9. Relations

Relations are discrete structures that are used to represent relationships between elements of sets.

Relations can be used to solve problems such as:

- Determining which pairs of cities are linked by airline flights in a network,
- Computing the distance between a pair of registered Facebook users.
- Finding an efficient order for different phases of a complicated project,
- Producing a useful way to store information in computer databases, etc.

9.1 Relations and Their Properties

Definition: Binary relation

Let A, B be sets. A binary relation R from A to B is a set of ordered pairs, hence a subset of $A \times B$.

Notation:
a is "related to" b by $R: \quad a R b: \quad(a, b) \in R ; a \in A, b \in B$
a is "not related to" b by R :
$a \not k b: \quad(a, b) \notin R$
e.g.
A : set of cities
B : set of countries
$R:(a, b) \in R$ if city a is in country b.
(Izmir, Turkey), (Paris, France) $\in R$

Function is a special case of relation

A function f from A to B can be thought of as the set of ordered pairs (a, b) s.t. $b=$ $f(a)$

Since the function f is a subset of $A \times B, f$ is a relation from A to B.
Function is a special case of relation: Every element of A is the first element of exactly one ordered pair of the function f.

Relations defined on a single set:

Definition:

A relation on a set A is a relation from A to A.
e.g.

$$
\begin{aligned}
A & =\{1,2,3,4\} \\
R & =\{(a, b)|a| b,(a, b) \in A \times A\} \\
& =\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}
\end{aligned}
$$

Relations defined on a single set:

Definition:

A relation on a set A is a relation from A to A.
e.g.

$$
\begin{aligned}
A & =\{1,2,3,4\} \\
R & =\{(a, b)|a| b,(a, b) \in A \times A\} \\
& =\{(1,1),(1,2),(1,3),(1,4),(2,2),(2,4),(3,3),(4,4)\}
\end{aligned}
$$

e.g.

How many relations are there on a set with n elements?
$|A \times A|=n^{2}$
$\therefore 2^{n^{2}}$ (\# of subsets of $A \times A$)

Properties of Relations defined on a set:

Definition:

A relation R on a set A is called reflexive iff

$$
(a, a) \in R \quad \forall a \in A
$$

e.g.

$$
\begin{aligned}
& A=\{1,2,3\} \\
& R_{1}=\{(1,2),(2,2),(1,3)\} \quad \text { (not reflexive) } \\
& R_{2}=\{(1,1),(1,3),(2,2),(3,1),(3,3)\} \quad \text { (reflexive) } \\
& R_{3}=\{(1,3),(3,1)\} \quad \text { (irreflexive) }
\end{aligned}
$$

Properties of Relations defined on a set:

Definition:
A relation R on a set A is called reflexive iff

$$
(a, a) \in R \quad \forall a \in A
$$

e.g.

$$
\begin{aligned}
& A=\{1,2,3\} \\
& R_{1}=\{(1,2),(2,2),(1,3)\} \quad \text { (not reflexive) } \\
& R_{2}=\{(1,1),(1,3),(2,2),(3,1),(3,3)\} \quad \text { (reflexive) } \\
& R_{3}=\{(1,3),(3,1)\} \quad \text { (irreflexive) }
\end{aligned}
$$

e.g.
R : The set of pairs of people having the same eye color (reflexive)

Definition:

A relation R on a set A is called
symmetric iff the following holds

$$
(b, a) \in R \rightarrow(a, b) \in R \quad \forall a, b \in A
$$

Definition:

A relation R on a set A is called
symmetric iff the following holds

$$
(b, a) \in R \rightarrow(a, b) \in R \quad \forall a, b \in A
$$

anti-symmetric iff the following holds

$$
(a, b) \in R \text { and }(b, a) \in R \quad \rightarrow a=b \quad \forall a, b \in A
$$

Definition:

A relation R on a set A is called
symmetric iff the following holds

$$
(b, a) \in R \rightarrow(a, b) \in R \quad \forall a, b \in A
$$

anti-symmetric iff the following holds

$$
(a, b) \in R \text { and }(b, a) \in R \quad \rightarrow a=b \quad \forall a, b \in A
$$

e.g.
$R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than $b\} \quad$ anti-symmetric
$R=\{(a, b) \mid a+b+a b=12 ; a, b \in \mathrm{Z}\}$ symmetric

Definition:

A relation R on a set A is called
symmetric iff the following holds

$$
(b, a) \in R \rightarrow(a, b) \in R \quad \forall a, b \in A
$$

anti-symmetric iff the following holds

$$
(a, b) \in R \text { and }(b, a) \in R \quad \rightarrow a=b \quad \forall a, b \in A
$$

e.g.
$R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than $b\} \quad$ anti-symmetric
$R=\{(a, b) \mid a+b+a b=12 ; a, b \in \mathrm{Z}\}$ symmetric
asymmetric iff $\forall a, b \in A \quad(a, b) \in R \rightarrow(b, a) \notin R$

Definition:

R on set A is called transitive iff
$(a, b) \in R$ and $(b, c) \in R \quad \rightarrow(a, c) \in R \quad \forall a, b, c \in A$.
e.g.

$$
R_{\mathrm{t}}=\{(a, b) \mid a \text { is taller than } b\} \text { transitive? }
$$

Definition:

R on set A is called transitive iff

$$
(a, b) \in R \text { and }(b, c) \in R \quad \rightarrow(a, c) \in R \quad \forall a, b, c \in A
$$

$R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than $b\}$ transitive?
e.g.

$$
\begin{aligned}
& A=\{1,2,3\} \\
& R_{1}=\{(1,2),(2,3),(1,3)\} \quad \text { (transitive) } \\
& R_{2}=\{(1,2),(2,3)\} \quad \text { (not transitive) } \\
& R_{3}=\{(1,2)\} \quad(?)
\end{aligned}
$$

e.g.

How many reflexive relations are there on a set with n elements?

If R is reflexive, then:
there are n pairs such that $(a, a) \in R$
and $n(n-1)$ pairs such that $(a, b) \in R$ where $a \neq b$
$\Rightarrow \#$ of reflexive relations $=2^{n(n-1)}$
e.g.

How many symmetric relations are there on a set with n elements? (Exercise)

Combining relations:

$$
\begin{aligned}
& \text { Let } A=\{a, b\} \quad B=\{1,2,3\} \\
& R_{1}=\{(a, 1),(b, 3)\} \\
& R_{2}=\{(a, 1),(a, 2),(b, 1),(b, 2)\} \\
& R_{3}=\{(b, 1),(b, 2)\} \\
& R_{4}=\{(a, 1),(b, 2)\} \\
& R_{1} \cup R_{3}=\{(a, 1),(b, 1),(b, 2),(b, 3)\} \\
& R_{1} \cap R_{2}=\{(a, 1)\} \\
& R_{2}-R_{3}=\{(a, 1),(a, 2)\} \\
& R_{1} \oplus R_{4}=\{(b, 2),(b, 3)\}
\end{aligned}
$$

\oplus is called "symmetric difference", acts like XOR

Definition: Let $R: A \rightarrow B$ and $S: B \rightarrow C$. Then the composite relation of R and S, $S \circ R: A \rightarrow C$ is defined s.t.

$$
(a, c) \in S \circ R \text { iff }(a, b) \in R \text { and }(b, c) \in S
$$

Definition: Let $R: A \rightarrow B$ and $S: B \rightarrow C$. Then the composite relation of R and S, $S \circ R: A \rightarrow C$ is defined s.t.

$$
(a, c) \in S \circ R \text { iff }(a, b) \in R \text { and }(b, c) \in S
$$

Definition:
Let R be a relation on A.
The powers $R^{n}, n=1,2,3, \ldots$, are defined by
$R^{1}=R, R^{2}=R \circ R, \ldots R^{n}=R^{n-1} \circ R$.
e.g. $\quad R=\{(a, b) \mid b$ is a parent of $a\}$
$\Rightarrow R^{2}=\{(a, c) \mid c$ is a grand-parent of $a\}$ why?
since $(a, b) \in R$ means " b is a parent of a ", and $(b, c) \in R$ means " c is a parent of b ".

Theorem:
R on a set A is transitive iff $R^{n} \subseteq R$ for all $n=1,2,3, \ldots$

Theorem:

R on a set A is transitive iff $R^{n} \subseteq R$ for all $n=1,2,3, \ldots$

Proof:
If part: (if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$, then R is transitive)
If $R^{n} \subseteq R$, in particular $R^{2} \subseteq R$.
Then, if $(a, b) \in R$ and $(b, c) \in R$, by definition $(a, c) \in R^{2}$. Since $R^{2} \subseteq R,(a, c) \in R$.
$\therefore R$ is transitive.

Theorem:

R on a set A is transitive iff $R^{n} \subseteq R$ for all $n=1,2,3, \ldots$
Proof:
If part: (if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$, then R is transitive)
If $R^{n} \subseteq R$, in particular $R^{2} \subseteq R$.
Then, if $(a, b) \in R$ and $(b, c) \in R$, by definition $(a, c) \in R^{2}$. Since $R^{2} \subseteq R,(a, c) \in R$.
$\therefore R$ is transitive.

Only if part: (If R is transitive, then $\forall n R^{n} \subseteq R$) Use induction on n.

Theorem:
R on a set A is transitive iff $R^{n} \subseteq R$ for all $n=1,2,3, \ldots$
Proof:
If part: (if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$, then R is transitive)
If $R^{n} \subseteq R$, in particular $R^{2} \subseteq R$.
Then, if $(a, b) \in R$ and $(b, c) \in R$, by definition $(a, c) \in R^{2}$. Since $R^{2} \subseteq R,(a, c) \in R$.
$\therefore R$ is transitive.

Only if part: (If R is transitive, then $\forall n R^{n} \subseteq R$) Use induction on n. Basis step: $R^{1} \subseteq R$; true for $n=1$. Inductive step: Assume $R^{n} \subseteq R$ and R is transitive. Show $R^{n+1} \subseteq R$.

Theorem:

R on a set A is transitive iff $R^{n} \subseteq R$ for all $n=1,2,3, \ldots$
Proof:
If part: (if $R^{n} \subseteq R$ for $n=1,2,3, \ldots$, then R is transitive)
If $R^{n} \subseteq R$, in particular $R^{2} \subseteq R$.
Then, if $(a, b) \in R$ and $(b, c) \in R$, by definition $(a, c) \in R^{2}$. Since $R^{2} \subseteq R,(a, c) \in R$.
$\therefore R$ is transitive.

Only if part: (If R is transitive, then $\forall n R^{n} \subseteq R$) Use induction on n. Basis step: $R^{1} \subseteq R$; true for $n=1$. Inductive step: Assume $R^{n} \subseteq R$ and R is transitive. Show $R^{n+1} \subseteq R$.

Let $(a, b) \in R^{n+1}=R^{n} \circ R$.
Then $\exists x \in A$ s.t. $(a, x) \in R$ and $(x, b) \in R^{n}$. Since $R^{n} \subseteq R,(x, b) \in R$.
Since R is transitive and $(a, x) \in R$, we have $(a, b) \in R$

$$
\therefore R^{n+1} \subseteq R
$$

Inverse and Complementary:

Inverse of $R: R^{-1}=\{(b, a) \mid(a, b) \in R\}$

Complementary of $R: \quad \bar{R}=\{(a, b) \mid(a, b) \notin R\}$

Inverse and Complementary:

Inverse of $R: R^{-1}=\{(b, a) \mid(a, b) \in R\}$
Complementary of $R: \quad \bar{R}=\{(a, b) \mid(a, b) \notin R\}$
e.g.

Let $R=\{(a, b) \mid a<b\} \quad R: A \rightarrow B$.
Inverse of $R: R^{-1}=\{(b, a) \mid a<b\}$
Complementary of $R: \quad \bar{R}=\{(a, b) \mid a \geq b\}$
e.g.
R, S are reflexive relations on A.
a) $R \cup S$ is reflexive? Yes, since $(x, x) \in R$
b) $R \cap S$ is reflexive? so does $R \cup S$
c) $R \oplus S$ is irreflexive?
d) $R-S$ is irreflexive?
e) $S \circ R$ is reflexive?
f) R^{-1} is reflexive?
$\mathrm{g})$ Complementary of R is irreflexive?
e.g.

Suppose R is irreflexive. Is R^{2} also irreflexive?
No. Counter-example: Let $a \neq b$ and $R=\{(a, b),(b, a)\}$

$9.2 n$-ary Relations and Their Applications

Definition:

Let $A_{1}, A_{2}, \ldots, A_{n}$ be sets.
An n-ary relation on these sets is a subset of $A_{1} \times A_{2} \times \ldots \times A_{n}$.
The sets A_{i} : Domains of the relation
n : Degree of the relation
e.g.

$$
R=\{(a, b, c) \mid a<b<c\}
$$

Databases and Relations

The way we organize information in a database is important.
Operations such as add/delete record, update records, search for record, all have heavy computation.
\therefore Various methods for representing databases exist.
One method in particular is relational data model.
A database consists of records of n-tuples, made up of domains (fields). e.g. Airflight Company (Flight No, Departure, Destination, Date)

You will have an elective database course in $3^{\text {rd }}$ or $4^{\text {th }}$ year.

9.3 Representing Relations

$$
m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}
$$

e.g. Let $A=\{1,2\}, \quad B=\{a, b, c\}$ and $R: A \rightarrow B$ such that $R=\{(1, b),(2, a),(2, b),(2, c)\}$

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

9.3 Representing Relations

Definition: A relation R can also be represented by a matrix $\mathbf{M}_{R}=\left[m_{i j}\right]$:
$m_{i j}= \begin{cases}1 & \text { if }\left(a_{i}, b_{j}\right) \in R \\ 0 & \text { if }\left(a_{i}, b_{j}\right) \notin R\end{cases}$
e.g. Let $A=\{1,2\}, \quad B=\{a, b, c\}$ and $R: A \rightarrow B$ such that $R=\{(1, b),(2, a),(2, b),(2, c)\}$

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

e.g.

Let R be a relation defined on $A=\{1,2,3\}: R=\{(1,2),(2,2),(1,3)\}$

$$
\mathbf{M}_{R}=\left[\begin{array}{lll}
0 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { Note that we get a square matrix whenever } R: A \rightarrow A
$$

- Reflexive relation R s.t. $\left(a_{i}, a_{i}\right) \in R$
$\Rightarrow \forall i \quad m_{i i}=1$
i.e., $\quad \mathbf{M}_{R}=\left[\begin{array}{llllll}1 & & & & & \\ & 1 & & & & \\ & & \cdot & & & \\ & & & \cdot & & \\ & & & & & \\ & & & & 1 & \\ & & & & & 1\end{array}\right] \begin{aligned} & \text { diagonal with } \\ & \text { all ones }\end{aligned}$
- Reflexive relation R s.t. $\left(a_{i}, a_{i}\right) \in R$
$\Rightarrow \forall i \quad m_{i i}=1$

- Symmetric relation R s.t. $\left(a_{i}, a_{j}\right) \in R \leftrightarrow\left(a_{j}, a_{i}\right) \in R$

$$
\Rightarrow \forall i, j \quad m_{i j}=m_{j i}
$$

$$
\mathbf{M}_{R}=\left[\begin{array}{ll}
& 1 \\
1 & 2
\end{array}\right]
$$

Symmetric matrix $\left(\mathbf{M}_{R}=\mathbf{M}^{\mathrm{T}}{ }_{R}\right)$

- Inverse and complementary relations:

If $\mathbf{M}_{R}=\left[m_{i j}\right]_{m \times n}$, then
Inverse: $\mathbf{M}_{R^{-1}}=\left[m_{j i}\right]_{n \times m}$ (transpose)
Complementary: $\mathbf{M}_{\bar{R}}=\left[\neg m_{i j}\right]_{m \times n}$ (negation)

Using Zero - One Matrices:

A matrix with entries that are either 0 or 1 is called a zero-one matrix.
Definition:
$\mathbf{A}=\left[a_{i j}\right] \quad \mathbf{B}=\left[b_{i j}\right] \quad m \times n$ zero-one matrices
Join of A, B: $\quad \mathbf{A} \vee \mathbf{B}=\left[a_{i j} \vee b_{i j}\right]$
Meet of $\mathbf{A}, \mathbf{B}: \quad \mathbf{A} \wedge \mathbf{B}=\left[a_{i j} \wedge b_{i j}\right]$
e.g.

$$
\begin{array}{ll}
\mathbf{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] & \mathbf{B}=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] & \mathbf{A} \wedge \mathbf{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{array}
$$

Using Zero - One Matrices:

A matrix with entries that are either 0 or 1 is called a zero-one matrix.
Definition:
$\mathbf{A}=\left[a_{i j}\right] \quad \mathbf{B}=\left[b_{i j}\right] \quad m \times n$ zero-one matrices
Join of $\mathbf{A}, \mathbf{B}: \quad \mathbf{A} \vee \mathbf{B}=\left[a_{i j} \vee b_{i j}\right]$
Meet of $\mathbf{A}, \mathbf{B}: \quad \mathbf{A} \wedge \mathbf{B}=\left[a_{i j} \wedge b_{i j}\right]$
e.g.

$$
\begin{array}{ll}
\mathbf{A}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right] & \mathbf{B}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
\mathbf{A} \vee \mathbf{B}=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] & \mathbf{A} \wedge \mathbf{B}=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
\end{array}
$$

Remark: Let $R_{1}: A \rightarrow B$ and $R_{2}: A \rightarrow B$

$$
\begin{aligned}
& \mathbf{M}_{\mathrm{R}_{1} \cup R_{2}}=\mathbf{M}_{\mathrm{R}_{1}} \vee \mathbf{M}_{\mathrm{R}_{2}} \\
& \mathbf{M}_{\mathrm{R}_{1} \cap \mathrm{R}_{2}}=\mathbf{M}_{\mathrm{R}_{1}} \wedge \mathbf{M}_{\mathrm{R}_{2}}
\end{aligned}
$$

Definition: Boolean product

Let $\mathbf{A}=\left[a_{i j}\right]: m \times k, \quad \mathbf{B}=\left[b_{i j}\right]: k \times n$ zero-one matrices
$\mathbf{A} \odot \mathbf{B}=\left[c_{i j}\right]: m \times n$, where
$c_{i j}=\left(a_{i 1} \wedge b_{1 j}\right) \vee\left(a_{i 2} \wedge b_{2 j}\right) \vee \ldots \vee\left(a_{i k} \wedge b_{k j}\right)$

$j^{\text {th }}$ column
e.g.

$$
\begin{gathered}
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]_{3 \times 2} \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]_{2 \times 3} \\
\mathbf{A} \odot \mathbf{B}=\left[\begin{array}{lll}
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1) \\
(0 \wedge 1) \vee(1 \wedge 0) & (0 \wedge 1) \vee(1 \wedge 1) & (0 \wedge 0) \vee(1 \wedge 1) \\
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1)
\end{array}\right] \\
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]_{3 \times 3}
\end{gathered}
$$

$$
\begin{aligned}
& \text { e.g. } \\
& \qquad \begin{array}{l}
\mathbf{A}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 0
\end{array}\right]_{3 \times 2} \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]_{2 \times 3} \\
\mathbf{A} \odot \mathbf{B}=\left[\begin{array}{lll}
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1) \\
(0 \wedge 1) \vee(1 \wedge 0) & (0 \wedge 1) \vee(1 \wedge 1) & (0 \wedge 0) \vee(1 \wedge 1) \\
(1 \wedge 1) \vee(0 \wedge 0) & (1 \wedge 1) \vee(0 \wedge 1) & (1 \wedge 0) \vee(0 \wedge 1)
\end{array}\right] \\
=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]_{3 \times 3}
\end{array}
\end{aligned}
$$

Remark: Let $R: A \rightarrow B$ and $S: B \rightarrow C$
$\mathbf{M}_{\mathrm{SoR}}=\mathbf{M}_{\mathrm{R}} \odot \mathbf{M}_{\mathrm{S}}$

Definition: $\boldsymbol{r}^{\text {th }}$ Boolean Power

Let \mathbf{A} be a square $(n \times n)$ zero-one matrix and r be a positive integer.

$$
\mathbf{A}^{r}=\underset{r \text { times }}{\mathbf{A} \odot \underset{A}{\mathbf{A}} \ldots \odot \mathbf{A}}
$$

$\mathbf{A}^{0}=\mathbf{I}_{n}$

Remark: Let $R: A \rightarrow A$

$$
\mathbf{M}_{\mathrm{R}^{n}}=\left[\mathbf{M}_{\mathrm{R}}\right]^{n}
$$

Representing Relations Using Graphs:

Pictorial representation.

Definition:

A directed graph (digraph) consists of a set V of vertices (or nodes) along with a set E of edges (or arcs) which are ordered pairs of vertices.
$\operatorname{Edge}(a, b): \quad a$ is initial vertex (node), b is terminal vertex (node)
e.g.

$R=\{(a, b),(b, c),(c, b),(c, c)\}$
Relation R on a set A is defined with
i) elements of A : vertices (nodes)
ii) ordered pairs $(a, b) \in R$: edges

Relation R is:

- reflexive iff every node has a loop
- symmetric iff every edge between two nodes has an edge in the opposite direction.
- transitive iff edge $(a, b) \wedge$ edge $(b, c) \rightarrow$ edge $(a, c) \quad \forall a, b, c$ e.g.

Example to graph representation of a relation:

Connectivity problems:

1) Which nodes are connected?
2) What is the shortest path between two nodes?

9.4 Closures of Relations

e.g. Let $R=\{(1,1),(1,2),(3,2)\}$ on $A=\{1,2,3\}$
R is not reflexive; what is the smallest possible reflexive relation containing R ?

9.4 Closures of Relations

e.g. Let $R=\{(1,1),(1,2),(3,2)\}$ on $A=\{1,2,3\}$
R is not reflexive; what is the smallest possible reflexive relation containing R ?

$$
S=\{(1,1),(1,2),(3,2),(2,2), \underline{(3,3)}\}
$$

S is the reflexive closure of R.

Definition: Closure

Let R be a relation on A
P : some property, such as symmetry, reflexivity, transitivity R may or may not have the property P.

The closure S is the smallest possible set with property P, which contains R.

Definition: Closure

Let R be a relation on A
P : some property, such as symmetry, reflexivity, transitivity R may or may not have the property P.

The closure S is the smallest possible set with property P, which contains R.

More formal definition of closure:
If there is a relation S with property P containing R s.t. S is the subset of every relation with property P containing R, then S is called the closure of R with P.

Reflexive Closure:

Let $R=\{(1,1),(1,2),(3,2)\}$ on $A=\{1,2,3\}$
The smallest possible reflexive relation containing R :

$$
\begin{aligned}
& \quad S=\{(1,1),(1,2),(3,2),(2,2),(3,3)\} \\
& S=\text { Reflexive closure of } R=R \cup \Delta, \\
& \text { where } \Delta=\{(a, a) \mid a \in A\}: \text { diagonal relation }
\end{aligned}
$$

Reflexive Closure:

Let $R=\{(1,1),(1,2),(3,2)\}$ on $A=\{1,2,3\}$
The smallest possible reflexive relation containing R :

$$
S=\{(1,1),(1,2),(3,2),(2,2),(3,3)\}
$$

$S=$ Reflexive closure of $R=R \cup \Delta$, where $\Delta=\{(a, a) \mid a \in A\}$: diagonal relation
e.g.

$$
\begin{aligned}
R & =\{(a, b) \mid a<b\}, \quad \text { reflexive closure? } \\
R \cup \Delta & =\{(a, b) \mid a<b\} \cup\{(a, a) \mid a \in \mathrm{Z}\} \\
& =\{(a, b) \mid a \leq b\}
\end{aligned}
$$

Symmetric Closure:

Let $R=\{(1,1),(1,2),(2,1),(2,3),(3,1),(3,3)\}$ on $A=\{1,2,3\}$
We should add all ordered pairs (b, a), where (a, b) is in R and (b, a) is not in R. Symmetric closure of $R=R \cup\{(3,2),(1,3)\}$

Symmetric Closure:

Let $R=\{(1,1),(1,2),(2,1),(2,3),(3,1),(3,3)\}$ on $A=\{1,2,3\}$
We should add all ordered pairs (b, a), where (a, b) is in R and (b, a) is not in R. Symmetric closure of $R=R \cup\{(3,2),(1,3)\}$

Symmetric closure of $R=R \cup R^{-1} \quad\left(\right.$ since $\left.R^{-1}=\{(b, a) \mid(a, b) \in R\}\right)$
e.g.
$R=\{(a, b) \mid a<b\}$
Symmetric closure of $R=R \cup R^{-1}$

$$
\begin{aligned}
& =\{(a, b) \mid a<b\} \cup\{(b, a) \mid a<b\} \\
& =\{(a, b) \mid a \neq b\}
\end{aligned}
$$

Transitive Closure:

Let $R=\{(1,3),(1,4),(2,1),(3,2)\}$ on $\{1,2,3,4\}$
R is not transitive since there are pairs $(a, c) \notin R$ although $(a, b),(b, c) \in R$.
(i) $R \cup\{(1,2),(2,3),(2,4),(3,1)\}$

Is it transitive?

Transitive Closure:

Let $R=\{(1,3),(1,4),(2,1),(3,2)\}$ on $\{1,2,3,4\}$
R is not transitive since there are pairs $(a, c) \notin R$ although $(a, b),(b, c) \in R$.
(i) $R \cup\{(1,2),(2,3),(2,4),(3,1)\}$

Is it transitive? NO!
It has $(3,1),(1,4)$, but not $(3,4)$.
We have a more difficult problem!!!
We might repeat step (i) until reaching a transitive relation. But there are better ways.
e.g. Draw reflexive closure of

How about symmetric closure? Transitive closure?

Paths in Directed Graphs

We now introduce a new terminology that we will use in the construction of transitive closures.

Definition:

A path from a to b in the directed graph G is a sequence of edges $\left(x_{0}, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots$ $\left(x_{n-1}, x_{n}\right)$ in G where $x_{0}=a$ and $x_{n}=b$. This path is denoted by $x_{0}, x_{1}, \ldots, x_{n}$ and has a length of n.
If $x_{0}=x_{n}$, the path is called a cycle or circuit.
Two vertices are said to be connected if there's a path between them.
e.g.

A path:

$$
\overline{a, b, d, a, c}
$$

a is connected to e, but e is not connected to a.

The term path also applies to relations.

Theorem:

Let R be a relation on A, then there is a path of length n from a to $b \operatorname{iff}(a, b) \in R^{n}$.
e.g.

$$
\frac{\text { A path: }}{a, b, d, e}
$$

$(a, e) \in R^{3}$ since there is a path of length 3 between a and e.

Theorem:

Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^{n}$.
e.g.

$$
\frac{\text { A path: }}{a, b, d, e}
$$

$(a, e) \in R^{3}$ since there is a path of length 3 between a and e.
But also (a, e) $\in R^{6}$ since there is also another path of length 6 between a and e : a, b, d, a, c, d, e

Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^{n}$.
Proof: Use induction.
Basis step:
By definition there is a path of length 1 from a to $b \operatorname{iff}(a, b) \in R$. Hence true for $n=1$.

Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^{n}$.
Proof: Use induction.
Basis step:
By definition there is a path of length 1 from a to $b \operatorname{iff}(a, b) \in R$. Hence true for $n=1$.
Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.
There is a path of length $n+1$ from a to b iff
$\exists c \in A$ s. t. there is a path of length 1 from a to c and a path of length n from c to b

Theorem:
Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^{n}$.
Proof: Use induction.
Basis step:
By definition there is a path of length 1 from a to b iff $(a, b) \in R$. Hence true for $n=1$.
Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.
There is a path of length $n+1$ from a to b iff
$\exists c \in A$ s. t. there is a path of length 1 from a to c and a path of length n from c to b that is, $\exists c \in A$ such that $(a, c) \in R$ and $(c, b) \in R^{n} \quad$ (by inductive hypothesis)

Theorem:

Let R be a relation on A, then there is a path of length n from a to b iff $(a, b) \in R^{n}$.
Proof: Use induction.

Basis step:
By definition there is a path of length 1 from a to $b \operatorname{iff}(a, b) \in R$. Hence true for $n=1$.
Inductive step: Assume it is true for some arbitrary fixed n. Show for $n+1$.
There is a path of length $n+1$ from a to b iff
$\exists c \in A$ s. t. there is a path of length 1 from a to c and a path of length n from c to b that is, $\exists c \in A$ such that $(a, c) \in R$ and $(c, b) \in R^{n} \quad$ (by inductive hypothesis) which implies $(a, b) \in R^{n+1}$ (by definition of composite relation).
\therefore There is a path of length $n+1$ from a to b iff $(a, b) \in R^{n+1}$

Transitive Closure:

Finding transitive closure is equivalent to determining vertices that are connected through a path.

Definition:

Let R be a relation on A.
Connectivity relation R^{*} consists of all pairs (a, b) s.t. there's a path between a and b in R.

Since R^{n} includes all the paths of length n by the previous theorem,

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n}
$$

Transitive Closure:

Finding transitive closure is equivalent to determining vertices that are connected through a path.

Definition:
Let R be a relation on A.
Connectivity relation R^{*} consists of all pairs (a, b) s.t. there's a path between a and b in R.

Since R^{n} includes all the paths of length n by the previous theorem, $R^{*}=\bigcup_{n=1}^{\infty} R^{n}$
e.g.

Let R be a relation on the set of people in the world that contains (a, b) if a has met b.

$$
R^{2}: ? \text { if }(a, b) \in R^{2} \text { then } \exists c \text { s.t. }(a, c) \in R \text { and }(c, b) \in R
$$

$R^{*}: ?(a, b) \in R^{*}$ if there is a sequence of people, starting with a and ending with b.

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.
i. R^{*} is transitive?

If $(a, b) \in R^{*}$, there is a path from a to b.
If $(b, c) \in R^{*}$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^{*}$.
ii.

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.
i. R^{*} is transitive?

If $(a, b) \in R^{*}$, there is a path from a to b.
If $(b, c) \in R^{*}$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^{*}$.
ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^{*} \subseteq S$.

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.
i. R^{*} is transitive?

If $(a, b) \in R^{*}$, there is a path from a to b.
If $(b, c) \in R^{*}$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^{*}$.
ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^{*} \subseteq S$. Since S is transitive, $S^{n} \subseteq S \quad$ (by the theorem in Sec. 9.1)

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.
i. R^{*} is transitive?

If $(a, b) \in R^{*}$, there is a path from a to b.
If $(b, c) \in R^{*}$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^{*}$.
ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^{*} \subseteq S$.

Since S is transitive, $S^{n} \subseteq S \quad$ (by the theorem in Sec. 9.1)
$S^{n} \subseteq S$ and $S^{*}=\cup_{n=1}^{\infty} S^{n} \quad \Rightarrow \quad S^{*} \subseteq S$

Theorem:

The transitive closure of a relation R equals to the connectivity relation R^{*}.
Proof:
We must show that, (i) R^{*} is transitive and (ii) any transitive relation that contains R contains also R^{*}.
i. R^{*} is transitive?

If $(a, b) \in R^{*}$, there is a path from a to b.
If $(b, c) \in R^{*}$, there is a path from b to c.
\therefore There is a path from from a to c, which means $(a, c) \in R^{*}$.
ii. Let S be any transitive relation that contains R, i.e. $R \subseteq S$. Show $R^{*} \subseteq S$.

Since S is transitive, $S^{n} \subseteq S \quad$ (by the theorem in Sec. 9.1)
$S^{n} \subseteq S$ and $S^{*}=\cup_{n=1}^{\infty} S^{n} \Rightarrow S^{*} \subseteq S$
Since $R \subseteq S$ (given), $R^{*} \subseteq S^{*}$
$\therefore R^{*} \subseteq S$.

Thus any transitive relation S that contains R contains also R^{*}. 冰 Given R, how can we compute the connectivity relation R^{*} ?

$$
R^{*}=\bigcup_{n=1}^{\infty} R^{n} ?
$$

氺 Given R, how can we compute the connectivity relation R^{*} ?

Lemma:

Let R be a relation in A and $|A|=n$. If there is a path from a to b in R, then one can always find a path from a to b with length not exceeding n.

氺 Given R, how can we compute the connectivity relation R^{*} ?

Lemma:

Let R be a relation in A and $|A|=n$. If there is a path from a to b in R, then one can always find a path from a to b with length not exceeding n.

Proof:
Suppose there is a path $x_{0}, x_{1}, \ldots, x_{m}$ from $x_{0}=a$ to $x_{m}=b$ with length m.
If $m>n$, then there are at least two vertices on this path, equal to each other $x_{i}=x_{j}$ such that $0 \leq i<j \leq m-1$. (by the pigeonhole principle)

We can cut this circuit and form a new path

$$
x_{0}, x_{1}, \ldots, x_{i}, x_{j+1}, \ldots, x_{m}
$$

If we do the same for all such two vertices, we get a path of length $\leq n$.

氺 Given R, how can we compute the connectivity relation R^{*} ?

Lemma:

Let R be a relation in A and $|A|=n$. If there is a path from a to b in R, then one can always find a path from a to b with length not exceeding n.

Hence by the Lemma,

$$
R^{*}=\bigcup_{k=1}^{\infty} R^{k}=\bigcup_{k=1}^{n} R^{k}
$$

Theorem:

Let \mathbf{M}_{R} be zero-one matrix of R on a set A with n elements. Then the zero-one matrix representation of R^{*} is

$$
\mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}{ }_{R} \vee \mathbf{M}^{3}{ }_{R} \vee \ldots \vee \mathbf{M}_{R}^{n}
$$

e.g.

Let $R=\{(a, a),(a, c),(b, a),(c, a),(c, c)\}$. Find R^{*}.

$$
\begin{aligned}
& \mathbf{M}_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 1
\end{array}\right] \mathbf{M}^{2}{ }_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \mathbf{M}^{3}{ }_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right] \\
& \mathbf{M}_{R^{*}}=\mathbf{M}_{R} \vee \mathbf{M}_{R}{ }_{R} \vee \mathbf{M}^{3}{ }_{R}=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
1 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Algorithm for computation of connectivity relation:

Transitive closure (\mathbf{M}_{R} : zero-one matrix representation of R)

$$
\begin{aligned}
& \mathbf{A}=\mathbf{M}_{R} \\
& \mathbf{B}=\mathbf{A} \\
& \text { for }(i=2 ; i \leq n ; i++)\{ \\
& \qquad \mathbf{A}=\mathbf{A} \odot \mathbf{M}_{R} \\
& \{\quad \mathbf{B}=\mathbf{B} \vee \mathbf{A} \\
& \} \\
& \text { return } \mathbf{B}
\end{aligned}
$$

Note that transitive closure is identical to connectivity relation.

Algorithm for computation of connectivity relation:

Transitive closure (\mathbf{M}_{R} : zero-one matrix representation of R)

$$
\begin{aligned}
& \mathbf{A}=\mathbf{M}_{R} \\
& \mathbf{B}=\mathbf{A} \\
& \text { for }(i=2 ; i \leq n ; i++)\{ \\
& \quad \mathbf{A}=\mathbf{A} \odot \mathbf{M}_{R} \\
& \quad \mathbf{B}=\mathbf{B} \vee \mathbf{A} \\
& \} \\
& \text { return } \mathbf{B}
\end{aligned}
$$

Note: Although in general $S \circ R \neq R \circ S$, while computing powers of a relation, the order of compositions does not matter, hence
$R^{n+1}=R^{n} \circ R=R \circ R^{n} \Rightarrow \mathbf{M}^{n+1}{ }_{R}=\mathbf{M}_{R}^{n} \odot \mathbf{M}_{R}=\mathbf{M}_{R} \odot \mathbf{M}_{R}^{n}$

Algorithm for computation of connectivity relation:

Transitive closure (\mathbf{M}_{R} : zero-one matrix representation of R)

$$
\begin{aligned}
& \mathbf{A}=\mathbf{M}_{R} \\
& \mathbf{B}=\mathbf{A} \\
& \text { for }(i=2 ; i \leq n ; i++)\{ \\
& \quad \mathbf{A}=\mathbf{A} \odot \mathbf{M}_{R} \\
& \quad \mathbf{B}=\mathbf{B} \vee \mathbf{A} \\
& \{ \\
& \text { return } \mathbf{B}
\end{aligned}
$$

Complexity:
$\mathbf{A} \odot \mathbf{M}_{R}:(n+(n-1)) n^{2}$ operations
$\mathbf{B} \vee \mathbf{A}: n^{2}$ operations
$T(n)=(n-1)\left(n^{2}(2 n-1)+n^{2}\right)=(n-1)\left(2 n^{3}\right)$
$\therefore T(n)$ is $O\left(n^{4}\right)$. (Polynomial complexity)
e.g. Let $(a, b) \in R$ if there is a non-stop flight from city a to b.

When is (a, b) in
R^{2} ? If $\exists c$ s.t. $(a, c) \in R,(c, b) \in R$.
R^{3} ? If $\exists c, d$ s.t. $(a, c) \in R,(c, d) \in R,(d, b) \in R$.
R^{*} ? If it is possible to fly from a to b.
R^{*} can be computed using the algorithm of the previous slide.

9.5 Equivalence Relations

e.g. Consider the relation $R=\{(a, b) \mid a \equiv b(\bmod 4)\}$ R is symmetric, transitive and reflexive.

Hence we say, R is an equivalence relation.

9.5 Equivalence Relations

e.g. Consider the relation $R=\{(a, b) \mid a \equiv b(\bmod 4)\}$
R is symmetric, transitive and reflexive.
Hence we say, R is an equivalence relation.
What matters?
R divides (or partitions) the set of integers into four disjoint subsets:

$$
\{\ldots,-8,-4,0,4,8, \ldots\},\{\ldots,-7,-3,1,5,9, \ldots\},\{\ldots,-6,-2,2,6,10, \ldots\},\{\ldots,-5,-1,3,7,11, \ldots\}
$$

where any two integers in a given subset is related with R, hence said to be "equivalent" to each other.
$(4,8) \in R$ hence 4 is equivalent to 8 , and so is $(1,5)$.

Definition: Equivalence Relation

If a relation is reflexive, symmetric and transitive then it is called an equivalence relation.
Equivalent elements: Two elements that are related by an equivalence relation.

- R (defined previously) is an equivalence relation, more specifically a "modular" equivalence relation.
- $(4,8) \in R$ hence 4 is equivalent to 8 , and so is $(1,5)$.

Another relation example that defines an equivalence between strings:
Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

Another relation example that defines an equivalence between strings:
Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

- R is reflexive since $\forall a L(a)=L(a)$ which implies that $(a, a) \in R$.

Another relation example that defines an equivalence between strings:
Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

- R is reflexive since $\forall a L(a)=L(a)$ which implies that $(a, a) \in R$.
- R is symmetric since $\forall a, b \quad(a, b) \in R \rightarrow L(a)=L(b) \rightarrow L(b)=L(a) \rightarrow(b, a) \in R$

Another relation example that defines an equivalence between strings:
Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

- R is reflexive since $\forall a L(a)=L(a)$ which implies that $(a, a) \in R$.
- R is symmetric since $\forall a, b \quad(a, b) \in R \rightarrow L(a)=L(b) \rightarrow L(b)=L(a) \rightarrow(b, a) \in R$
- R is transitive since $\forall a, b, c(a, b) \in R \wedge(b, c) \in R \rightarrow L(a)=L(b) \wedge L(b)=L(c)$

$$
\rightarrow L(a)=L(c) \rightarrow(a, c) \in R
$$

$\therefore R$ is an equivalence relation.

Another relation example that defines an equivalence between strings:
Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

- R is reflexive since $\forall a L(a)=L(a)$ which implies that $(a, a) \in R$.
- R is symmetric since $\forall a, b \quad(a, b) \in R \rightarrow L(a)=L(b) \rightarrow L(b)=L(a) \rightarrow(b, a) \in R$
- R is transitive since $\forall a, b, c(a, b) \in R \wedge(b, c) \in R \rightarrow L(a)=L(b) \wedge L(b)=L(c)$

$$
\rightarrow L(a)=L(c) \rightarrow(a, c) \in R
$$

$\therefore R$ is an equivalence relation.
"discrete" is equivalent to "computer" with respect to R.

Another relation example that defines an equivalence between strings:

Let R be a relation on the set of strings :

$$
R=\{(a, b) \mid L(a)=L(b)\}, \text { where } L(x) \text { is the length of string } x .
$$

- R is reflexive
- R is symmetric
- R is transitive
$\therefore R$ is an equivalence relation.
"discrete" is equivalent to "computer" with respect to R.
- R divides (or partitions) the set of strings into disjoint subsets, where each subset contains all strings of the same length.
- Any two strings in a given subset are equivalent to each other (with respect to the relation).
e.g.

Relations on a set of people:
a) $\{(a, b) \quad a$ and b are at the same age $\}$
b) $\{(a, b) \mid a$ and b speak a common language $\}$

Are they equivalence relations?
e.g.

Relations on a set of people:
a) $\{(a, b) \mid a$ and b are at the same age $\}$ Yes
b) $\{(a, b) \mid a$ and b speak a common language $\}$ No

Are they equivalence relations?

Equivalence Classes:

e.g.

$$
R=\{(a, b) \mid a \equiv b(\bmod m)\}
$$

What is the equivalence class of 1 with respect to R ?
1 is equivalent to $1-m, 1,1+m$, and so on.

Hence, the equivalence class of 1 :

$$
[1]_{R}=\{\ldots, 1-m, 1,1+m, 1+2 m, \ldots\}
$$

Definition: Equivalence class

Let R be an equivalence relation on A.
The set of all elements that are related to an element a of A is called the equivalence class of a :

$$
[a]_{R}=\{s \mid(a, s) \in R\}
$$

e.g.

$$
[1]_{R}=\{\ldots, 1-m, 1,1+m, 1+2 m, \ldots .\}
$$

e.g. Consider the equivalence relation on the set of strings.
$R=\{(a, b) \mid L(a)=L(b)\}$, where $L(x)$ is the length of string x.
The equivalence class of the string "discrete" is the set of all strings with 8 characters.
Let S_{n} denote the set of all strings with n characters. Then the above equivalence relation partitions the set of all strings S into infinitely many disjoint and nonempty subsets, $S_{1}, S_{2}, S_{3}, \ldots$

Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.

Proof: See Chapter 9.5 of your textbook, page 591 ($7^{\text {th }}$ edition).

Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.
e.g.

$$
R=\{(a, b) \mid a \equiv b \quad(\bmod m)\}
$$

m equivalence classes:
$[0]_{R},[1]_{R}, \ldots .,[m-1]_{R}$
All are disjoint and form a partition.

Equivalence Classes and Partitions:

Equivalence classes partition (or divide) a set into disjoint, nonempty subsets.
e.g.

Relation R on a set of people: $\{(a, b) \mid a$ and b are at the same age $\}$
R partitions the set of people into equivalence classes (hence into nonempty disjoint subsets).

Each equivalence class is the set of people who are at the same age, for example $[a]_{R}$ is the set of people who are 18 years old (if a is 18 years old).
e.g.

Let R be a relation on the set of positive real-number pairs s.t.

$$
((a, b),(c, d)) \in R \leftrightarrow a d=b c
$$

Show that R is an equivalence relation.
e.g.

Let R be a relation on the set of positive real-number pairs s.t.

$$
((a, b),(c, d)) \in R \leftrightarrow a d=b c
$$

Show that R is an equivalence relation.
R is reflexive since $\forall a, b \quad a b=a b$, which implies that $((a, b),(a, b)) \in R$
e.g.

Let R be a relation on the set of positive real-number pairs s.t.

$$
((a, b),(c, d)) \in R \leftrightarrow a d=b c
$$

Show that R is an equivalence relation.
R is reflexive since $\forall a, b \quad a b=a b$, which implies that $((a, b),(a, b)) \in R$ R is symmetric since $\forall a, b, c, d \quad((a, b),(c, d)) \in R \rightarrow a d=b c \rightarrow d a=c b$ $\rightarrow((c, d),(a, b)) \in R$.
e.g.

Let R be a relation on the set of positive real-number pairs s.t.

$$
((a, b),(c, d)) \in R \leftrightarrow a d=b c
$$

Show that R is an equivalence relation.
R is reflexive since $\forall a, b \quad a b=a b$, which implies that $((a, b),(a, b)) \in R$ R is symmetric since $\forall a, b, c, d \quad((a, b),(c, d)) \in R \rightarrow a d=b c \rightarrow d a=c b$
$\rightarrow((c, d),(a, b)) \in R$.
R is transitive since $\forall a, b, c, d, e, f \quad((a, b),(c, d)) \in R$ and $((c, d),(e, f)) \in R \rightarrow(a d=b c$ and $c f=d e) \rightarrow a f=b e \rightarrow((a, b),(e, f)) \in R$
e.g.

Let R be a relation on the set of positive real-number pairs s.t.

$$
((a, b),(c, d)) \in R \leftrightarrow a d=b c
$$

Show that R is an equivalence relation.
R is reflexive since $\forall a, b \quad a b=a b$, which implies that $((a, b),(a, b)) \in R$
R is symmetric since $\forall a, b, c, d \quad((a, b),(c, d)) \in R \rightarrow a d=b c \rightarrow d a=c b$
$\rightarrow((c, d),(a, b)) \in R$.
R is transitive since $\forall a, b, c, d, e, f((a, b),(c, d)) \in R$ and $((c, d),(e, f)) \in R \rightarrow(a d=b c$ and $c f=d e) \rightarrow a f=b e \rightarrow((a, b),(e, f)) \in R$

Thus, equivalence classes for this relation partition the set of positive real number pairs into disjoint nonempty subsets such that
$[(a, b)]_{R}=\{(x, y) \mid x / y=a / b=c, c$ is a positive real number $\}$

9.6 Partial Order Relations

We can use relations to order/sort elements of a set.
e.g. $S=\{1,3,4,2,5\}$

- $R=\{(a, b) \mid a \leq b\}$ is reflexive, anti-symmetric and transitive, thus it is a "partial order relation", and we can use it as a criterion to order elements of the set S :

1, 2, 3, 4, 5 (ascending order)

9.6 Partial Order Relations

We can use relations to order/sort elements of a set.
e.g. $S=\{1,3,4,2,5\}$

- $R=\{(a, b) \mid a \leq b\}$ is reflexive, anti-symmetric and transitive, thus it is a "partial order relation", and we can use it as a criterion to order elements of the set S :
$1,2,3,4,5$ (ascending order)
- $R=\{(a, b) \mid a \geq b\}$ is also reflexive, anti-symmetric and transitive, thus also a partial order relation, that defines a different criterion:
5, 4, 3, 2, 1 (descending order)

9.6 Partial Order Relations

We can use relations to order/sort elements of a set.
e.g. $S=\{1,3,4,2,5\}$

- $R=\{(a, b) \mid a \leq b\}$ is reflexive, anti-symmetric and transitive, thus it is a "partial order relation", and we can use it as a criterion to order elements of the set S :
1,2,3, 4, 5 (ascending order)
- $R=\{(a, b) \mid a \geq b\}$ is also reflexive, anti-symmetric and transitive, thus also a partial order relation, that defines a different criterion:
5, 4, 3, 2, 1 (descending order)
- $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(2,1),(2,3),(3,1),(1,4),(2,4),(3,4),(5,1)$, $(5,4)\}$ is reflexive, anti-symmetric and transitive, thus a partial order relation, that yet defines another criterion:
5, 2, 3, 1, 4 (some weird order)

Definition: Partial Order Relation:

A relation R on a set S is called partial order relation (or a partial ordering) iff it is reflexive, anti-symmetric and transitive.

A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R).
e.g.

$$
R=\{(a, b) \mid a \leq b\} \text { is a partial order on } Z .
$$

$$
\text { Hence }(Z, R) \text { is a poset. }
$$

e.g.

$$
R=\{(a, b)|a| b\} \text { is a partial order on } Z .
$$

Definition: Partial Order Relation:

A relation R on a set S is called partial order relation (or a partial ordering) iff it is reflexive, anti-symmetric and transitive.

A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S, R).
e.g.

$$
R=\{(a, b) \mid a \leq b\} \text { is a partial order on } Z .
$$

$$
\text { Hence }(Z, R) \text { is a poset. }
$$

e.g.

$$
R=\{(a, b)|a| b\} \text { is a partial order on } Z .
$$

A partial order relation defines what means being 'less than or equal to'
e.g. $S=\{1,3,4,2,5\}$

- $R=\{(a, b) \mid a \leq b\}$ is a partial ordering:
$1 \leqslant 2 \leqslant 3 \leqslant 4 \leqslant 5$ (ascending order)
- $R=\{(a, b) \mid a \geq b\}$ is a partial ordering: $5 \preccurlyeq 4 \preccurlyeq 3 \leqslant 2 \leqslant 1$ (descending order)
- $R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(2,1),(2,3),(3,1),(1,4),(2,4),(3,4),(5,1)$, $(5,4)\}$ is a partial ordering: $5 \leqslant 2 \leqslant 3 \leqslant 1 \leqslant 4$
$a \leqslant b$ means $(a, b) \in R$. (where R is a partial order)
e．g．$S=\{1,3,4,2,5\}$
－$R=\{(a, b) \mid a \leq b\}$ is a partial ordering： $1<2<3<4<5$（ascending order）
－$R=\{(a, b) \mid a \geq b\}$ is a partial ordering： $5<4<3<2<1$（descending order）
－$R=\{(1,1),(2,2),(3,3),(4,4),(5,5),(2,1),(2,3),(3,1),(1,4),(2,4),(3,4),(5,1)$ ， $(5,4)\}$ is a partial ordering： 5 く 2 く 3 く 1 く 4
$a<b$ means $(a, b) \in R$ ，but $a \neq b$ ．

We can write $1<2$ or $1 \leqslant 2$ or $1 \leqslant 1$ but not $1<1$

Comparable vs Incomparable

e.g.
$\operatorname{Poset}\left(Z^{+}, R\right)$ with $R=\{(a, b)|a| b\}$
$(3,6) \in R$, thus $3 \leqslant 6$, hence 3 and 6 are comparable.
$(3,10) \notin R$, thus we cannot write $3 \leqslant 10$ or $10 \preccurlyeq 3$, hence 3 and 10 are incomparable.

Definition:

The elements a, b of a poset (S, \leqslant) are called comparable if either $a \leqslant b$ or $b \leqslant a$. Otherwise they are called incomparable.
e.g.

Let $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\} \quad$ on $S=\{a, b, c\}$.
R is reflexive, anti-symmetric and transitive $\therefore R$ is a partial order $\therefore(S, R)$ is a poset.
All elements are comparable: $a \leqslant a \quad b \leqslant c \quad b \leqslant a$

Definition:

The elements a, b of a poset (S, \preccurlyeq) are called comparable if either $a \leqslant b$ or $b \leqslant a$. Otherwise they are called incomparable.

> e.g.

Let $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\}$ on $S=\{a, b, c\}$.
R is reflexive, anti-symmetric and transitive $\therefore R$ is a partial order $\therefore(S, R)$ is a poset.
All elements are comparable: $a \leqslant a \quad b \leqslant c \quad b \leqslant a$
e.g.

Poset $\left(Z^{+}, R\right)$ with $R=\{(a, b)|b| a\}$.
$1 \preccurlyeq 1 \quad 4 \preccurlyeq 2 \quad 10 \preccurlyeq 5$

We cannot write $2 \leqslant 3$ or $3 \leqslant 2$, hence 2 and 3 are incomparable.

Definition:

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered set and \leqslant is called a total order(ing).
e.g. $\operatorname{Poset}\left(Z^{+}, R\right)$ with $R=\{(a, b)|a| b\}$
R is not a total ordering since there are elements incomparable such as 5 and 6 .
e.g. Poset (S, R) with $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\}$ on $S=\{a, b, c\}$ R is a total ordering; every two elements are comparable.

Definition:

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered set and \leqslant is called a total order(ing).
e.g. $\operatorname{Poset}\left(Z^{+}, R\right)$ with $R=\{(a, b)|a| b\}$
R is not a total ordering since there are elements incomparable such as 5 and 6.
e.g. Poset (S, R) with $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\}$ on $S=\{a, b, c\}$ R is a total ordering; every two elements are comparable.
e.g. $R=\{(a, b) \mid b \leq a\}$ on the set of integers.
R is a total ordering; every two elements are comparable, for instance $10 \leqslant 5$.
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than b or $a=b\}$ on the set of all people.
?
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than or of the same height with $b\}$ on the set of all people. ?

Definition:

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered set and \leqslant is called a total order(ing).
e.g. $\operatorname{Poset}\left(Z^{+}, R\right)$ with $R=\{(a, b)|a| b\}$
R is not a total ordering since there are elements incomparable such as 5 and 6.
e.g. Poset (S, R) with $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\}$ on $S=\{a, b, c\}$ R is a total ordering; every two elements are comparable.
e.g. $R=\{(a, b) \mid b \leq a\}$ on the set of integers.
R is a total ordering; every two elements are comparable, for instance $10 \leqslant 5$.
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than b or $a=b\}$ on the set of all people. R_{t} is not a total ordering; two different people with the same height are not comparable.
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than or of the same height with $b\}$ on the set of all people. ?

Definition:

If (S, \preccurlyeq) is a poset and every two elements of S are comparable, S is called a totally ordered set and \leqslant is called a total order(ing).
e.g. Poset $\left(Z^{+}, R\right)$ with $R=\{(a, b)|a| b\}$
R is not a total ordering since there are elements incomparable such as 5 and 6.
e.g. Poset (S, R) with $R=\{(a, a),(b, b),(c, c),(b, a),(b, c),(c, a)\}$ on $S=\{a, b, c\}$ R is a total ordering; every two elements are comparable.
e.g. $R=\{(a, b) \mid b \leq a\}$ on the set of integers.
R is a total ordering; every two elements are comparable, for instance $10 \preccurlyeq 5$.
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than b or $a=b\}$ on the set of all people.
R_{t} is not a total ordering; two different people with the same height are not comparable.
e.g. $R_{\mathrm{t}}=\{(a, b) \mid a$ is taller than or of the same height with $b\}$ on the set of all people. R_{t} is not even a partial ordering since it is not anti-symmetric.

Lexicographic (Alphabetic) Order

e.g. Comparing strings by $\leqslant=\{(a, b) \mid$ letter a appears before letter b in the alphabet or $a=b\}$.
"that" $<$ "this"
why?

Lexicographic (Alphabetic) Order

e.g. Comparing strings by $\leqslant=\{(a, b) \mid$ letter a appears before letter b in the alphabet or $a=b\}$.
"that" $<$ "this"
since

$$
\mathrm{t}=\mathrm{t}, \mathrm{~h}=\mathrm{h} \text { and } \mathrm{a}<\mathrm{i} .
$$

Lexicographic (Alphabetic) Order

To be able to compare n-tuples

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) ?<\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

we need n posets (hence n partial order relations):
$\left(A_{1}, \preccurlyeq_{1}\right),\left(A_{2}, \preccurlyeq_{2}\right), \ldots,\left(A_{n}, \preccurlyeq_{n}\right), \quad$ where $a_{1}, b_{1} \in A_{1} ; a_{2}, b_{2} \in A_{2}$ and so on.

Lexicographic (Alphabetic) Order

To be able to compare n-tuples

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) ?<\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

we need n posets (hence n partial order relations):

$$
\left(A_{1}, \preccurlyeq_{1}\right),\left(A_{2}, \preccurlyeq_{2}\right), \ldots .,\left(A_{n}, \preccurlyeq_{n}\right), \quad \text { where } a_{1}, b_{1} \in A_{1} ; a_{2}, b_{2} \in A_{2} \text { and so on. }
$$

Then we can write

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right) \prec\left(b_{1}, b_{2}, \ldots, b_{n}\right)
$$

whenever

$$
a_{1} \prec_{1} b_{1} \text { or } \exists i 0<i<n \text { such that } a_{1}=b_{1}, \ldots ., a_{i}=b_{i} \text {, and } a_{i+1} \prec_{i+1} b_{i+1}
$$

Hasse Diagrams:

Let's consider the graph representation of $(\{1,2,3\}, \leq)$

Partial ordering

Hasse Diagrams:

Let's consider the graph representation of $(\{1,2,3\}, \leq)$

Partial ordering:

- Reflexive: Since each node has loop, no need to draw loops explicitly.

Hasse Diagrams:

Let's consider the graph representation of $(\{1,2,3\}, \leq)$
 $2!\quad$ Hasse diagram

Partial ordering:

- Reflexive: Since each node has loop, no need to draw loops explicitly.
- Transitive: Since having $(1,2),(2,3)$ means we have $(1,3)$, no need to draw the edge $(1,3)$ explicitly; same for other transitions.
- Anti-symmetric: No need to show directions, since we can assume all edges pointed upwards by convention.
e.g.

Consider the partial ordering $\{(a, b)|a| b\}$ on $\{1,2,3,4,6\}$.

Hasse diagram
e.g.

Consider the partial ordering $\{(a, b)|b| a\}$ on $\{1,2,3,4,6\}$.

3 and 6 are comparable: $6 \leqslant 3$

2 and 3 are not comparable.
e.g.

Consider the partial ordering

$$
R=\{(1,1),(2,2),(3,3),(4,4),(2,1),(2,3),(3,1),(4,1)\} \text { on } S=\{1,2,3,4\}
$$

Draw the Hasse Diagram.
e.g.

Consider the partial ordering

$$
R=\{(1,1),(2,2),(3,3),(4,4),(2,1),(2,3),(3,1),(4,1)\} \text { on } S=\{1,2,3,4\}
$$

Draw the Hasse Diagram.

4,2 are minimal elements
1 is maximal element

Maximal and Minimal Elements:

An element a is a maximal in poset (S, \preccurlyeq) if there is no $b \in S$ s.t. $a \prec b$. (top elements in Hasse diagram)
An element a is a minimal in poset (S, \preccurlyeq) if there is no $b \in S$ s.t. $b<a$. (bottom elements in Hasse diagram)
e.g. (from textbook)

a) Maximal elements: ?
b) Minimal elements: ?

Maximal and Minimal Elements:

An element a is a maximal in poset (S, \preccurlyeq) if there is no $b \in S$ s.t. $a \prec b$. (top elements in Hasse diagram)
An element a is a minimal in poset (S, \preccurlyeq) if there is no $b \in S$ s.t. $b<a$. (bottom elements in Hasse diagram)
e.g. (from textbook)

a) Maximal elements: $\quad l, m$
b) Minimal elements: a, b, c

Compatible Total Ordering

e.g. (from textbook)

Hasse Diagram for scheduling seven tasks

Poset (S, R) :
$S=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}\}$
$R=\left\{\left(T_{1}, T_{2}\right) \mid\right.$ task T_{1} must precede T_{2} or $\left.\left(T_{1}=T_{2}\right), T_{1}, T_{2} \in S\right\}$

Compatible Total Ordering

There are various compatible total orderings:

```
    A, C, E, B, D, F, G
or
    A , C , B, E, F, D, G
or
```


Compatible Total Ordering

There are various compatible total orderings:

$$
\mathrm{A}, \mathrm{C}, \mathrm{E}, \mathrm{~B}, \mathrm{D}, \mathrm{~F}, \mathrm{G}
$$

or

$$
\mathrm{A}, \mathrm{C}, \mathrm{~B}, \mathrm{E}, \mathrm{~F}, \mathrm{D}, \mathrm{G}
$$

or

- Total ordering because all the elements in the set are ordered.
- Each of these orderings is compatible with the partial order relation.
- We can find these compatible total orders in general by applying the topological sorting algorithm.
- See the next slide.

Topological Sorting Algorithm

A compatible total ordering can be constructed with a partial ordering R :
Topo-sort (S, R : finite poset)

$$
k=1
$$

$$
\text { while } S \neq \varnothing\{
$$

$a_{k}=$ minimal element of S
$S=S-\left\{a_{k}\right\}$
$k=k+1$
\}
$\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is a compatible total ordering of S (compatible with relation R).

How to apply toplogical sorting algorithm to the Hasse diagram below:

Minimal elements are A, C and E; pick one, say A.

How to apply toplogical sorting algorithm to the Hasse diagram below:

A,

Remove A and its connections.
Minimal elements are then C and E ; pick one, say C .

How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.

A, C,

Remove C and its connections.
Minimal elements are then B and E; pick one, say B.

How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.

Remove B and its connections.
Minimal elements are then D and E ; pick one, say E .

How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.

$$
\mathrm{A}, \mathrm{C}, \mathrm{~B}, \mathrm{E}
$$

Remove E and its connections.
Minimal elements are then D and F; pick one, say F.

How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.

$$
\mathrm{A}, \mathrm{C}, \mathrm{~B}, \mathrm{E}, \mathrm{~F},
$$

Remove F and its connections.
The only minimal element is then D ; pick D .

How to apply toplogical sorting algorithm to the Hasse diagram below:

e.g.

G

A, C, B, E, F, D,

Remove D and its connections. The only element is then G; pick G.

How to apply toplogical sorting algorithm to the Hasse diagram below:

We get A, C, E, B, D, F, G as a compatible total ordering.
Depending on the choices you make to pick a minimal element, you may end up with different compatible total ordering alternatives, all valid and respecting the partial ordering relation.
e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for the given poset.

$$
R=\{(a, b)|a| b\}
$$

a) $A=\{1,2,3,4,5,6,7,8\}$
b) $A=\{1,2,3,6,12,24,36,48\}$
e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for the given poset.

$$
R=\{(a, b)|a| b\}
$$

a) $A=\{1,2,3,4,5,6,7,8\}$

One possible compatible total ordering:
$1,7,3,5,2,4,8,6$

Another: 1, 2, 3, 5, 7, 4, 8, 6
b) $A=\{1,2,3,6,12,24,36,48\}$
e.g. (from textbook) Draw the Hasse Diagram and find a compatible total ordering for the given poset.

$$
R=\{(a, b)|a| b\}
$$

a) $A=\{1,2,3,4,5,6,7,8\}$

One possible compatible total ordering:
$1,7,3,5,2,4,8,6$
Another: 1, 2, 3, 5, 7, 4, 8, 6
b) $A=\{1,2,3,6,12,24,36,48\}$

One possible compatible total ordering:
$1,3,2,6,12,24,36,48$
e.g. (from textbook) Draw Hasse Diagram for the inclusion relation R on the power set $P(S)$ where $S=\{a, b, c, d\}$.

$$
R=\left\{\left(S_{1}, S_{2}\right) \mid S_{1} \subseteq S_{2}, S_{1}, S_{2} \in P(S)\right\}
$$

