
SAMPLE MIDTERM QUESTIONS

1. a) Show that p→ q ≡ ¬p ∨ q.

b) Let p be the proposition “Every person older than 18 years in this country can
have a driving license,”
and let A(x) and B(x) be the predicates,

A(x) : “x is in this country”
B(x) : “x is older than 18 years”
C(x) : “x can have a driving license”

where the universe of discourse is the set of all people in the world.
Express the proposition p by using quantifiers, logical connectives and the pred-
icates A(x), B(x) and C(x). Then form the negation of the proposition so that
no negation is to the left of a quantifier. Next, express the negation in simple
English.

c) Suppose that the proposition “every person older than 18 years in this country
can have a driving license” is true, and also that a person x1 in this country
can not have a driving license. Does it mean that x1 is not older than 18 years?
Explain your answer.

2. a) Use mathematical induction to show that ∀n ∈ Z+

¬(p1 ∧ p2 ∧ · · · ∧ pn) ≡ ¬p1 ∨ ¬p2 ∨ · · · ∨ ¬pn.

b) Show that ¬∀x A(x) ≡ ∃x ¬A(x), where A(x) is a predicate and the universe
of discourse is a finite set with elements x1, x2, ..., xn.

3. a) Prove or disprove that 5x is O(52x).

b) Prove or disprove that 5x is Θ(52x).

(In both parts, use the definition of big-O notation.)

4. a) Show that the inverse of a modulo m is unique in modulo m if it exists, that
is, if gcd(a,m) = 1.

b) Show that the linear congruence ax ≡ b (mod m) has a unique solution in
modulo m whenever gcd(a,m) = 1.

(Hint: In both parts, use proof by contradiction to show uniqueness. Assume
two different solutions exist and show that it is not possible.)

5. Show by strong induction that ∀n ∈ Z+, f(n) < (5
3
)n, where f(n) is the n-th

Fibonacci number defined by the following recurrence relation:

f(n) = f(n− 1) + f(n− 2) n ≥ 2, and f(0) = 0, f(1) = 1.



6. Consider the following pseudocode:

function Compute(a: real number, n: positive integer)
if n = 1 then

p = a
else

p = a + Compute(a, n− 1)
return p

a) Find out what this function computes given a and n. Verify your answer by
induction.

b) Write down the complexity function T (n) of the above algorithm as a recurrence
relation.

c) Find big-Θ (big Theta) complexity of the algorithm. Measure the complexity
in terms of comparison and addition operations.


