9. Relations

Relations are discrete structures that are used to represent relationships between
elements of sets.

Relations can be used to solve problems such as:
e Determining which pairs of cities are linked by airline flights in a network,
e Computing the distance between a pair of registered Facebook users.
¢ Finding an efficient order for different phases of a complicated project,
¢ Producing a useful way to store information in computer databases, etc.




9.1 Relations and Their Properties

Definition: Binary relation
Let A, B be sets. A binary relation R from A to B is a set of ordered pairs, hence a
subset of 4 xB.

Notation:
a 1s “related to” b by R: aRb: (ab)eR;acA, beB
a 1s “not related to” b by R: akRb: (ab)eR



e.g.
A: set of cities
B: set of countries

R: (a, b)eR if city a 1s in country b.

(Izmir, Turkey), (Paris, France) € R



Function is a special case of relation

A function f from A4 to B can be thought of as the set of ordered pairs (a, b) s.t. b=
fa)

Since the function f 1s a subset of 4 x B, f 1s a relation from 4 to B.

Function is a special case of relation: Every element of 4 1s the first element of exactly
one ordered pair of the function f.
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Relations defined on a single set:

Definition:
A relation on a set 4 1s a relation from A4 to A4.

e.g.
A=1{1,2,3,4}

R={(a,b)| alb,(a, b)e AxA}
=11, 1), (1,2), (1, 3),(1,4), (2, 2),(2,4), 3, 3), (4, 3]



Relations defined on a single set:

Definition:
A relation on a set 4 1s a relation from A4 to A4.

e.g.
A=1{1,2,3,4}
R={(a,b)| alb,(a, b)e AxA}
=11, 1), (1, 2), (1, 3), (1,4), (2,2),(2,4), 3, 3), (4, 4)}
e.g.
How many relations are there on a set with n elements?
[AxA] = n?

- 2" (# of subsets of 4 x4)



Properties of Relations defined on a set:

Definition:
A relation R on a set 4 is called reflexive iff
(a,a)eR VaeAd

e.g.
A=1{1,2,3}

Ri=1{(1,2),2,2),(1,3)} (notreflexive)
Ro={(,1),(,3),2,2),3,1),3,3)} (reflexive)
R;={(1,3),(3, 1)} (irreflexive)



Properties of Relations defined on a set:

Definition:
A relation R on a set 4 is called reflexive iff
(a,a)eR VaeAd

e.g.
A={1, 2, 3}
Ri=1{(1,2),2,2),(1,3)} (notreflexive)
Ro={(,1),(,3),2,2),3,1),3,3)} (reflexive)
R;={(1,3),(3, 1)} (irreflexive)

e.g.

R: The set of pairs of people having the same eye color (reflexive)



Definition:
A relation R on a set 4 1s called

symmetric iff the following holds
(b,a)eR — (a,b)eR Va,beA



Definition:
A relation R on a set 4 1s called

symmetric iff the following holds
(b,a)eR — (a,b)eR Va,beA

anti-symmetric iff the following holds
(a,b)eR and (b,a)eR — a=0b

Va,beA
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Definition:
A relation R on a set 4 1s called

symmetric iff the following holds
(b,a)eR — (a,b)eR Va,beA

anti-symmetric iff the following holds
(a,b)eR and (b,a)eR — a=b VabeA

e.g.
Ri= {(a,b) | a 1s taller than b} anti-symmetric

R={(a,b) | atb+tab=12;a,b € Z} symmetric
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Definition:
A relation R on a set 4 1s called

symmetric iff the following holds
(b,a)eR — (a,b)eR Va,beA

anti-symmetric iff the following holds
(a,b)eR and (b,a)eR — a=b VabeA

e.g.
Ri= {(a,b) | a 1s taller than b} anti-symmetric

R={(a,b) | atb+tab=12;a,b € Z} symmetric

asymmetric iff Va,beA (a,b)eR — (b,a)¢R
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Definition:
R on set 4 1s called transitive 1ff
(a,b)eR and (b,c)eR — (a,c)eR Va,b,c € A.

e.g.
Ri= {(a,b) | a 1s taller than b} transitive?
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Definition:
R on set 4 1s called transitive 1ff

(a,b)eR and (b,c)eR — (a,c)eR Va,b,c € A.

e.g.
Ri= {(a,b) | a 1s taller than b} transitive?

e.g.
A= {1,2, 3}

Ri=1{(,2),(2,3),(1,3)} (transitive)
R>=1{(1,2),(2,3)} (nottransitive)
Ry=1{(1,2)} (?)
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e.g.
How many reflexive relations are there on a set with n elements?

If R 1s reflexive, then:

there are n pairs such that (a,a)eR

and n(n—1) pairs such that (a,b)eR where a # b
— # of reflexive relations = 27+

e.g.
How many symmetric relations are there on a set with n elements? (Exercise)
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Combining relations:

Let A = {a, b} B=1{1,2,3

Ry =1(a, 1), (b, 3)]
R>=1(a, 1), (a, 2), (b, 1), (b, 2);
R3= (b, 1), (b, 2)}
R4=(a, 1), (b, 2)}

RiUR3s={(a, 1), (b, 1), (b,?2),(b,3)}
RiNRk= {(a, 1)}

Ro—R3={(a, 1), (a,?2)}

Ri® Rs= {(b,2), (b, 3)}

@ 1s called “symmetric difference”, acts like XOR
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Definition: Let R: A—B and S: B—C. Then the composite relation of R and S,

SoR: A — C 1s defined s.t.

(a, c)eSoR 1ff (a, b)eR and (b,c)€S.

17



Definition: Let R: A—B and S: B—C. Then the composite relation of R and S,

SoR: A — C 1s defined s.t.

(a, c)eSoR 1ff (a, b)eR and (b,c)€S.

Definition:

Let R be a relation on 4.

The powers R", n=1, 2, 3, ..., are defined by
R'=R R’=RoR,..R"=R"'oR.

e.g. R = {(a,b) | b 1s a parent of a}
= R?= {(a,c) | c is a grand-parent of a} why?
since (a,b)eR means “b is a parent of a”, and (b,c)eR means “c 1s a parent of b”.
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Theorem:
R on a set 4 is transitive iff R — R foralln=1, 2, 3,...
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Theorem:
R on a set 4 is transitive iff R — R foralln=1, 2, 3,...

Proof:

If part: Gf R" = R forn=1, 2, 3,..., then R is transitive)

If R" = R, in particular R? — R.

Then, if (a,b)eR and (b,c)eR, by definition (a,c)eR>. Since R> — R, (a,c)eR.
. R 1s transitive.
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Theorem:
R on a set 4 is transitive iff R — R foralln=1, 2, 3,...

Proof:

If part: Gf R" = R forn=1, 2, 3,..., then R is transitive)

If R" = R, in particular R? — R.

Then, if (a,b)eR and (b,c)eR, by definition (a,c)eR>. Since R?> — R, (a,c)eR.
. R 1s transitive.

Only if part: (If R is transitive, then Vn R" < R) Use induction on #.

21



Theorem:
R on a set 4 is transitive iff R — R foralln=1, 2, 3,...

Proof:

If part: if R" = R forn=1, 2, 3,..., then R is transitive)
If R" — R, in particular R? — R.

Then, if (a,b)eR and (b,c)eR, by definition (a,c)eR>. Since R?> — R, (a,c)eR.

.. R 1s transitive.

Only if part: (If R is transitive, then Vn R" < R) Use induction on #.
Basis step: R! < R; true forn=1.
Inductive step: Assume R” < R and R is transitive. Show R"" < R.
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Theorem:
R on a set 4 is transitive iff R — R foralln=1, 2, 3,...

Proof:

If part: if R" = R forn=1, 2, 3,..., then R is transitive)
If R" — R, in particular R? — R.

Then, if (a,b)eR and (b,c)eR, by definition (a,c)eR>. Since R?> — R, (a,c)eR.

.. R 1s transitive.

Only if part: (If R is transitive, then Vn R" < R) Use induction on x.
Basis step: R! < R; true forn=1.
Inductive step: Assume R” < R and R is transitive. Show R"" < R.

Let (a,b)eR"' =R" o R.
Then dxeAd s.t. (a, x)eR and (x,b)eR”. Since R" = R, (x,b) € R.
Since R is transitive and (a, x)e R, we have (a,b)eR

LR cR
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Inverse and Complementary:

Inverse of R: R'= {(b, a)|(a, b) € R}

Complementary of R: R= {(a, b)|(a,b) ¢ R}
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Inverse and Complementary:

Inverse of R: R'= {(b, a)|(a, b) € R}
Complementary of R: R= {(a,b)|(a,b) ¢ R}
e.g.

Let R={(a,b)|a<b} R:4— B.

Inverse of R: R = {(b,a) | a<b}
Complementary of R: R={(a,b) | a = b}
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e.g.

R, § are reflexive relations on 4.
a) RUS is reflexive? Yes, since (x, x) € R

b) RS is reflexive? v/ so does R U S

c) R® S is irreflexive? v

d) R-S is irreflexive? v/

¢) SoR 1s reflexive? v

f) R is reflexive?

g) Complementary of R 1s irreflexive?

26



e.g.
Suppose R is irreflexive. Is R? also irreflexive?

No. Counter-example: Let a # b and R = {(a, b), (b, a)}
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9.2 n-ary Relations and Their Applications

Definition:
Let A1, A>, ..., An be sets.

An n-ary relation on these sets 1s a subset of 41 xXA4»x... XA4,.

The sets 4;: Domains of the relation
n: Degree of the relation

e.g.
R={(a,b,c)|a<b<cj
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Databases and Relations

The way we organize information in a database 1s important.
Operations such as add/delete record, update records, search for record, all have
heavy computation.

. Various methods for representing databases exist.

One method in particular 1s relational data model.

A database consists of records of n-tuples, made up of domains (fields).
e.g. Airflight Company (Flight No, Departure, Destination, Date)

You will have an elective database course in 3™ or 4" year.
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9.3 Representing Relations

Definition: A relation R can also be represented by a matrix Mg = [m;]:
1 if(a,b) eR
|0 if(a,b) R

m;

eg. Letd=1{1,2}, B={a,bc} and R: A— B such that
R={(1,5),(2,a),(2,0b),2,c)j

01 0
Mr=|1 1 1
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9.3 Representing Relations

Definition: A relation R can also be represented by a matrix Mg = [m;]:

1
m; = 0

if (a,b) €R
if (a,b) &R

e.g. Letd=1{1,2},
R={(1,5),(2,a),(2,0b), 2, c)j

Mg =

e.g.

0 1 0
1 1 1

B ={a, b,c} and R: A— B such that

|

Let R be a relation defined on 4 = {1, 2, 3}: R={(1,2),(2,2),(1,3)}

Mg =

0 1
0 1

0

0 0 0

.

Note that we get a square matrix whenever R: A— A.
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- Reflexive relation R s.t. (ai, a;))eR

—Vi mi =

1

diagonal with
all ones
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- Reflexive relation R s.t. (ai, a;))eR
=>Vi mj=

1

1.e., Mr = | , diagonal with
all ones

1
1

- Symmetric relation R s.t. (ai, a))eR < (a;, a;))eR
— Vi,j mi = mj;

N Symmetric matrix
Mr=|1 (M R= MTR)
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- Inverse and complementary relations:

Inverse: Mg = [mji] nxm (transpose)

Complementary: Mz = [—m;] mxn (negation)

34



Using Zero — One Matrices:

A matrix with entries that are either O or 1 is called a zero-one matrix.

Definition:

A = [ay] B = [b;] mxn zero-one matrices

Join of A,B: A v B=[a;V bj]
Meet of A, B: A AB=/[a;j A bjj]

e.g.

35



Using Zero — One Matrices:

A matrix with entries that are either O or 1 is called a zero-one matrix.

Definition:

A = [ay] B = [b;] mxn zero-one matrices

Join of A,B: A v B=[a;V bj]
Meet of A, B: A AB=/[a;j A bjj]

e.g.
A=[0 1 0 B=[0 0 1
1 0 1 1 0 0
Ave=0 L 1A ,g=0 00
1 0 1 100

Remark: Let Ri: A— Band R>»: A— B
MR1UR2 - MR1 Vv MRz

MleR2 = 1\/IR1 N\ 1\/IR2
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Definition: Boolean product
Let A = [a;] : mxk, B =[b]: kxn zero-one matrices

A OB = [c;] : mxn, where

Cij — (aﬂ A blj) \' (aiz A sz) V...V (a,-k A bk])

all ) .alk
;\ blj h .bln
<+ < ail. ) .aik ’ :
ith —
I TOW : b by,
aml ) amk
j® column
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e.g.

[ 1
A=10
1

oS = O

1 1T O
B:
0 1 1
2x3
T 3x2

(AADVOAO (AADVOALD) (1A0)VOAL]

ACB=|0ADvaA0 OADVAAL ©OA0)V (AL

| AADVOAO0 AADVOALD (AA0)VOALD ]

11 0]
=0 1 1
11 0

3x3



e.g.

[ 1
A=10
1

oS = O

(1 A1)V (0 A 0)

ACB=|0ArD)v1A0

| A1) v (0A0)

1 1 O

=10 1 1

11 0
3x3

Remark: LetR: A— Band S: B— C

1 1
B =
0 1

(IA1)v(OALD

3x2

OAD)Vv(AALD

AIAD)VvOAID

Ms.r = MR® Mg

O}
1
2x3

AA0)v (0 AT)]

O A0)v (1AT1)

(IA0)VvOAIL



Definition: r ™ Boolean Power
Let A be a square (nxn) zero-one matrix and » be a positive integer.

A'=A0 A® ., ©CA
7 times

A’ =1,

Remark: LetR: A— A4
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Representing Relations Using Graphs:

Pictorial representation.

Definition:
A directed graph (digraph) consists of a set J of vertices (or nodes) along with a set £
of edges (or arcs) which are ordered pairs of vertices.

Edge(a, b): a 1s initial vertex (node), b is terminal vertex (node)
e.g. a

é g loop
b c

R =1(a, b), (b, ¢), (c, b), (¢, ¢);

Relation R on a set 4 1s defined with
1) elements of A: vertices (nodes)
11) ordered pairs (a, b)eR: edges

41



Relation R 1s:
- reflexive 1ff every node has a loop
- symmetric iff every edge between two nodes has an edge in the opposite
direction.

- transitive 1ff edge (a, b) A edge (b, ¢) — edge (a, c) Va,b,c

N7

reflexive

C.Q
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Example to graph representation of a relation:

Connectivity problems:

1) Which nodes are connected?
2) What is the shortest path between two nodes?
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9.4 Closures of Relations

e.o. LetR=1{(1,1),(1,2),(3,2)} on 4 = {1,2, 3}

R 1s not reflexive; what 1s the smallest possible reflexive relation containing R?

44



9.4 Closures of Relations

e.g. LetR={(1,1),(1,2),(3,2)} on4=1{1, 2,3}
R 1s not reflexive; what 1s the smallest possible reflexive relation containing R?

§=11,1),(1,2),3,2), (2, 2), (3, 3)}

S 1s the reflexive closure of R.
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Definition: Closure
Let R be a relation on 4

P: some property, such as symmetry, reflexivity, transitivity
R may or may not have the property P.

The closure S 1s the smallest possible set with property P, which contains R.
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Definition: Closure

Let R be a relation on A4

P: some property, such as symmetry, reflexivity, transitivity
R may or may not have the property P.

The closure S 1s the smallest possible set with property P, which contains R.

More formal definition of closure:

If there 1s a relation S with property P containing R s.t. S 1s the subset of every relation
with property P containing R, then § is called the closure of R with P.
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Reflexive Closure:

Let R={(L,1),(1,2),(3,2)} on4 = {1, 2, 3}
The smallest possible reflexive relation containing R:

§=11,1),(1,2),3,2), (2, 2), 3, 3)}

S = Reflexive closure of R=R U A,
where A = {(a, a) | a € A} : diagonal relation
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Reflexive Closure:

Let R={(L,1),(1,2),(3,2)} on4 = {1, 2, 3}
The smallest possible reflexive relation containing R:

§=11,1),(1,2),(3,2),(2,2), (3,3);

S = Reflexive closure of R=R U A,
where A = {(a, a) | a € A} : diagonal relation

e.g.
R={(a, b)|a<b}, reflexive closure?

RUA={(a,b)|a<b} v {(a,a)|a e’}
= {(a,b)|a<b}
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Symmetric Closure:

LetR=1{(1,1),(1,2),(2,1),(2,3),(3,1),(3,3)} ond={1,2,3}

We should add all ordered pairs (b,a) , where (a, b) 1s in R and (b, a) 1s not in R.
Symmetric closure of R=R U {(3, 2), (1, 3)}
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Symmetric Closure:

LetR=1{(1,1),(1,2),(2,1),(2,3),(3,1),(3,3)} ond={1,2,3}

We should add all ordered pairs (b,a) , where (a, b) 1s in R and (b, a) 1s not in R.
Symmetric closure of R=R U {(3, 2), (1, 3)}

Symmetric closure of R=R U R'! (since R = {(b, a) | (a, b) € R})

e.g.
R={(a,b)|a<bj

Symmetric closure of R=R U R!
=@, b)|a<b} v {(b,a)|a<bj
={(a,b) | a#bj
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Transitive Closure:

LetR={(1,3),(1,4),(2,1),(3,2)} on {1, 2, 3, 4}
R 1s not transitive since there are pairs (a, ¢) ¢ R although (a, b), (b, ¢) €R.

(1) RV {(1,2),(2,3),(2,4), (3, 1)}
Is it transitive?
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Transitive Closure:

LetR={(1,3),(1,4),(2,1),(3,2)} on {1, 2, 3, 4}
R 1s not transitive since there are pairs (a, ¢) ¢ R although (a, b), (b, ¢) €R.

1) RV {(1,2),(2,3),(2,4),3, D}

Is it transitive? NO!
It has (3, 1),(1, 4), but not (3, 4).
We have a more difficult problem!!!

We might repeat step (1) until reaching a transitive relation. But there are better ways.
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e.g. Draw reflexive closure of

SeT T

N
/\.d
\/

How about symmetric closure? Transitive closure?
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Paths in Directed Graphs
We now introduce a new terminology that we will use in the construction of transitive
closures.

Definition:
A path from a to b in the directed graph G 1s a sequence of edges (xo, x1), (x1, X2), ...
(Xn-1, X2) In G Where x, = a and x, = b. This path is denoted by xo, x1, ..., x, and has a
length of n.

If x, = x,, the path is called a cycle or circuit.
Two vertices are said to be connected if there’s a path between them.

e.o.
& b A path:

< x?/\@ a,b,d, a,c

a 1s connected to e, but e 1s not connected to a.

The term path also applies to relations.
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

e.9.
& b A path:
< \> a.b.d e
YL — 7\

C. d €
\/ @

(a,e)e R’ since there is a path of length 3 between a and e.
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

“& b A path:
< \ > a.b.d e
YL — 7\

C. d €
\/ @

(a,e)e R’ since there is a path of length 3 between a and e.

But also (a,e)eR° since there is also another path of length 6 between a and e:
a,b,d,a,c,de
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff (a, b)eR. Hence true for n = 1.
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff (a, b)eR. Hence true for n = 1.

Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1.

There 1s a path of length n+1 from a to b iff

dceA s.t. there is a path of length 1 from a to ¢ and a path of length » from ¢ to b
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff (a, b)eR. Hence true for n = 1.

Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1.

There 1s a path of length n+1 from a to b iff

dceA s.t. there is a path of length 1 from a to ¢ and a path of length » from ¢ to b
that 1s, dceA such that (a,c)eR and (c,b)eR" (by inductive hypothesis)
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Theorem.
Let R be a relation on A4, then there 1s a path of length n from a to b iff (a, b)eR".

Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to b iff (a, b)eR. Hence true for n = 1.

Inductive step: Assume it is true for some arbitrary fixed n. Show for n+1.

There 1s a path of length n+1 from a to b iff

dceA s.t. there is a path of length 1 from a to ¢ and a path of length » from ¢ to b
that 1s, dceA such that (a,c)eR and (c,b)eR" (by inductive hypothesis)
which implies (a, b)eR""! (by definition of composite relation).

. There is a path of length n +1 from a to b iff (a, b)eR™"!

61



Transitive Closure:

Finding transitive closure 1s equivalent to determining vertices that are connected
through a path.

Definition:
Let R be a relation on A.

Connectivity relation R* consists of all pairs (a, b) s.t. there’s a path between a and b
in R.

Since R" includes all the paths of length n by the previous theorem,
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Transitive Closure:

Finding transitive closure 1s equivalent to determining vertices that are connected
through a path.

Definition:
Let R be a relation on A.

Connectivity relation R* consists of all pairs (a, b) s.t. there’s a path between a and b
in R.

Since R" includes all the paths of length n by the previous theorem,

e.g.
Let R be a relation on the set of people in the world that contains (a,b) 1f a has met b.

R?:? if (a, b) € R*then Jc s.t. (a, ¢)eR and (c, b)eR

R*:? (a, b)eR" if there is a sequence of people, starting with @ and ending with b.
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Theorem:
The transitive closure of a relation R equals to the connectivity relation R”.
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Theorem:
The transitive closure of a relation R equals to the connectivity relation R”.

Proof:
We must show that, (i) R” is transitive and (ii) any transitive relation that contains R

contains also R”.
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Theorem:

The transitive closure of a relation R equals to the connectivity relation R”.

Proof:

We must show that, (i) R” is transitive and (ii) any transitive relation that contains R
contains also R”.

i. R” is transitive?

If (a, b)eR’, there is a path from a to b.

If (b, c)eR’, there is a path from b to c.

. There is a path from from a to ¢, which means (a, c¢)eR".

il.
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Theorem:

The transitive closure of a relation R equals to the connectivity relation R”.

Proof:

We must show that, (i) R” is transitive and (ii) any transitive relation that contains R
contains also R”.

i. R” is transitive?

If (a, b)eR’, there is a path from a to b.

If (b, c)eR’, there is a path from b to c.

. There is a path from from a to ¢, which means (a, c¢)eR".

ii. Let S be any transitive relation that contains R, i.e. R = S. Show R°c S.
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Theorem:

The transitive closure of a relation R equals to the connectivity relation R”.

Proof:

We must show that, (i) R” is transitive and (ii) any transitive relation that contains R
contains also R”.

i. R” is transitive?

If (a, b)eR’, there is a path from a to b.

If (b, c)eR’, there is a path from b to c.

. There is a path from from a to ¢, which means (a, c¢)eR".

ii. Let S be any transitive relation that contains R, i.e. R = S. Show R°c S.
Since S is transitive, S" = S (by the theorem 1n Sec. 9.1)
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Theorem:

The transitive closure of a relation R equals to the connectivity relation R”.

Proof:

We must show that, (i) R” is transitive and (ii) any transitive relation that contains R
contains also R”.

i. R” is transitive?

If (a, b)eR’, there is a path from a to b.

If (b, c)eR’, there is a path from b to c.

. There is a path from from a to ¢, which means (a, c¢)eR".

ii. Let S be any transitive relation that contains R, i.e. R = S. Show R°c S.
Since S is transitive, S" = S (by the theorem 1n Sec. 9.1)

S'cSand S*=Up S = S'cS
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Theorem:

The transitive closure of a relation R equals to the connectivity relation R”.

Proof:

We must show that, (i) R” is transitive and (ii) any transitive relation that contains R
contains also R”.

i. R” is transitive?

If (a, b)eR’, there is a path from a to b.

If (b, c)eR’, there is a path from b to c.

. There is a path from from a to ¢, which means (a, c¢)eR".

ii. Let S be any transitive relation that contains R, i.e. R = S. Show R°c S.
Since S is transitive, S" = S (by the theorem 1n Sec. 9.1)

S'cSand S*=Up S = S'cS
Since R < S (given), R* = §"

. R'c S.
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Thus any transitive relation S that contains R contains also R”. * Given R, how can we
compute the connectivity relation R*?

R* = U%_,R™?
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% Given R, how can we compute the connectivity relation R*?

Lemma.
Let R be a relation in 4 and |A4| = n. If there 1s a path from a to b in R, then one can
always find a path from a to b with length not exceeding n.
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% Given R, how can we compute the connectivity relation R*?

Lemma.
Let R be a relation in 4 and |A4| = n. If there 1s a path from a to b in R, then one can
always find a path from a to b with length not exceeding n.

Proof:
Suppose there 1s a path xo, x1, ..., x» from xo = a to x,» = b with length m.

If m > n, then there are at least two vertices on this path, equal to each other x; = x; such
that 0 <i<j<m-1. (by the pigeonhole principle)

We can cut this circuit and form a new path

X0y X1y «nny Xiy Xjtly « oy Xim
If we do the same for all such two vertices, we get a path of length < n.
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% Given R, how can we compute the connectivity relation R*?

Lemma.

Let R be a relation in 4 and |A4| = n. If there 1s a path from a to b in R, then one can
always find a path from a to b with length not exceeding n.

Hence by the Lemma,

R* = UL, R = U}, R¥
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Theorem:

Let Mz be zero-one matrix of R on a set 4 with n elements. Then the zero-one matrix

representation of R” is
Mg+ = Mg Vv M2rv M3 v ... v Mg

e.g.
Let R = {(a, a), (a, ¢), (b, a), (¢, a), (¢, ¢)}. Find R".
(1 0 1] (1 0 1 (1 0 1]
Mr=|1 0 0| M%=|1 0 1| M%R=|1 0 1
10 1 10 1 10 1

MR* ZMR V MzR V M3R=

Y S w—y
o O O
g S w—




Algorithm for computation of connectivity relation:

Transitive closure (Mgz: zero-one matrix representation of R)

A = Mr

B=A

for (i=2;i<n;i++) {
A=A OMg
B=BVA

h

return B

Note that transitive closure 1s 1dentical to connectivity relation.
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Algorithm for computation of connectivity relation:

Transitive closure (Mgz: zero-one matrix representation of R)

A = Mr

B=A

for (i=2;i<n;i++) {
A=A OMg
B=BVA

h

return B

Note: Although in general SoR = RoS, while computing powers of a relation, the order
of compositions does not matter, hence

R =R'oR=RoR" => M"'3i=M"2 @ Mz=Mz oM’z
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Algorithm for computation of connectivity relation:

Transitive closure (Mgz: zero-one matrix representation of R)
A = Mg
B=A
for (i=2;i<n;i++) {
A=A 0OMg
B=BVA
h

return B

Complexity:
AOMz: (n+ (n—-1))n* operations
B v A : n? operations

T(n)=(n-1) (n*(2n 1) + n?) = (n -1)(2n°)
- T(n) is O(n*). (Polynomial complexity)
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e.g. Let (a, b)eR if there 1s a non-stop flight from city a to b.

When 1s (a, b) in
R?? Ifdcs.t. (a, ¢) €R, (c, b)eR.
R*? Ifde,d s.t. (a, ¢) € R, (¢, d)eR, (d, b)eR.
R™? If it is possible to fly from a to b.

R” can be computed using the algorithm of the previous slide.
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9.5 Equivalence Relations

e.g. Consider the relation R = {(a, b) | a=b (mod 4)}
R 1s symmetric, transitive and reflexive.

Hence we say, R 1s an equivalence relation.
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9.5 Equivalence Relations

e.g. Consider the relation R = {(a, b) | a=b (mod 4)}
R 1s symmetric, transitive and reflexive.

Hence we say, R 1s an equivalence relation.

What matters?

R divides (or partitions) the set of integers into four disjoint subsets:
{...,-8,-4,048,...},{...,-7,-3,1,5,9,...}, {...,-6,-2,2,6,10,...}, {...,-5,-1,3,7,11,...}

where any two integers in a given subset 1s related with R, hence said to be
“equivalent” to each other.

(4,8)eR hence 4 1s equivalent to 8, and so is (1,5).
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Definition: Equivalence Relation

If a relation 1s reflexive, symmetric and transitive then it is called an equivalence
relation.

Equivalent elements: Two elements that are related by an equivalence relation.

* R (defined previously) is an equivalence relation, more specifically a “modular”
equivalence relation.

" (4,8)eR hence 4 1s equivalent to 8, and so 1s (1,5).
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Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

&3



Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

= Risreflexive since Va L(a) = L(a) which implies that (a, a)eR.
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Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

= Risreflexive since Va L(a) = L(a) which implies that (a, a)eR.
" Ri1s symmetric since Va,b (a, b)eR — L(a)=L(b) —> L(b)=L(a) — (b, a)eR
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Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

" Risreflexive since Va L(a) = L(a) which implies that (a, a)eR.

" R1s symmetric since Va,b (a, b)eR — L(a) = L(b) —> L(b) =L(a) — (b, a)eR

= R is transitive since Va,b,c (a, b)eR A (b, c)eR — L(a)=L(b) A L(b)=L(c)
— L(a)=L(c) — (a,c)eR

". R 1s an equivalence relation.
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Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

" Risreflexive since Va L(a) = L(a) which implies that (a, a)eR.

" R1s symmetric since Va,b (a, b)eR — L(a) = L(b) —> L(b) =L(a) — (b, a)eR

= R is transitive since Va,b,c (a, b)eR A (b, c)eR — L(a)=L(b) A L(b)=L(c)
— L(a)=L(c) — (a,c)eR

". R 1s an equivalence relation.

“discrete” 1s equivalent to “computer” with respect to R.
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Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :
R={(a, b) | L(a) = L(b)}, where L(x) is the length of string x.

" Risreflexive
" Ris symmetric
= Ris transitive
“. R 1s an equivalence relation.

“discrete” 1s equivalent to “computer” with respect to R.

= R divides (or partitions) the set of strings into disjoint subsets, where each subset
contains all strings of the same length.

= Any two strings in a given subset are equivalent to each other (with respect to the
relation).
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e.g.
Relations on a set of people:

a) {(a, b) | @ and b are at the same age}
b) {(a, b) | aand b speak a common language}

Are they equivalence relations?
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e.g.
Relations on a set of people:

a) {(a, b) | @ and b are at the same age} Yes
b) {(a, b) | aand b speak a common language} No

Are they equivalence relations?
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Equivalence Classes:

e.g.
R={(a,b) | a=b (modm)}

What is the equivalence class of 1 with respect to R?
1 1s equivalent to 1-m, 1, 1+m, and so on.

Hence, the equivalence class of 1:
[1z={...., 1-m, 1, 1+m, 12m, ....}
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Definition: Equivalence class
Let R be an equivalence relation on 4.

The set of all elements that are related to an element a of 4 1s called the equivalence
class of a:

[alz={s | (a,5)eR}

e.g.
[1lr={...., 1-m, 1, 1+m, 12m, ....}
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e.g. Consider the equivalence relation on the set of strings.
R={(a, b) | L(a) = L(b)}, where L(x) 1s the length of string x.

The equivalence class of the string “discrete” 1s the set of all strings with 8 characters.

Let S, denote the set of all strings with n characters. Then the above equivalence
relation partitions the set of all strings § into infinitely many disjoint and nonempty
subsets, Si, S», S3, ...
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Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.

Proof: See Chapter 9.5 of your textbook, page 591 (7™ edition).
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Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.

e.g.
R={(a,b) | a=b  (mod m)}

m equivalence classes:
[0]r, [1]a, ....., [m —1]R

All are disjoint and form a partition.
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Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.

e.g.
Relation R on a set of people: {(a, b) | @ and b are at the same age}

R partitions the set of people into equivalence classes (hence into nonempty disjoint
subsets).

Each equivalence class 1s the set of people who are at the same age, for example [a]r 1s
the set of people who are 18 years old (if a 1s 18 years old).
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e.g.
Let R be a relation on the set of positive real-number pairs s.t.

((a, b),(c,d)) € R <> ad=bc

Show that R 1s an equivalence relation.
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e.g.
Let R be a relation on the set of positive real-number pairs s.t.

((a, b),(c,d)) € R <> ad=bc

Show that R 1s an equivalence relation.

R 1s reflexive since Va,b ab = ab, which implies that ((a, b), (a, b)) € R
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e.g.
Let R be a relation on the set of positive real-number pairs s.t.

((a, b),(c,d)) € R <> ad=bc
Show that R 1s an equivalence relation.

R 1s reflexive since Va,b ab = ab, which implies that ((a, b), (a, b)) € R
R 1s symmetric since Va,b,c,d ((a, b), (c,d)) € R — ad = bc — da = cb

— ((c, d), (a, b)) € R.
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e.g.
Let R be a relation on the set of positive real-number pairs s.t.

((a, b),(c,d)) € R <> ad=bc

Show that R 1s an equivalence relation.

R 1s reflexive since Va,b ab = ab, which implies that ((a, b), (a, b)) € R
R 1s symmetric since Va,b,c,d ((a, b), (c,d)) € R — ad = bc — da = cb

— ((c, d), (a, b)) € R.

R is transitive since Va,b,c,d,e,f ((a, b), (c,d)) eRand ((c,d), (e, f)) €eR — (ad = bc
and cf=de) — af=be — ((a, b), (e,f)) €R
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e.g.
Let R be a relation on the set of positive real-number pairs s.t.

((a, b),(c,d)) € R <> ad=bc

Show that R 1s an equivalence relation.

R 1s reflexive since Va,b ab = ab, which implies that ((a, b), (a, b)) € R
R 1s symmetric since Va,b,c,d ((a, b), (c,d)) € R — ad = bc — da = cb

— ((¢, d), (a, b)) € R.

R is transitive since Va,b,c,d,e,f ((a, b), (c,d)) eRand ((c,d), (e, f)) €eR — (ad = bc
and cf=de) — af=be — ((a, b), (e, f)) €R

Thus, equivalence classes for this relation partition the set of positive real number pairs

into disjoint nonempty subsets such that

[(a,b)]r = {(x,y) | x/y = a/b = c, c is a positive real number}
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9.6 Partial Order Relations

We can use relations to order/sort elements of a set.

eg. S=1{1,3,4,2,5}

= R={(a, b) | a<b} is reflexive, anti-symmetric and transitive, thus it is a “partial
order relation”, and we can use 1t as a criterion to order elements of the set S:

1, 2, 3,4, 5 (ascending order)
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9.6 Partial Order Relations

We can use relations to order/sort elements of a set.

eg. S=1{1,3,4,2,5}

= R={(a, b) | a<b} is reflexive, anti-symmetric and transitive, thus it is a “partial
order relation”, and we can use 1t as a criterion to order elements of the set S:

1, 2, 3,4, 5 (ascending order)

= R={(a,b) | a=b} is also reflexive, anti-symmetric and transitive, thus also a
partial order relation, that defines a different criterion:

5,4, 3,2, 1 (descending order)

103



9.6 Partial Order Relations

We can use relations to order/sort elements of a set.

eg. S=1{1,3,4,2,5}

= R={(a, b) | a<b} is reflexive, anti-symmetric and transitive, thus it is a “partial
order relation”, and we can use 1t as a criterion to order elements of the set S:

1, 2, 3,4, 5 (ascending order)

= R={(a,b) | a=b} is also reflexive, anti-symmetric and transitive, thus also a
partial order relation, that defines a different criterion:

5,4, 3,2, 1 (descending order)

" R=1{(L1),(2,2),(3,3), (44), (5,5), (2,1), (2,3), 3,1), (1,4), (2,4), (3,4), (5,1),
(5,4)} 1s reflexive, anti-symmetric and transitive, thus a partial order relation, that
yet defines another criterion:

5,2, 3,1, 4 (some weird order)
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Definition.: Partial Order Relation:

A relation R on a set S 1s called partial order relation (or a partial ordering) iff it 1s
reflexive, anti-symmetric and transitive.

A set S together with a partial ordering R 1s called a partially ordered set, or poset, and
1s denoted by (S, R).

e.g.
R={(a, b) | a<b} is a partial order on Z.
Hence (Z, R) 1s a poset.

e.g.
R={(a, b)| a|b} is a partial order on Z.
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Definition.: Partial Order Relation:

A relation R on a set S 1s called partial order relation (or a partial ordering) iff it 1s
reflexive, anti-symmetric and transitive.

A set S together with a partial ordering R 1s called a partially ordered set, or poset, and
1s denoted by (S, R).

e.g.
R={(a, b) | a<b} is a partial order on Z.
Hence (Z, R) 1s a poset.

e.g.
R={(a, b)| a|b} is a partial order on Z.

A partial order relation defines what means being ‘less than or equal to’
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eg. S=1{1,3,4,2,5}

= R={(a, b) | a<b} is a partial ordering:
1 £2<3<4<5 (ascending order)

= R={(a, b) | a=>b} is a partial ordering:
554<3<2< 1 (descending order)

" R=1{(1,1),(2,2),3.3), (4.4), (5,5), (2,1), (2,3), 3,1), (1.4), (2,4), (3,4), (5,1),
(5,4)} 1s a partial ordering:

55253514

a X b means (a, b)eR. (where R 1s a partial order)
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eg. S=1{1,3,4,2,5}

= R={(a, b) | a<b} is a partial ordering:
1 <2<3<4<5 (ascending order)

= R={(a, b) | a=>b} is a partial ordering:
5<4<3<2<1(descending order)

" R=1{(1,1),(2,2),3.3), (4.4), (5,5), (2,1), (2,3), 3,1), (14), (2,4), (3,4), (5,1),
(5,4)} 1s a partial ordering:

5<2<3<1<4

a < b means (a, b)eR, but a # b.

Wecanwrite 1 <2 or1 <2orl1 <1 butnotl <1
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Comparable vs Incomparable

e.g.
Poset (Z*, R) with R= {(a, b)| a| b}

(3,6)eR, thus 3 < 6, hence 3 and 6 are comparable.

(3,10)¢R, thus we cannot write 3 < 10 or 10 < 3, hence 3 and 10 are incomparable.
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Definition:

The elements a, b of a poset (S, X) are called comparable if either a < b or b X a.
Otherwise they are called incomparable.

e.g.
Let R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS={a, b, c}.

R 1s reflexive, anti-symmetric and transitive .. R is a partial order .". (S, R) 1s a poset.

All elements are comparable:a<a b<c b<xXa
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Definition:

The elements a, b of a poset (S, X) are called comparable if either a < b or b X a.
Otherwise they are called incomparable.

e.g.
Let R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS={a, b, c}.

R 1s reflexive, anti-symmetric and transitive .. R is a partial order .. (S, R) 1s a poset.
All elements are comparable:a<a b<c b<xXa
e.g.

Poset (Z*, R) with R= {(a, b)| b|a}.
11 452 1055

We cannot write 2 < 3 or 3 < 2, hence 2 and 3 are incomparable.
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Definition:

If (S, X) 1s a poset and every two elements of S are comparable, S 1s called a totally

ordered set and < 1s called a total order(ing).

e.g. Poset (Z, R) with R = {(a, b)| a|b}
R 1s not a total ordering since there are elements incomparable such as 5 and 6.

e.g. Poset (S, R) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS= {a, b, c}
R 1s a total ordering; every two elements are comparable.
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Definition:

If (S, X) 1s a poset and every two elements of S are comparable, S 1s called a totally

ordered set and < 1s called a total order(ing).

e.g. Poset (Z°, R) with R = {(a, b)| a|b}
R 1s not a total ordering since there are elements incomparable such as 5 and 6.

e.g. Poset (S, R) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS= {a, b, c}
R 1s a total ordering; every two elements are comparable.

e.g. R=1{(a,b) | b < a} on the set of integers.

R 1s a total ordering; every two elements are comparable, for instance 10 <35.

e.g. Ri={(a,b)|aistallerthan b or a = b} on the set of all people.
?

e.g. Ri= {(a,b) | a 1s taller than or of the same height with b} on the set of all people.
?
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Definition:

If (S, X) 1s a poset and every two elements of S are comparable, S 1s called a totally

ordered set and < 1s called a total order(ing).

e.g. Poset (Z°, R) with R = {(a, b)| a|b}
R 1s not a total ordering since there are elements incomparable such as 5 and 6.

e.g. Poset (S, R) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS= {a, b, c}
R 1s a total ordering; every two elements are comparable.

e.g. R=1{(a,b) | b < a} on the set of integers.

R 1s a total ordering; every two elements are comparable, for instance 10 <35.

e.g. Ri={(a,b)|aistallerthan b or a = b} on the set of all people.
R: 1s not a total ordering; two different people with the same height are not
comparable.

e.g. Ri= {(a,b) | a 1s taller than or of the same height with b} on the set of all people.

?
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Definition:

If (S, X) 1s a poset and every two elements of S are comparable, S 1s called a totally

ordered set and < 1s called a total order(ing).

e.g. Poset (Z°, R) with R = {(a, b)| a|b}
R 1s not a total ordering since there are elements incomparable such as 5 and 6.

e.g. Poset (S, R) with R = {(a,a), (b,b), (c,c), (b,a), (b,c), (c,a)} onS= {a, b, c}
R 1s a total ordering; every two elements are comparable.

e.g. R=1{(a,b) | b < a} on the set of integers.

R 1s a total ordering; every two elements are comparable, for instance 10 <35.

e.g. Ri={(a,b)|aistallerthan b or a = b} on the set of all people.
R: 1s not a total ordering; two different people with the same height are not
comparable.

e.g. Ri= {(a,b) | a 1s taller than or of the same height with b} on the set of all people.

R: 1s not even a partial ordering since it 1s not anti-symmetric.
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Lexicographic (Alphabetic) Order

e.g. Comparing strings by < = {(a, b) | letter a appears before letter b in the alphabet
ora = b}.
“that” < “this”

why?
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Lexicographic (Alphabetic) Order

e.g. Comparing strings by < = {(a, b) | letter a appears before letter b in the alphabet
ora = b}.
“that” < “this”

since

t=t, h=handa<1.
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Lexicographic (Alphabetic) Order

To be able to compare n-tuples
(a1, az, ..., an) <X (b1, bo, ...., Dy),

we need n posets (hence n partial order relations):

(41, 1), (42, %2), ...., (4n, <n), wWhere a1, bi1€ A1; a2, b€ A> and so on.
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Lexicographic (Alphabetic) Order

To be able to compare n-tuples
(a1, az, ..., an) <X (b1, bo, ...., Dy),

we need n posets (hence n partial order relations):

(41, 1), (42, %2), ...., (4n, <n), wWhere a1, bi1€ A1; a2, b€ A> and so on.

Then we can write

(a1, ar, ..., an) < (b1, b2, ...., byn)
whenever

a1 <1 b1 or di 0<i<n suchthat ai=0b, ...., ai = bi, and a;+1 <11 bi+1
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Hasse Diagrams:

Let’s consider the graph representation of ({1, 2, 3}, <)

2.
L/

Partial ordering
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Hasse Diagrams:

Let’s consider the graph representation of ({1, 2, 3}, <)

(/

2Q e—) <Z
/] 1

Partial ordering:

= Reflexive: Since each node has loop, no need to draw loops explicitly.
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Hasse Diagrams:

Let’s consider the graph representation of ({1, 2, 3}, <)

3. : 3.

ZQ 2. ——) D Hasse diagram

I.Q 1. 1.

Partial ordering:

= Reflexive: Since each node has loop, no need to draw loops explicitly.

= Transitive: Since having (1, 2), (2, 3) means we have (1, 3), no need to draw the
edge (1, 3) explicitly; same for other transitions.

= Anti-symmetric: No need to show directions, since we can assume all edges
pointed upwards by convention.

122



e.g.
Consider the partial ordering {(a, b) | a | b} on {1, 2, 3,4, 6}.

ﬁw

Hasse diagram
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e.g.
Consider the partial ordering {(a, b) | b |a} on {1, 2, 3,4, 6}.

3 and 6 are comparable: 6 < 3

2 and 3 are not comparable.
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e.g.
Consider the partial ordering
R={(1,1),2,2),(3,3),4,4),(2,1),(2,3),3,1),41} onS={1, 2, 3, 4}.

Draw the Hasse Diagram.
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e.g.
Consider the partial ordering
R=1{(1,1),2,2),(3,3),(4,4),(2,1),(2,3),3,1), (4, 1)} onS={1,2,3,4}.

Draw the Hasse Diagram.

4 ¢ 2

4,2 are minimal elements
I 1s maximal element
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Maximal and Minimal Elements:

An element a 1s a maximal in poset (S, X) if thereisno b € § s.t. a < b.
(top elements in Hasse diagram)

An element a 1s a minimal in poset (S, <) if thereisno b € § s.t. b < a.
(bottom elements in Hasse diagram)

e.g. (from textbook)

de b oC

a) Maximal elements: ?
b) Minimal elements: ?
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Maximal and Minimal Elements:

An element a 1s a maximal in poset (S, X) if thereisno b € § s.t. a < b.
(top elements in Hasse diagram)

An element a 1s a minimal in poset (S, <) if thereisno b € § s.t. b < a.
(bottom elements in Hasse diagram)

e.g. (from textbook)

de b oC

a) Maximal elements: [, m
b) Minimal elements: a, b, c
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Compatible Total Ordering

e.g. (from textbook)
G

D F

Hasse Diagram for
B scheduling seven tasks

Poset (S,R):

S={A,B,C,D,E,F, G}
R = {(T1, T») | task T1 must precede 7> or (T1= T2), T1,T>€S}
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Compatible Total Ordering

e.g.
G

Hasse Diagram for
B scheduling seven tasks

There are various compatible total orderings:

A,C,E,B,D,F,G
or

A,C,B,E,F,D,G

or
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Compatible Total Ordering

e.g.
G

Hasse Diagram for
B scheduling seven tasks

There are various compatible total orderings:

A.C,E,B,D,F,G = Total ordering because all the
clements in the set are ordered.
= " Lach of these orderings is compatible

A,C,BEFDG with the partial order relation.

o1 = We can find these compatible total
orders in general by applying the
topological sorting algorithm.

= Sece the next slide.

or
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Topological Sorting Algorithm

A compatible total ordering can be constructed with a partial ordering R:

Topo-sort (S,R: finite poset)

k=1

while S # O {
a, = minimal element of S
S=8—-{a}
k=k+1

}

{a),a,,...,a,} 1s a compatible total ordering of S (compatible with relation R).
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How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.
G

Minimal elements are A, C and E; pick one, say A.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.
G

Remove A and its connections.
Minimal elements are then C and E; pick one, say C.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.
G

A, G,

Remove C and its connections.
Minimal elements are then B and E; pick one, say B.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

G

e.g.

AD C) BD

Remove B and its connections.
Minimal elements are then D and E; pick one, say E.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

G

e.g.

AD C) BD ED

Remove E and its connections.
Minimal elements are then D and F; pick one, say F.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

D/G

e.g.

ADCQBDEDFD

Remove F and its connections.
The only minimal element is then D; pick D.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.
G

ADC9B9E9F9D9

Remove D and its connections.
The only element 1s then G; pick G.
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How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.
G

We get A, C, E, B, D, F, G as a compatible total ordering.

Depending on the choices you make to pick a minimal element, you may end up with
different compatible total ordering alternatives, all valid and respecting the partial
ordering relation.
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for
the given poset.

R=1{(a,b) | a|b}

a)4=1{1,2,3,4,56,7,8

b)4={1,2,3,6,12,24,36, 48
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for
the given poset.

R=1{(a,b) | a|b}

a)4=1{1,2,3,4,56,7,8

8 One possible compatible total ordering:
4 6 197939592949896
2 3

Another: 1,2,3,5,7,4, 8,6

b)4={1,2,3,6,12,24,36, 48
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e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for
the given poset.

R=1{(a,b) | a|b}

a)4=1{1,2,3,4,56,7,8

8 One possible compatible total ordering:
4 6 197939592949896
2 3

Another: 1,2,3,5,7,4, 8,6

b)4={1,2,3,6,12,24,36, 48

043

®24 6
/ One possible compatible total ordering:

) 1,3,2,6,12, 24, 36, 48
<
1
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e.g. (from textbook) Draw Hasse Diagram for the inclusion relation R on the power set
P(S) where S={a, b, c,d }.

R={(51, )| Sic S, 1,82 € P(S)}
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