this relation partition the set of positive real number pairs 
into disjoint nonempty subsets such that  
 
[(a,b)]R = {(x,y) | x/y = a/b = c, c is a positive real number} 
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9.6 Partial Order Relations 

We can use relations to order/sort elements of a set. 
 

e.g.  S = {1, 3, 4, 2, 5} 
 
§ R = {(a, b) ½ a £ b} is reflexive, anti-symmetric and transitive, thus it is a “partial 

order relation”, and we can use it as a criterion to order elements of the set S: 
1, 2, 3, 4, 5 (ascending order) 
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9.6 Partial Order Relations 
We can use relations to order/sort elements of a set. 
 

e.g.  S = {1, 3, 4, 2, 5} 
 
§ R = {(a, b) ½ a £ b} is reflexive, anti-symmetric and transitive, thus it is a “partial 

order relation”, and we can use it as a criterion to order elements of the set S: 
1, 2, 3, 4, 5 (ascending order) 

 
§ R = {(a, b) ½ a ³ b} is also reflexive, anti-symmetric and transitive, thus also a 

partial order relation, that defines a different criterion: 
5, 4, 3, 2, 1 (descending order)  
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9.6 Partial Order Relations 
We can use relations to order/sort elements of a set. 
 

e.g.  S = {1, 3, 4, 2, 5} 
 
§ R = {(a, b) ½ a £ b} is reflexive, anti-symmetric and transitive, thus it is a “partial 

order relation”, and we can use it as a criterion to order elements of the set S: 
1, 2, 3, 4, 5 (ascending order) 

 
§ R = {(a, b) ½ a ³ b} is also reflexive, anti-symmetric and transitive, thus also a 

partial order relation, that defines a different criterion: 
5, 4, 3, 2, 1 (descending order)  

 

§ R = {(1,1), (2,2), (3,3), (4,4), (5,5), (2,1), (2,3), (3,1), (1,4), (2,4), (3,4), (5,1), 
(5,4)} is reflexive, anti-symmetric and transitive, thus a partial order relation, that 
yet defines another criterion: 
5, 2, 3, 1, 4 (some weird order)  
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Definition: Partial Order Relation:  
A relation R on a set S is called partial order relation (or a partial ordering) iff it is 
reflexive, anti-symmetric and transitive. 
 
A set S together with a partial ordering R is called a partially ordered set, or poset, and 
is denoted by (S, R). 
 

e.g.  
  R = {(a, b) ½ a £ b} is a partial order on Z. 
  Hence (Z, R) is a poset. 
 

e.g. 
  R = {(a, b)½ a | b} is a partial order on Z. 
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Definition: Partial Order Relation:  
A relation R on a set S is called partial order relation (or a partial ordering) iff it is 
reflexive, anti-symmetric and transitive. 
 
A set S together with a partial ordering R is called a partially ordered set, or poset, and 
is denoted by (S, R). 
 

e.g.  
  R = {(a, b) ½ a £ b} is a partial order on Z. 
  Hence (Z, R) is a poset. 
 

e.g. 
  R = {(a, b)½ a | b} is a partial order on Z. 
 
 

A partial order relation defines what means being ‘less than or equal to’  
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e.g.  S = {1, 3, 4, 2, 5} 
 
§ R = {(a, b) ½ a £ b} is a partial ordering: 

1 ≼ 2 ≼ 3 ≼ 4 ≼ 5 (ascending order) 
 
§ R = {(a, b) ½ a ³ b} is a partial ordering: 

5 ≼ 4 ≼ 3 ≼ 2 ≼ 1 (descending order)  

 

§ R = {(1,1), (2,2), (3,3), (4,4), (5,5), (2,1), (2,3), (3,1), (1,4), (2,4), (3,4), (5,1), 
(5,4)} is a partial ordering: 
5 ≼ 2 ≼ 3 ≼ 1 ≼ 4  

 
 
a ≼ b means (a, b)ÎR.   (where R is a partial order) 
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e.g.  S = {1, 3, 4, 2, 5} 
 
§ R = {(a, b) ½ a £ b} is a partial ordering: 

1 ≺ 2 ≺ 3 ≺ 4 ≺ 5 (ascending order) 
 
§ R = {(a, b) ½ a ³ b} is a partial ordering: 

5 ≺ 4 ≺ 3 ≺ 2 ≺ 1 (descending order)  

 

§ R = {(1,1), (2,2), (3,3), (4,4), (5,5), (2,1), (2,3), (3,1), (1,4), (2,4), (3,4), (5,1), 
(5,4)} is a partial ordering: 
5 ≺ 2 ≺ 3 ≺ 1 ≺ 4  

 
 
a ≺ b means (a, b)ÎR, but a ¹ b. 
 
We can write 1 ≺ 2  or 1 ≼ 2 or 1 ≼ 1  but not 1 ≺ 1   
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Comparable vs Incomparable  
 

 
e.g. 
Poset (Z+, R)  with R = {(a, b)½ a | b} 
 
(3,6)ÎR, thus 3 ≼ 6, hence 3 and 6 are comparable. 
 
(3,10)ÏR,  thus we cannot write 3 ≼ 10 or 10 ≼ 3, hence 3 and 10 are incomparable. 
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Definition: 
The elements a, b of a poset (S, ≼) are called comparable if either a ≼ b or b ≼ a. 
Otherwise they are called incomparable.  
 
 
e.g. 
Let R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c}. 
R is reflexive, anti-symmetric and transitive \ R is a partial order \ (S, R) is a poset. 
All elements are comparable: a ≼ a    b ≼ c    b ≼ a   
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Definition: 
The elements a, b of a poset (S, ≼) are called comparable if either a ≼ b or b ≼ a. 
Otherwise they are called incomparable.  
 
 
e.g. 
Let R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c}. 
R is reflexive, anti-symmetric and transitive \ R is a partial order \ (S, R) is a poset. 
All elements are comparable: a ≼ a    b ≼ c    b ≼ a   
 
e.g. 
Poset (Z+, R)  with R = {(a, b)½ b | a}. 
1 ≼ 1   4 ≼ 2   10 ≼ 5   
 
We cannot write 2 ≼ 3 or 3 ≼ 2, hence 2 and 3 are incomparable. 
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Definition:  
If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally 
ordered set and ≼ is called a total order(ing). 
 
e.g.  Poset (Z+, R ) with R = {(a, b)½ a | b} 
R is not a total ordering since there are elements incomparable such as 5 and 6. 
 
e.g.  Poset (S, R ) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c} 
R is a total ordering; every two elements are comparable. 
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Definition:  
If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally 
ordered set and ≼ is called a total order(ing). 
 
e.g.  Poset (Z+, R ) with R = {(a, b)½ a | b} 
R is not a total ordering since there are elements incomparable such as 5 and 6. 
 
e.g.  Poset (S, R ) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c} 
R is a total ordering; every two elements are comparable. 
 
e.g.  R = {(a, b) ½ b £ a} on the set of integers. 
R is a total ordering; every two elements are comparable, for instance 10 ≼5.   
 
e.g.  Rt = {(a,b) | a is taller than b  or  a = b} on the set of all people. 
? 
 
e.g.  Rt = {(a,b) | a is taller than or of the same height with b} on the set of all people. 
? 
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Definition:  
If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally 
ordered set and ≼ is called a total order(ing). 
 
e.g.  Poset (Z+, R ) with R = {(a, b)½ a | b} 
R is not a total ordering since there are elements incomparable such as 5 and 6. 
 
e.g.  Poset (S, R ) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c} 
R is a total ordering; every two elements are comparable. 
 
e.g.  R = {(a, b) ½ b £ a} on the set of integers. 
R is a total ordering; every two elements are comparable, for instance 10 ≼5.   
 
e.g.  Rt = {(a,b) | a is taller than b  or  a = b} on the set of all people. 
Rt is not a total ordering; two different people with the same height are not 
comparable. 
e.g.  Rt = {(a,b) | a is taller than or of the same height with b} on the set of all people. 
? 
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Definition:  
If (S, ≼) is a poset and every two elements of S are comparable, S is called a totally 
ordered set and ≼ is called a total order(ing). 
 
e.g.  Poset (Z+, R ) with R = {(a, b)½ a | b} 
R is not a total ordering since there are elements incomparable such as 5 and 6. 
 
e.g.  Poset (S, R ) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)}  on S = {a, b, c} 
R is a total ordering; every two elements are comparable. 
 
e.g.  R = {(a, b) ½ b £ a} on the set of integers. 
R is a total ordering; every two elements are comparable, for instance 10 ≼5.   
 
e.g.  Rt = {(a,b) | a is taller than b  or  a = b} on the set of all people. 
Rt is not a total ordering; two different people with the same height are not 
comparable. 
e.g.  Rt = {(a,b) | a is taller than or of the same height with b} on the set of all people. 
Rt is not even a partial ordering since it is not anti-symmetric. 
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Lexicographic (Alphabetic) Order 
 
e.g. Comparing strings by  ≼  = {(a, b) | letter a appears before letter b in the alphabet 
or a = b}. 
  “that” ≺ “this”  
 
why? 
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Lexicographic (Alphabetic) Order 
 
e.g. Comparing strings by  ≼  = {(a, b) | letter a appears before letter b in the alphabet 
or a = b}. 
  “that” ≺ “this”  
 
since 
 

  t = t,  h = h and a ≺ i. 
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Lexicographic (Alphabetic) Order 
 
To be able to compare n-tuples  

(a1, a2, …, an)  ?≺  (b1, b2, …., bn),  
 

we need n posets (hence n partial order relations): 
  (A1, ≼1), (A2, ≼2), …., (An, ≼n),     where a1, b1Î A1; a2, b2Î A2 and so on. 
 
 
 
 
 
 
 
 
 
 
 



 119 

Lexicographic (Alphabetic) Order 
 
To be able to compare n-tuples  

(a1, a2, …, an)  ?≺  (b1, b2, …., bn),  
 

we need n posets (hence n partial order relations): 
  (A1, ≼1), (A2, ≼2), …., (An, ≼n),     where a1, b1Î A1; a2, b2Î A2 and so on. 
 
 
Then we can write  

 (a1, a2, …, an)  ≺  (b1, b2, …., bn) 
whenever 

a1 ≺1 b1  or   $i  0 < i < n  such that  a1 = b1, ...., ai = bi, and ai+1 ≺i+1 bi+1  
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Hasse Diagrams: 
  
Let’s consider the graph representation of  ({1, 2, 3}, £ ) 
 
 3.         
 
 2.         
 
 1.         
 
Partial ordering 
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Hasse Diagrams: 
  
Let’s consider the graph representation of  ({1, 2, 3}, £ ) 
 
 3.    3.     
 
 2.  2.  
 
 1.    1.     
 
Partial ordering: 
 

§ Reflexive: Since each node has loop, no need to draw loops explicitly. 
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Hasse Diagrams: 
  
Let’s consider the graph representation of  ({1, 2, 3}, £ ) 
 
 3.    3.    3. 
 
 2.    2.  2.  2.  
 
 1.    1.    1. 
 
Partial ordering: 
 

§ Reflexive: Since each node has loop, no need to draw loops explicitly. 
 
§ Transitive: Since having (1, 2), (2, 3) means we have (1, 3), no need to draw the 

edge (1, 3) explicitly; same for other transitions.  
 

§ Anti-symmetric: No need to show directions, since we can assume all edges     
pointed upwards by convention. 

 

Hasse diagram 
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e.g. 
Consider the partial ordering {(a, b) ½ a | b} on {1, 2, 3, 4, 6}. 
 
 
 

4.  .6  4.  .6  4.  .6 
 

2.  .3  2.  .3  2.  .3 
 
  .1    .1    .1 
 
 
 
 
 
 
 
 
 

Hasse diagram 
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e.g. 
Consider the partial ordering {(a, b) ½ b | a} on {1, 2, 3, 4, 6}. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 

2 3 

6 4 

3 and 6 are comparable: 6 ≼ 3  
 
2 and 3 are not comparable. 
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e.g. 
Consider the partial ordering  

R = {(1, 1), (2,2), (3, 3), (4,4), (2, 1), (2, 3), (3, 1), (4,1)}  on S = {1, 2, 3, 4}. 
 
Draw the Hasse Diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 126 

e.g. 
Consider the partial ordering  

R = {(1, 1), (2,2), (3, 3), (4,4), (2, 1), (2, 3), (3, 1), (4,1)}  on S = {1, 2, 3, 4}. 
 
Draw the Hasse Diagram. 

 
 
 
 
 
 
 
 
4,2 are minimal elements 
1 is maximal element 
 
 
 
 

1 

3 

4 2 
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Maximal and Minimal Elements: 
An element a is a maximal in poset (S, ≼) if there is no b Î S  s.t. a ≺ b. 
(top elements in Hasse diagram) 
An element a is a minimal in poset (S, ≼) if there is no b Î S  s.t. b ≺ a.  
(bottom elements in Hasse diagram) 
 
e.g. (from textbook) 
  
 
 
 
 
 
 
 
 

a) Maximal elements: ? 
b) Minimal elements:  ? 

l    m 
 
 
j  k 
 
 
i  h  g 
 
 
d  e  f 
 
 
a  b  c 
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Maximal and Minimal Elements: 
An element a is a maximal in poset (S, ≼) if there is no b Î S  s.t. a ≺ b. 
(top elements in Hasse diagram) 
An element a is a minimal in poset (S, ≼) if there is no b Î S  s.t. b ≺ a.  
(bottom elements in Hasse diagram) 
 
e.g. (from textbook) 
  
 
 
 
 
 
 
 
 

a) Maximal elements: l, m 
b) Minimal elements: a, b, c 

l    m 
 
 
j  k 
 
 
i  h  g 
 
 
d  e  f 
 
 
a  b  c 
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Compatible Total Ordering 
 
e.g. (from textbook) 
       G 
 
  D        F  

 
  B 
 
 
A      C      E 
 
  
  
  

Hasse Diagram for 
scheduling seven tasks 

Poset (S,R): 
 
S ={A, B, C, D, E, F, G} 
R = {(T1, T2) | task T1 must precede T2 or (T1 = T2), T1,T2ÎS} 
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Compatible Total Ordering 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
A      C      E 
 
 
There are various compatible total orderings:  
 

A, C, E, B, D, F, G    
or 
 A , C , B, E, F, D, G 
or 

. 

. 

. 

. 

Hasse Diagram for 
scheduling seven tasks 
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Compatible Total Ordering 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
A      C      E 
 
 
There are various compatible total orderings:  
 

A, C, E, B, D, F, G    
or 
 A , C , B, E, F, D, G 
or 

. 

. 

. 

. 

Hasse Diagram for 
scheduling seven tasks 

§ Total ordering because all the 
elements in the set are ordered. 

§ Each of these orderings is compatible 
with the partial order relation.  

§ We can find these compatible total 
orders in general by applying the 
topological sorting algorithm. 

§ See the next slide. 



 132 

Topological Sorting Algorithm 
 
A compatible total ordering can be constructed with a partial ordering R: 
 
 Topo-sort (S,R: finite poset) 
  k = 1 
  while S ¹ Æ { 
   ak = minimal element of S 
   S = S – {ak} 
   k = k +1 
  } 
 
{a1 ,a2 ,…,an} is a compatible total ordering of S (compatible with relation R). 
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
A      C      E 
 
 
Minimal elements are A, C and E; pick one, say A. 
 
 
 
 
 



 134 

How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
      C      E 
 
 
 
Remove A and its connections. 
Minimal elements are then C and E; pick one, say C. 
 
 
 

A,  
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
            E 
 
 
 
Remove C and its connections. 
Minimal elements are then B and E; pick one, say B. 
 
 
 

A, C,  
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
   
 
 
            E 
 
 
 
Remove B and its connections. 
Minimal elements are then D and E; pick one, say E. 
 
 
 

A, C, B,  
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
   
 
 
             
 
 
 
Remove E and its connections. 
Minimal elements are then D and F; pick one, say F. 
 
 
 

A, C, B, E,  
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D          

 
   
 
 
             
 
 
 
Remove F and its connections. 
The only minimal element is then D; pick D. 
 
 
 

A, C, B, E, F,   
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
            
 
   
 
 
             
 
 
 
Remove D and its connections. 
The only element is then G; pick G. 
 
 
 

A, C, B, E, F, D, 
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How to apply toplogical sorting algorithm to the Hasse diagram below: 
 
e.g.  
       G 
 
  D        F  

 
  B 
 
 
A      C      E 
 
 
We get A, C, E, B, D, F, G as a compatible total ordering.  
Depending on the choices you make to pick a minimal element, you may end up with 
different compatible total ordering alternatives, all valid and respecting the partial 
ordering relation. 
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for 
the given poset. 
 

 R = {(a, b) ½ a | b} 
 

a) A = {1, 2, 3, 4, 5, 6, 7, 8} 
 
 
 
 
 
 

 
 
 
 
 
 

b) A = {1, 2, 3, 6, 12, 24, 36, 48} 
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for 
the given poset. 
 

 R = {(a, b) ½ a | b} 
 

a) A = {1, 2, 3, 4, 5, 6, 7, 8} 
 
 
 
 
 
 
 
 
 
 

 
 

b) A = {1, 2, 3, 6, 12, 24, 36, 48} 
 
 
 
 
 
 

8 
 
4   6 
 
2   3 5 7 
 
       . 

      1 
 

One possible compatible total ordering: 
1, 7, 3, 5, 2, 4, 8, 6 
 
Another: 1, 2, 3, 5, 7, 4, 8, 6 
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for 
the given poset. 
 

 R = {(a, b) ½ a | b} 
 

a) A = {1, 2, 3, 4, 5, 6, 7, 8} 
 
 
 
 
 
 
 
 
 
 
 
 

b) A = {1, 2, 3, 6, 12, 24, 36, 48} 
 
 
 
 
 
 

    48 
 
    24   36 
 
    12 
 
    6 
 
2    3 
 
   1 

8 
 
4   6 
 
2   3 5 7 
 
       . 

      1 
 

One possible compatible total ordering: 
1, 7, 3, 5, 2, 4, 8, 6 
 
Another: 1, 2, 3, 5, 7, 4, 8, 6 
 
 

One possible compatible total ordering: 
1, 3, 2, 6, 12, 24, 36, 48 
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e.g. (from textbook)  Draw Hasse Diagram for the inclusion relation R on the power set 
P(S) where S = {a, b, c, d }. 
 
R ={(S1, S2) | S1Í S2,  S1, S2 Î P(S)} 
 
 
 
 
 
 
 
 
 
 
 
 

      abcd 
 
 
 
abc    abd    acd    bcd 
 
 
 

ab  ac  bc  ad  bd  cd 
 
 
 
   a  b  c  d 
 
 
 
      Æ  


