SAMPLE MIDTERM QUESTIONS

- 1. a) Show that $p \to q \equiv \neg p \lor q$.
 - b) Let p be the proposition "Every person older than 18 years in this country can have a driving license,"

and let A(x) and B(x) be the predicates,

A(x): "x is in this country"

B(x): "x is older than 18 years"

C(x): "x can have a driving license"

where the universe of discourse is the set of all people in the world.

Express the proposition p by using quantifiers, logical connectives and the predicates A(x), B(x) and C(x). Then form the negation of the proposition so that no negation is to the left of a quantifier. Next, express the negation in simple English.

- c) Suppose that the proposition "every person older than 18 years in this country can have a driving license" is true, and also that a person x_1 in this country can not have a driving license. Does it mean that x_1 is not older than 18 years? Explain your answer.
- 2. a) Use mathematical induction to show that $\forall n \in \mathbb{Z}^+$

$$\neg (p_1 \land p_2 \land \dots \land p_n) \equiv \neg p_1 \lor \neg p_2 \lor \dots \lor \neg p_n.$$

- b) Show that $\neg \forall x \ A(x) \equiv \exists x \ \neg A(x)$, where A(x) is a predicate and the universe of discourse is a finite set with elements $x_1, x_2, ..., x_n$.
- 3. a) Prove or disprove that 5^x is $O(5^{2x})$.
 - b) Prove or disprove that 5^x is $\Theta(5^{2x})$. (In both parts, use the definition of big-O notation.)
- 4. a) Show that the inverse of a modulo m is **unique** in modulo m if it exists, that is, if gcd(a, m) = 1.
 - b) Show that the linear congruence $ax \equiv b \pmod{m}$ has a **unique** solution in modulo m whenever $\gcd(a, m) = 1$.

(Hint: In both parts, use proof by contradiction to show uniqueness. Assume two different solutions exist and show that it is not possible.)

5. Show by strong induction that $\forall n \in \mathbb{Z}^+, f(n) < (\frac{5}{3})^n$, where f(n) is the *n*-th Fibonacci number defined by the following recurrence relation:

$$f(n) = f(n-1) + f(n-2)$$
 $n \ge 2$, and $f(0) = 0$, $f(1) = 1$.

6. Consider the following pseudocode:

```
\begin{array}{l} \mathbf{function} \quad \mathrm{Compute}(a: \ \mathrm{real} \ \mathrm{number}, \ n: \ \mathrm{positive} \ \mathrm{integer}) \\ \mathbf{if} \ n = 1 \ \mathbf{then} \\ p = a \\ \mathbf{else} \\ p = a + \mathrm{Compute}(a, n-1) \\ \mathbf{return} \quad p \end{array}
```

- a) Find out what this function computes given a and n. Verify your answer by induction.
- b) Write down the complexity function T(n) of the above algorithm as a recurrence relation.
- c) Find big- Θ (big Theta) complexity of the algorithm. Measure the complexity in terms of comparison and addition operations.