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a b s t r a c t

We present a fast and efficient non-rigid shape tracking method for modeling dynamic 3D objects from
multiview video. Starting from an initial mesh representation, the shape of a dynamic object is tracked
over time, both in geometry and topology, based on multiview silhouette and 3D scene flow information.
The mesh representation of each frame is obtained by deforming the mesh representation of the previous
frame towards the optimal surface defined by the time-varying multiview silhouette information with
the aid of 3D scene flow vectors. The whole time-varying shape is then represented as a mesh sequence
which can efficiently be encoded in terms of restructuring and topological operations, and small-scale
vertex displacements along with the initial model. The proposed method has the ability to deal with
dynamic objects that may undergo non-rigid transformations and topological changes. The time-varying
mesh representations of such non-rigid shapes, which are not necessarily of fixed connectivity, can suc-
cessfully be tracked thanks to restructuring and topological operations employed in our deformation
scheme. We demonstrate the performance of the proposed method both on real and synthetic sequences.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

3D modeling of dynamic real scenes is an emerging research
field with applications in various domains such as 3D television,
free viewpoint video, virtual reality and computer animation
[1,2]. Unlike optical motion capture systems which are widely used
in computer animation applications [3], 3D video methods aim to
recover the complete shape of a dynamic object, not only its mo-
tion. Most of the techniques addressing the dynamic object model-
ing problem adhere to passive surface reconstruction methods
exploiting silhouette, shading and/or stereo information acquired
from multicamera video sequences [4–13], due to the limitations
of active reconstruction methods in temporal axis [14].

The goal of dynamic scene modeling schemes is usually to gen-
erate a sequence of meshes each of which represents the geometry
of a dynamic object at the corresponding video frame. There are
three major challenges involved in achieving this goal. The first
two of these challenges concern efficiency: computational com-
plexity of the reconstruction method and the resulting representa-
tion load. A time-varying scene sampled at a standard rate of 30
frames per second would yield enormous 3D model data for repre-
sentation and a considerable amount of time for reconstruction if
no particular care is shown to exploit redundancies between con-
secutive time frames. In this respect, time-varying mesh represen-
tations with fixed connectivity, but with changing vertex positions,

would certainly provide efficiency for both storage and processing.
The third challenge concerns generality of the proposed solutions,
that is, their applicability to modeling general dynamic scenes with
arbitrary shape and motion. Existing methods often aim at fixed
connectivity representations and/or make use of object-specific
prior models [11,15]. Hence they primarily consider rigid and/or
articulated motion, and may not handle the reconstruction prob-
lem when the object of interest undergoes an arbitrary non-rigid
motion or a topological transformation. As an example, we display
in Fig. 1 three frames from a video sequence containing non-rigid
motion that cannot be handled by fixed connectivity
representations.

In this paper, we present an efficient shape tracking method for
modeling dynamic objects based on multiview silhouette and 3D
scene flow information. Here the term ‘‘shape tracking’’, in the
way we use it, refers to reconstruction of the surface shape of a dy-
namic object at time t + 1 based on the reconstruction at time t,
starting from an initial representation at t = 0. There exist actually
few methods in the literature, which are shape tracking in this
sense and which can build complete shape models of dynamic ob-
jects [4,5,7,8,10]. The main distinction of the method that we pro-
pose in this paper, as compared to previous work, is in the way we
represent time-varying geometry. We track and encode time-vary-
ing geometry in terms of both connectivity changes and vertex dis-
placements. In this way objects with arbitrary shape and motion
can easily be handled, and the reconstruction problem is reduced
to an energy minimization problem which can be solved by a fast
snake-based deformation scheme, yielding a computationally very
efficient shape tracking method. Unlike existing shape tracking
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methods, our scheme does not require any object-specific mesh
representation, or 3D models separately reconstructed for all
frames of the sequence prior to the tracking process. Starting from
an initial mesh representation, the shape of the dynamic object is
tracked over time, both in geometry and connectivity, via mesh
deformation based solely on image cues. We also address the
self-collision problem, which is disregarded in most shape tracking
methods, via a very efficient collision handling strategy coupled
with topological split/merge operations.

The mesh representation of each frame is obtained by evolving
the mesh of the previous frame towards the optimal surface de-
fined by the silhouettes of that instance. This produces a sequence
of meshes, M(0), M(1), . . . , M(t), . . . , representing the time-varying
silhouette geometry, i.e., the time-varying visual hull of the

dynamic object in the scene. Our snake-based deformable model
is based upon the deformation scheme which was proposed in
[16] for the classical static shape from silhouette. We extend this
deformation scheme to the dynamic case so as to address the prob-
lem of shape tracking. This scheme enables us to control parame-
trization and topology of the dynamic mesh model for robust
mesh evolution across time via local mesh transformation opera-
tions. These mesh operations and small-scale displacements along
with the initial mesh representation yield a compact and spatio-
temporally coherent representation of the whole time-varying
shape. The block diagram of the overall shape tracking system is gi-
ven in Fig. 2.

The paper is organized as follows. First, in Section 2, we discuss
the related work on time-varying shape modeling, and then pro-
ceed, in Section 3, with the description of the deformation frame-
work that we employ in our tracking scheme. Our deformable
model is coupled with efficient collision and topology handling
procedures as described in Section 4. The overall shape tracking
system, which makes use of multiview silhouette and 3D scene
flow information, is described in Section 5. Section 6 provides
and discusses the experimental results, and finally, Section 7 gives
concluding remarks and some future research perspectives.

2. Related work

There is a vast and quite mature literature on 3D reconstruction
of static objects. In general, reconstruction techniques for static
scenes can be collected under two groups: active and passive. Ac-
tive techniques make use of calibrated light sources such as lasers
and coded light [14]. Most of the active scene capture technologies
become inapplicable in the dynamic case since currently it is very
difficult to scan the whole surface of an object at a standard rate of
30 Hz. There exist though several attempts to achieve scanning at
standard rates such as in [17,18] by projecting coded light patterns
on the object. The methods proposed in these works however have
severe limitations on resolution, object’s surface properties and
motion, and are capable of producing only depth images, not full
surface representations. On the other hand, passive reconstruction
techniques, which are based solely on image cues such as multi-
view stereo [19] and/or silhouettes [20], are mostly free of these
limitations, and hence they currently seem to be a more viable op-
tion for the dynamic object modeling problem.

Most of the methods in the literature proposed for dynamic ob-
ject modeling require as a first step that the object shape, which is
usually represented as a surface mesh, be reconstructed from
scratch, separately for each time instance [6–10,12]. The resulting
sequence of meshes can then be matched so as to obtain a time-
consistent representation. All these methods, with the exception
of [8], impose fixed connectivity hence they cannot adapt to non-
rigid deformations and topological changes. In order to achieve a
fixed connectivity representation, Starck et al. [6] for instance
use spherical reparametrization of the resulting mesh sequenceFig. 2. Block diagram of the proposed shape tracking system.

Fig. 1. Three frames from a video sequence (in chronological order) of an actor while taking off his hat (zoomed on upper body). Our shape tracking scheme can handle this
video sequence while methods based on fixed connectivity representations cannot.
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whereas other methods basically cast the reconstruction problem
to a shape tracking framework: Starting from an initial mesh, the
time-varying geometry is tracked over time by preserving the con-
nectivity and exploiting the temporal redundancies between con-
secutive frames [7,10]. Hence the problem becomes finding a
suitable transformation that maps the vertices of a mesh at time
t onto the surface represented by another mesh at t + 1.

Two other recent and closely related works [4,5] follow a very
particular approach to capture human performances from multi-
view video. Prior to video recording, they first take a static full-
body scan of the subject using a laser scanner and construct a de-
tailed complete 3D mesh model. This mesh model representing the
shape of the human actor in the first frame is then tracked over
time by preserving connectivity, based on multiview image cues.
In particular, the method in [4] presents very high quality recon-
structions but the method requires user interaction and an exten-
sive computation time which is reported as about 10 min per
frame on a standard computer with a 3 GHz CPU. Moreover the
method, which aims at fixed connectivity, has no mechanism to
handle arbitrary non-rigid motion and self-collisions.

There is actually very little work in shape tracking literature,
that addresses the self-collision problem [8]. Self-collisions may
occur during surface tracking due to two different reasons: (1) a
misguided self-intersection of the deformable mesh, and (2) a real
physical contact of different surface parts during motion. Varanasi
et al. [8] treat these two different types of self-collisions in the
same manner by making use of a topology adaptive self-intersec-
tion removal technique, namely TransforMesh [21], which is a
costly algorithm that involves repeated self intersection tests, tri-
angle validation and stitching procedures during mesh evolution.
With this technique, each self-collision, whether a misguided
self-intersection or a physical surface contact, implicitly creates a
merge or split in topology. In contrast, the method that we present
in this paper differentiates these two cases and avoids self-inter-
sections based on the uniformity constraints imposed on the
deformable mesh via the use of restructuring operators. Physical
surface contacts, on the other hand, are detected explicitly and
fixed only when necessary by using topological merge and split
operations. In this way, redundant topological transformations
are avoided and the resulting time-varying geometry can be en-
coded in terms of mesh restructuring operations and vertex dis-
placements along with possibly a few explicit topology
operations. We also note that the method presented in [8] requires
reconstruction of the surface mesh from scratch, separately for
each frame of a given sequence.

Existing methods for reconstruction of dynamic objects rely
mainly on multiview silhouette information [22]. The strength of
the shape from silhouette technique in general lies in its simplicity,
efficiency and robustness especially when applied to convex
shapes. The main drawback of this technique is that it fails to cap-
ture hidden concavities. Multiview stereo information on the other
hand can be incorporated into reconstruction schemes in several
different ways. It can be used for instance to enhance silhouette-
based reconstructions so as to capture finer surface concavities
[4], or to impose additional constraints on the silhouette recon-
struction process in order to avoid self-occlusion problems [6]. An-
other possibility is to compute 3D scene flow vectors or image
feature based 3D correspondences to incorporate into the mesh
tracking process [5,7,8]. Relying too much on 3D scene flow vec-
tors, which are very prone to errors, as in [5] for instance, may
however fail the tracking process especially when the motion in
the scene is very fast and complex. In our earlier work [23], we
have shown that, given a sufficient number of multiview silhouette
images at each frame, the time-varying geometry of an object with
a relatively complex shape, such as a human actor, can be tracked
based solely on silhouette information in a very fast manner using

a snake-based deformable model. In this paper, we generalize our
tracking framework to objects with arbitrary shape and topology,
and make it more efficient and robust, by incorporating additional
features such as 3D scene flow, collision detection and topological
operations.

Shape tracking methods usually resort in some way or other to
mesh deformation methods, such as Laplacian deformation [24],
which is a powerful tool for mesh morphing and editing, and which
can be used to obtain animating mesh sequences with fixed con-
nectivity [4,10]. However, with Laplacian deformation which is a
differential and piecewise linear scheme, mesh connectivity cannot
be altered, hence dynamic objects with arbitrary motion cannot be
tracked. Another alternative [25] is based on volumetric level-set
technique, that builds a spatially and temporally smooth surface
model. Level-set based deformation is however computationally
very demanding. Although it can implicitly handle topological
changes in geometry, the topology control is often very difficult
to achieve. Moreover, with the level set approach, the explicit con-
nectivity information of the initial shape model is lost through the
iterations between the initial state and its convergence. Thus the
level set technique becomes inapplicable to track objects in motion
and to build efficient time-varying representations. In this respect,
snake-based deformable models, when coupled with appropriate
use of restructuring and topological operations as we do in this
work, enable keeping track of the changes both in geometry and
connectivity, and hence they are more appropriate to efficiently
track and encode the temporal information of dynamic surfaces
with arbitrary motion and shape. We finally note that our topology
handling procedure adopts the topology split and merging opera-
tions of the deformation scheme which was proposed in [26] pri-
marily for segmentation of 3D anatomical structures.

3. Deformable model

Our deformation technique is based on the iterative use of two
transformations T and U that deform, at each frame t, an initial tri-
angle mesh MðtÞ

0;0 towards the object surface S(t) through the follow-
ing surface evolution equations:

MðtÞ
kþ1;l ¼ T MðtÞ

k;l

� �
; ð1Þ

MðtÞ
0;lþ1 ¼ U MðtÞ

k� ;l

� �
; ð2Þ

where k is the iteration counter for geometrical evolution of the sur-
face and l for its topological evolution. For a given l, the deformable
model MðtÞ

k;l is required to preserve its topological type during its
geometrical evolution via Eq. (1) and to remain as a smooth mani-
fold mesh representation free of geometrical distortions, and even-
tually to converge to an optimal mesh MðtÞ

k� ;l that represents the
object surface S(t) as accurately as possible at the equilibrium state,
so that the following equality is satisfied:

MðtÞ
k� ;l ¼ T MðtÞ

k� ;l

� �
: ð3Þ

The topology of the deformable model can then be modified at
the convergence, only if necessary, by using the operator U via Eq.
(2). The deformable model MðtÞ

0;lþ1 then becomes the initial mesh of
the next reiteration of the geometrical evolution with the modified
topology.

The operator U is defined as the composition of two operators
involving topology merging and split transformations:

U ¼ Umerge � Usplit; ð4Þ

and applied at the convergence of each geometrical evolution pro-
cess until no further topological operations are necessary, i.e., until

S.C. Bilir, Y. Yemez / Computer Vision and Image Understanding 116 (2012) 1121–1134 1123



Author's personal copy

the topology of the deformable model matches that of the target
surface, so that the following equality is satisfied:

MðtÞ
k� ;l� ¼ U MðtÞ

k� ;l�

� �
; ð5Þ

where MðtÞ
k� ;l� denotes the mesh representation which is to be optimal

both in topology and geometry. We will explain how we perform
topological merge and split operations in more detail later in
Section 4.2.

We define T as the composition of three transformations: T = Td-

�Ts�Tr, which we will refer to as displacement, smoothing and
restructuring operators, respectively. The displacement operator
pushes the deformable mesh towards the object surface while
the smoothing operator regularizes the effect of this displacement,
and the restructuring operator modifies the mesh connectivity to
eliminate any geometrical distortions that may appear during sur-
face evolution. In this sense, the displacement operator corre-
sponds to the external force whereas the other two correspond
to the internal force of the classical snake formulation [27]. Note
that the operator T does not modify the topology of the deformable
mesh.

The restructuring operator, Tr, is the composition of three
operators:

Tr ¼ T flip � Tcol � Tsplit; ð6Þ

where Tflip, Tcol and Tsplit are defined in terms of edge flip, edge col-
lapse and edge split transformations which were first introduced by
Hoppe et al. [28] for mesh optimization (see Fig. 3). We adopt these
elementary transformations for our deformation process in the way
Kobbelt et al. [29] use them for mesh editing. At the end of each
iteration of the geometrical surface evolution, the operator Tsplit first
splits all edges longer than emax at their midpoints. Then, the oper-
ator Tcol successively eliminates all edges shorter than emin by edge
collapses. Finally, the operator Tflip is applied to reduce the number
of irregular vertices possibly created by the previous collapse and
split operations: The common edge of any two neighboring trian-
gles is swapped with the one joining the unshared vertices of the
triangles, if this operation increases the number of vertices with va-
lence close to 6. For the split operation to be compatible with the
collapse operation, the threshold emax has to be chosen such that
emax P 2emin since otherwise split operations would create edges
with length smaller than emin. If we set emax = jemin, then the edge
length ratio is bounded by emax/emin = j. To have uniformly sized
triangles with small aspect ratios, one can choose j as small as pos-
sible, i.e., j = 2, which may however in turn redundantly increase
the number of edge operations needed during surface evolution.
Therefore in all our experiments we set j as sufficiently larger than
this minimum value: j = 3. We note that the minimum and maxi-
mum edge length constraints are only soft requirements that may
occasionally be violated during mesh evolution. This is described

in detail in [16]. Nevertheless, the restructuring operator serves
well to regularize the mesh connectivity and thereby provides a sta-
ble surface evolution.

The displacement operator Td(Mk) maps the deformable mesh
Mk (dropping the indices t and l) to M0

k by moving each vertex
vi,k with a displacement d(vi,k), where vi,k denotes the position vec-
tor of the ith vertex at iteration k (hence M0

k has the same connec-
tivity as Mk). The displacement is set to be in the direction of the
unit vector D(vi,k) pointing from the vertex to the target surface:

dðvi;kÞ ¼ dðvi;kÞ � Dðvi;kÞ: ð7Þ

The displacement scalar d(vi,k) is computed based on the signed
distance from vertex vi,k to the target surface, as will later be ex-
plained in detail in Section 5. For the time being, we note that,
for a stable surface evolution, the magnitude of the displacement
vector in Eq. (7) is constrained by half of the minimum edge length,
i.e., with jd(vi,k)j 6 emin/2, "i, k, so that neighboring vertices do not
interfere with each other and yield self intersections.

The smoothing operator, Ts, should be easy to compute, yet
must not yield any geometrical shrinkage and bias in the final sur-
face estimate. To achieve this, we employ the tangential Laplacian
smoothing [30]. The operator Ts(Mk) maps the deformable mesh Mk

to M0
k by moving each vertex vi,k to v0i;k by a tangential displace-

ment Dvi,k, which is obtained by

Dvi;k ¼ Lðvi;kÞ � ðLðvi;kÞ � Nðvi;kÞÞNðvi;kÞ; ð8Þ

where N(vi,k) is the surface normal at vertex vi,k and L(vi,k) stands for
the Laplacian displacement that moves the vertex to the centroid of
the vertices in its one-ring neighborhood. The smoothing operator
not only regularizes the deformation process but also enforces mesh
uniformity prior to restructuring operations.

4. Collision and topology handling

We deal with collisions (i) by avoiding any self-intersection of
the deformable mesh during surface evolution iterations driven
by Eq. (1), and (ii) by applying topological operations so as to han-
dle any physical contact of different surface parts, that might be
encountered during deformation, as given by Eq. (2).

4.1. Self-intersections

To avoid self-intersections, we employ the collision detection
method proposed in [16]. The basic idea in this method is to pre-
vent non-neighboring vertices from approaching each other by
more than some distance threshold. This distance threshold, de-
noted by f, is based on the minimum and maximum edge length
constraints imposed on the deformable mesh, and when emax = 3-
emin as in our case, it can be written as (following [16])

f >

ffiffiffiffiffiffi
13
p

2
emin; ð9Þ

The basic procedure is as follows. At a given iteration of mesh
evolution, all the vertices of the deformable mesh are first dis-
placed by the displacement operator. Then each vertex is checked
one by one against the vertices which are not its neighbors. If a ver-
tex is found to have approached any other vertex by more than the
collision detection threshold f, then the vertex is moved back to its
original position. In [16], it is shown that when the edge length
constraints are strictly met, the inequality given in (9) ensures that
collision of non-neighboring vertices is avoided. Recall however
from Section 3 that the maximum edge length requirement is
not a hard constraint and can be violated in rare occasions. Thus
some triangles with sides larger than emax may show up in the
deformable mesh during surface evolution. These large trianglesFig. 3. Restructuring operations: edge collapse, edge split and edge flip.
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are handled by sampling, that is, by virtually quadrisecting each
triangle in a recursive manner until the maximum edge length
requirement is met. The resulting virtual vertices are used only
for collision detection purposes. The described collision detection
algorithm can be implemented in an efficient manner with O(Nv-
logNv) complexity, Nv being the number of vertices in the deform-
able mesh, by using an octree structure where each vertex is
associated with a node (or voxel) and by checking each vertex only
against those in its vicinity.

The collision handling procedure described above handles self-
intersections of only non-neighboring vertices. Hence the success
of the procedure relies upon the assumption that neighboring ver-
tices never create self-intersections. This is a valid assumption due
to the minimum edge length constraint which also bounds the dis-
placement of a vertex at one iteration by half of the minimum edge
length, emin/2. The vertex neighborhood, in which vertices are al-
lowed to move as free of the collision threshold, needs to be de-
fined considerately. In order to have a flexible deformation, we
define this area as the two-ring neighborhood of a vertex assuming
that self-intersections are not likely to occur at very nearby verti-
ces due to the regularizing effect of the smoothing operator as well
as the minimum edge length constraint.

4.2. Surface contacts

Surface contacts are identified and handled only at the conver-
gence of each mesh evolution process. A surface contact may man-
ifest itself in two occasions, when two distant parts of a surface
touch each other and/or when they break apart. We treat these
two cases separately, in the first case by topology merging and in
the second by topology split. To this effect, at the convergence of
each surface evolution process, the operators Umerge and Usplit are
successively applied to the deformable mesh (see Eq. (4)). The or-
der of these two operators usually does not matter.

The operator Umerge searches for pairs of two distant vertices
both of which lie inside the convex hull of the object and which
were detected to be colliding at the last iteration before conver-
gence. If one is found (there may be more than one such pairs),
the topology merging transformation of [26] is applied to only
one of these pairs (whichever comes first and the others are left
to be processed at the end of the next surface evolution process):
The colliding vertices are first removed from the mesh structure.
The vertices in their one-ring neighborhoods are then matched
and connected so as to build a surface tunnel between the two sep-
arate parts of the deformable surface. In order to facilitate the pro-
cess of vertex matching, before merging, we equalize the valences
of the colliding vertices by applying collapse operation(s) at the
vertex whichever has a valence higher than the other.

Following [26], the operator Usplit searches for a triplet of adja-
cent vertices forming a triangle which is not a face of the deform-
able mesh. We additionally require this triangle to tend to vanish,
i.e., at least one of its edges to be shorter than the minimum edge
length constraint. There may exist more than one such triplets, but
again only one of them is processed by cutting the mesh into two
along the edges of the triangle and filling the created holes by two
new faces. The surface evolution iterations and the topological
operations at each convergence are repeated until the equilibrium
state in Eq. (5) is reached (see the example given in Section 6.1.3).

5. Shape tracking

The mesh representation of the object surface at each frame t,
MðtÞ ¼ MðtÞ

k� ;l� , is reconstructed by deforming the shape recon-
structed at the previous frame, MðtÞ

0;0 ¼ Mðt�1Þ
k� ;l� . The deformation pro-

cess is driven primarily by the silhouette information. In this

section, we first describe how to determine the displacement oper-
ator based only on silhouettes and then explain how to incorporate
3D scene flow into the tracking/deformation process (see also
Fig. 2).

5.1. Silhouette-based displacement

The displacement, d(vi,k), at each vertex i of the deformable
mesh and at each iteration k of the surface evolution, can be com-
puted based on the time-varying silhouette information. We set
the direction of the silhouette-based displacement, denoted by
dsil(vi,k), so as to be perpendicular to the deformable surface (see
also Fig. 4):

dsilðvi;kÞ ¼ dsilðvi;kÞ �Nðvi;kÞ: ð10Þ

The magnitude of the displacement, dsil(vi,k), is based on how far
and in which direction (inside or outside) the vertex vi,k is with re-
spect to the silhouettes at that iteration. Thus the displacement
scalar dsil, which may take negative values as well, is computed
by projecting vi,k onto the image planes and thereby estimating
an isolevel value f(vi,k) via bilinear interpolation:

dsilðvi;kÞ ¼ eminf ðvi;kÞ ¼ eminmin
n
fG½ProjIn

ðvi;kÞ� � 0:5g; ð11Þ

where the function G, taking values between 0 and 1, is the bilinear
interpolation of the sub-pixelic projection ProjIn

ðvi;kÞ onto the cam-
era plane of the binary silhouette image In (0 for outside, 1 for in-
side) in the sequence, and given by

Gðu;vÞ ¼ ð1� aÞðð1� bÞIðbuc; bvcÞ þ bIðbuc; bvc þ 1ÞÞ
þ aðð1� bÞIðbuc þ 1; bvcÞ þ bIðbuc þ 1; bvc þ 1ÞÞ; ð12Þ

where (buc, bvc) denotes the integer part, and (a, b) the fractional
part of the projection coordinate (u, v) on the binary silhouette im-
age I. Thus, the isolevel function f(vi,k) takes on values between �0.5
and 0.5, and the zero crossing of this function reveals the isosurface.

During surface evolution, the vertices of the deformable mesh
can switch between three different states with respect to their iso-
values: IN, OUT and ON. The state of a vertex vi,k at a given iteration
k is IN if f(vi,k) is 0.5, OUT if �0.5 and ON if in-between. According
to this definition, ON vertices are those positioned within a narrow
band around the boundary surface. By Eq. (11), the displacement at
each ON vertex takes a value within the interval (�emin/2,emin/2).
The vertices which are out of this band are labeled as IN or OUT,
depending on whether they are located inside or outside the sil-
houettes with displacement scalars emin/2 or �emin/2.

For a more accurate and faster convergence, we integrate a fine-
tuning procedure to the surface evolution process as proposed in
[16]. We detect the instances when a vertex v crosses the target
boundary due to the effect of the displacement operator, that is,
when its state changes from outside to inside, or vice versa. We
then precisely locate the point where it crosses the boundary by

Fig. 4. Illustration of the silhouette-based displacement operator in 2D. The
displacement dsil(vi,k) on each vertex vi,k of the deformable mesh Mk at iteration k
is set to be in the direction of the surface normal N(vi,k) and computed based on the
signed distance from the vertex to the target surface S.
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searching for the point v⁄ where the isolevel function is (almost)
zero on the line segment joining the positions of the vertex v be-
fore and after displacement. The vertex is then moved to this loca-
tion. Note that the vertex is not deactivated at this point and can
still move due to the smoothing operator at the next iterations un-
til it finds its optimal placement within the narrow band around
the object boundary.

5.2. Scene flow estimation

To enhance efficiency of the shape tracking process as well as its
stability, we incorporate 3D scene flow (3DSF) information into the
deformation scheme. To this effect, we associate a scene flow vec-
tor wðtÞi to each vertex vðtÞi of the mesh representation M(t) at frame
t, which points to its position estimate, v̂ðtþ1Þ

i , at the next frame
t + 1:

v̂ðtþ1Þ
i ¼ vðtÞi þwðtÞi ; ð13Þ

To estimate the scene flow vector wðtÞi , we adopt the method pre-
sented in [31] (by dropping the indices i and t):

1. Find the set of camera viewpoints that the vertex v is visible to,
VisðvÞ ¼ fC1; C2; . . . ;CNvisg, where Nvis is the number of these
viewpoints. For this purpose we make use of the voxel grid
which is already generated for collision handling. We scan the
voxels along the line of sight from v to the optical center of a
given camera Cn and check if any other vertex occludes its vis-
ibility from that camera.

2. By using the camera projection matrix Pn, project the vertex
v = (x, y, z) onto each camera plane Cn in Vis(v):

un ¼
½Pn�1ðx; y; z;1Þ

T

½Pn�3ðx; y; z;1Þ
T ; vn ¼

½Pn�2ðx; y; z;1Þ
T

½Pn�3ðx; y; z;1Þ
T ; ð14Þ

where un = (un, vn) is the projected point, and [Pn]1, [Pn]2, [Pn]3 de-
note the first, second and third row of the 3 � 4 projection matrix,
respectively.
3. Find the 2D optical flow vector, dun

dt , at the projected point for
each camera Cn, by using the hierarchical Lucas–Kanade method
[32].

4. Estimate the 3D scene flow vector, w ¼ dv
dt , from the computed

2D motion vectors, dun
dt

� �Nvis

n¼1, by solving

dun

dt
¼ @un

@v
dv
dt
: ð15Þ

The Jacobian matrix @un
@v can be computed explicitly for each n by

symbolic differentiation of un with respect to x, y, and z, using the
camera projection parameters. The 3D scene flow vector, w ¼ dv

dt ,
can then be solved from the overdetermined system of linear equa-
tions defined by Eq. (15) via the least-squares method. We note that
the scene flow vector of a vertex v can be estimated from its 2D mo-
tion vectors only if the vertex is visible from at least two cameras,
i.e., Nvis P 2. Otherwise, we set the scene flow vector to zero. We fi-
nally smoothen the estimated scene flow vectors by averaging each
over their 3-link neighborhood.

We employ the scene flow vectors for two purposes: First, for
pose registration to apply once at each frame transition, and sec-
ond, to assist the silhouette-based deformation through displace-
ment iterations to render the process more robust and efficient.

5.3. Pose registration

The purpose of pose registration is to adjust the position and
orientation of the mesh representation M(t) so that the distance

between M(t) and the target surface S(t+1) is reduced prior to surface
evolution from frame t to t + 1. This initial transformation not only
improves the chances of the surface evolution to successfully con-
verge to the desired surface, but it also speeds up the deformation
process and reduces the maximum distance traveled by a vertex
thereby decreasing the representation load.

We estimate the pose registration parameters (rotation and
translation) from the 3D scene flow vectors. Let us denote the glo-
bal rigid body motion parameters between the surfaces at frame t
and t + 1 by R(t), the rotation matrix, and t(t), the translation vector.
We represent the 3D coordinates of the vertices at these consecu-
tive frames by V(t) and bVðtþ1Þ,

VðtÞ ¼ ½vðtÞ1 ;v
ðtÞ
2 ; . . . ;vðtÞNv

�;bVðtþ1Þ ¼ ½v̂ðtþ1Þ
1 ; v̂ðtþ1Þ

2 ; . . . ; v̂ðtþ1Þ
Nv
�;

where Nv is the number of vertices in M(t). Recall also that
v̂ðtþ1Þ

i ¼ vðtÞi þwðtÞi where vðtÞi and wðtÞi are column vectors consisting
of 3D coordinates. In this case, the relationship between V(t) andbVðtþ1Þ is given by:

bVðtþ1Þ ¼ RðtÞ tðtÞ
� � VðtÞ

1T

" #
; ð16Þ

The parameters R(t) and t(t) are estimated from this equation
using a nonlinear unitary-constraint optimization technique as de-
scribed in [33].

5.4. Scene flow assisted deformation

Although in theory a scene flow vector gives the location of a
vertex on the surface of the next frame, scene flow computation it-
self is usually a noisy and unstable process in practice and hence
cannot alone be relied upon for a robust mesh evolution process.
Nevertheless, 3D scene flow can assist silhouettes in driving the
deformation process by ensuring that majority of the vertices are
correctly led towards the target surface. That is, the direction and
magnitude of the displacement vector of a vertex at a given itera-
tion will depend partially on the silhouettes and partially on the
scene flow vectors. The best way to achieve this in our deformation
framework is to use a linear combination of these two information
sources while calculating the displacement vector defined by Eq.
(7):

dðvi;kÞ ¼ ai;kdsilðvi;kÞ þ bi;kdflowðvi;kÞ; ð17Þ

where ai,k and bi,k are weighting coefficients varying with vertex i
and iteration k, taking values in [0,1] such that ai,k + bi,k = 1. The sil-
houette-based component dsil(vi,k) is calculated according to Eqs.
(10) and (11). The scene flow based component dflow(vi,k) is com-
puted based on wi such that its direction is always towards the ini-
tial target v̂i that the scene flow vector points to, and its magnitude
is either zero or emin/2:

dflowðvi;kÞ ¼
emin

2 if kv̂i � vi;kkP emin
2 ;

0 otherwise:

	
ð18Þ

We note that the target point v̂i for each vertex remains fixed
throughout the iterations for a given frame transition from t to
t + 1, whereas the weights ai,k and bi,k in Eq. (17) vary with iteration
counter k. The purpose here is to provide a deformation where the
scene flow vectors dominate the silhouette information at the early
iterations such that ai,0 = 0 and bi,0 = 1. As iterations proceed, this fa-
vor is gradually carried to silhouette information so that eventually
ai;k� � 1 and bi;k� � 0. In this way, the scene flow information
smoothly leads the deformation towards the target surface on a sta-
ble and short path while the final surface reconstructed is totally
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determined by the silhouette information. We set these weights as
a function of iteration counter k such that:

ai;k ¼ 1� e�sik; bi;k ¼ 1� ai;k: ð19Þ

The choice of the time coefficient si determines how long the
scene flow information will be effective. The optimal value of si

is determined separately for each vertex based on the scene flow
magnitude at that vertex. Our strategy is as follows: Recalling that
the maximum vertex displacement at one iteration is bounded
above by emin/2, the total number of iterations for a vertex vi to
reach its target point v̂i by using only the scene flow information
is expected to be at least eK ¼ 2kwik=emin (see Eq. (18)). The coeffi-
cient si can then be chosen such that the weights satisfy ai,k = -
bi,k = 0.5 at a certain fraction of this expected iteration count, i.e.,
at iteration ceK , c P 0:

si ¼ �
lnð0:5Þemin

2ckwik
: ð20Þ

In our experiments we have set the parameter c = 1.5. We have
also experimented with different settings of c as will later be pre-
sented in Section 6. We also note that, when using scene flow vec-
tors, the fine tuning procedure described in Section 5.1 is invoked
at an iteration k only when the weight ai,k is close to 1 (e.g.,
ai,k > 0.95) in order to avoid unnecessary decelerations around
irrelevant surface boundaries.

Integrating the scene flow information into the deformation
process not only improves the stability of the tracking process
but also considerably decreases the operation count and the recon-
struction time by leading the surface smoothly towards the target
surface without unnecessary restructuring operations during sur-
face evolution. We illustrate the benefit of integrating 3D scene
flow information in Fig. 5, where we display three possible posi-
tioning of the deformable mesh with respect to the target surface
prior to mesh evolution. In case (a), the deformable mesh can
smoothly evolve to the target surface using only silhouette-based
displacements without any surface shrinkage. In case (b), the
deformable mesh can track the surface based only on silhouette
information, but by first undergoing some surface shrinkage and
then remodeling the shrunken segment. In this case, shrinkage
and remodeling can be avoided by incorporating 3D scene flow.
In case (c), the tracking process, when based only on silhouette
information, fails since the two boundaries at the mid-part of the
surface segment wrongly tends to shrink onto the same location
whereas the end-parts correctly evolve to two different bound-
aries. In this case, the shrunken part could be handled, and the
tracking process could resume, by first applying a topology split
operation and then a topology merging. However, if 3D scene flow
is integrated to the deformation process, the deformable mesh can
track the surface without need for any such redundant topological

operations. These three cases will be demonstrated on several
examples in the experimental results section.

5.5. Tracking algorithm

We now give the overall shape tracking algorithm which is ini-
tialized by M(0) representing the surface at the first frame of the vi-
deo (recall that the deformable mesh at each frame t, at each
iteration k of geometric evolution and at each iteration l of topolog-
ical evolution is denoted by MðtÞ

k;l ):

Iterate on t

Set MðtÞ0;0 ¼ Mðt�1Þ;
Extract silhouettes of frame t;

Estimate 3D scene flow wðtÞi for every vertex i;
Estimate rotation matrix R(t) and translation t(t);

Pose register MðtÞ0;0 using R(t) and t(t);
Iterate on l (topology)

Activate all vertices
Iterate on k (geometry)

Restructure active edges in MðtÞk;l by Tr;

Displace active vertices in MðtÞk;l by Td;

Detect and avoid collisions;

Smooth active vertices in MðtÞk;l by Ts;

Deactivate vertices that no longer move;

Till convergence MðtÞk�;l ¼ TðMðtÞk�;lÞ (Eq. (3))

Till convergence MðtÞk� ;l� ¼ UðMðtÞk� ;l� Þ (Eq. (5))

Set MðtÞ ¼ MðtÞk� ;l� as mesh representation of frame t;

Till end of sequence

Note that the displacement and smoothing operators are ap-
plied only to active vertices of the deformable mesh whereas the
restructuring operator is invoked only for active edges, that is,
for edges with at least one active vertex. The vertices that are de-
tected to no longer move through iterations of the deformation
algorithm are deactivated. Thus as iterations proceed and as more
and more vertices become inactive, the time spent at each iteration
significantly reduces, yielding on overall a computationally effi-
cient algorithm.

5.6. Representation load

The resulting mesh sequence, M(0), M(1), . . . , M(t), . . . , represent-
ing the time-varying shape, can be efficiently encoded in terms of
small-scale vertex displacements and mesh operations along with
the initial model and the pose registration parameters of each
frame. We assume that the vertex coordinates are encoded using
P-bit precision. We denote the total number of frames in the se-
quence by T, the number of vertices at frame t by Nt

v , the number
of restructuring operations by Nt

r, the number of newly appeared
vertices due to edge splits by bNt

v , and the ratio of the size of the
box bounding the time-varying surface to the maximum displace-
ment at frame t, respectively for x, y, and z directions, by st

x, st
y and

st
z. The bit-load B for the mesh sequence can then be calculated

(omitting the bit-load for the initial mesh M(0) and the topological
operations (which are usually very few), and the parameter header
for each frame) as follows:

B ¼
XT

t¼1

Nt
v � bNt

v

� �
3P � log2st

x


 �
� log2st

y

l m
� log2st

z


 �� �
þ 2Nt

r log2Nt
v


 �
þ 3bNt

vP; ð21Þ
Fig. 5. Three distinct cases for positioning of the deformable mesh with respect to
the target surface prior to mesh evolution. The arrows show the direction of
silhouette-based mesh evolution.
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where the first term of the summation corresponds to the bit-load
of the vertex displacements, the second term to the bit-load of the
restructuring operations, and the third term corresponds to encod-
ing of the newly appeared vertices with precision P. The bit-load of
the x-component for each vertex displacement at frame t is given by
P � log2st

x


 �
which is usually significantly less than the required bit

precision P. The same argument holds for y and z directions as well.
Noting that a restructuring operation can be represented by an edge
and an edge can be represented with two vertex indices, the bit-
load of a restructuring operation is twice the bit-load of a vertex in-
dex, 2 log2Nt

v

 �

, for every frame t. Note also that the number of new-
ly appeared vertices, bNt

v , is at most equal to the number of edge split
operations.

If each mesh representation in a sequence were to be encoded
separately using the classical vertex-triangle list, then the bit-load
B0 of the whole sequence would be calculated as:

B0 ¼
XT

t¼1

3Nt
vP þ 6Nt

v log2Nt
v


 �
; ð22Þ

where the first term in the summation corresponds to the bit-load
of the vertex coordinates and the second term corresponds to the
bit-load of the triangles. We assume that a triangle is represented
with three vertex indices and that the number of triangles is twice
the number of vertices. We have compared the representation effi-
ciency of our method with the classical vertex-triangle list and ob-
served that it provides at least 5 times encoding efficiency without
applying any statistical compression, as will be presented in the
experimental results section. Recall that we encode each vertex dis-
placement by allocating a fixed bit budget based on the maximum
displacement recorded at the current frame. Hence we note that
there still remains significant statistical redundancy, especially for
geometry encoding which dominates the overall bitload, that could
be exploited using statistical compression techniques.

6. Experimental results

We have conducted experiments to demonstrate the perfor-
mance of our shape tracking method on three different sequences,
one synthetic and two real sequences. The synthetic mesh se-
quence, Jumping Man, originally reconstructed from a real scene
[34], exhibits the realistic motion of the jumping act of a human
actor in a skin-tight suit at 30 fps with 220 frames. We have artifi-
cially created the time-varying multiview silhouette images, each

of size 1280 � 1024, from the 3D models of this sequence, using
a horizontal circular camera configuration consisting of 16 cameras
modeled with perspective projection. In the synthetic case, the sil-
houettes, the scene flow vectors and the camera calibration param-
eters are all given a priori, and hence we can assess the
performance of our method in ideal conditions.

We have recorded two real video sequences at 30 fps by using a
multicamera system equipped with 8 cameras (1332 � 980). We
have calibrated the multicamera system by using the technique
described in [35]. For silhouette extraction, we have used the
method presented in [36], which is based on statistical modeling
of the background pixel colors with a training set of background
images. To improve the accuracy of the silhouette extraction pro-
cess, we have employed an artificial black background. The first
real sequence is a relatively long sequence (1280 frames) with var-
ious types of actions such as standing, walking, running, jumping,
turning, stretching and kick-boxing. In this sequence the human
actor wears a loose clothing, hence her motion contains some small
amount of non-rigidity (see Fig. 6). On the other hand, the second
real sequence contains the highly non-rigid motion of an actor
while taking off and putting on his hat (see Fig. 1).

We reconstruct the initial mesh M(0) using the silhouette-based
static object reconstruction method described in [16]. This method
employs a deformation scheme that is similar to the one described
in this paper. The resolution of the deformable mesh model, hence
the value of emin, is chosen small enough to describe small shape
details for accuracy but as large as possible to reduce the total ver-
tex count for efficiency. We have experimented with different val-
ues of emin on the first frame of the Jumping Man and observed a
breakpoint in the reconstruction error at emin = 0.025. We have
used this value, which corresponds 2.5% of the radius of the bound-
ing sphere at the first frame, as a lower bound for reconstruction of
all our sequences as they all similarly contain a human actor in the
scene.

6.1. Tracking results

For each of the sequences, we consider three different tracking
schemes. In the first one, the deformation is driven only by silhou-
ette-based displacements without employing any pose registration
or scene flow vectors. In the second, we additionally employ pose
registration (PR) and in the third one, we consider the complete
scheme, i.e., we also integrate the 3D scene flow vectors to the
deformation process. We will refer to these three schemes, respec-

Fig. 6. Multiview images of the first frame of Real Sequence 1.
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tively, as (1) Silhouette-only, (2) Silhouette-PR, and (3) Silhouette-
PR-3DSF.

6.1.1. Synthetic Jumping Man
In Fig. 7, we display sample frames from the mesh sequence

reconstructed with emin = 0.025 by employing the complete shape
tracking scheme, that is, Silhouette-PR-3DSF. Although some geo-
metric discrepancies can be observed on the reconstructed meshes
as compared to the original geometry, which are mainly due to the
well known limitations of shape-from-silhouette approach, the
geometry is recovered from the available 16 multiview silhouettes
as smoothly and as faithfully to the original as possible.

In Table 1, we provide average statistics per frame to quantita-
tively assess the performance of our method under three different
schemes. The maximum vertex displacement magnitudes and
reconstruction errors given in this table are normalized with re-
spect to the radius of the bounding sphere. Recall that the

maximum vertex displacement of the deformable mesh within a
given frame transition determines how many bits would be neces-
sary to encode a vertex displacement. Likewise, the number of
restructuring operations also contributes to the representation
load of each frame. We observe that adding more and more compo-
nents to the base scheme improves the performance by decreasing

Fig. 7. Sample reconstructions from Jumping Man sequence (left), along with the original models (right).
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Fig. 8. Number of restructuring operations (top) and reconstruction time (bottom) for individual frames of the Jumping Man.

Table 1
Average statistics per frame for the Jumping Man.

Sil-only Sil-PR Sil-PR-3DSF

Split (#) 38.6 14.2 2.8
Collapse (#) 45.2 13.0 2.2
Flip (#) 86.8 28.6 6.6
Time (s) 37.4 16.3 9.7
Iteration (#) 54.4 34.2 21.4
Max disp. (�10�3) 107 63 49
Reconst. error (�10�3) 4.41 4.37 4.35
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both reconstruction time and representation load (the execution
times given have been measured on a 2.2 GHz AMD Athlon
4200 + dual core processor). Also note that the average reconstruc-
tion error decreases only slightly as expected since inserting addi-
tional components into the deformation scheme rather aims to
improve stability and efficiency, not the reconstruction quality.
We finally note that the tracking process fails several times over
the whole sequence when Silhouette-only or Silhouette-PR scheme
is in use, whereas we have successfully tracked the whole time-
varying geometry with Silhouette-PR-3DSF. For the frames of fail-
ure, we have resumed tracking by reconstructing the model from
scratch and assumed that the statistics of each such frame is the
same as the previous frame (note that in our experiments we have
not incorporated any topological operations that would handle the
case (c) of Fig. 5). In Fig. 8, we plot the total number of restructur-
ing operations and reconstruction time for individual frames. As
expected, we observe increases in the operation count, which im-
plies more changes in mesh connectivity, as well as in reconstruc-
tion time, along the frames where the motion of the object is faster.
The four global peaks observed on the operation count and recon-
struction time plots correspond to the four jumping acts (two
times forward and backward) in the sequence. The local maximum
within each of these peaks is mainly due to the fast local motion of
the arms while jumping. Note also that no topological operation is
needed for reconstruction of this sequence since the Jumping Man
contains no self-collision.

In Fig. 9, we display the deformable mesh at various iterations
within a frame transition for three different tracking schemes.
With the Silhouette-only scheme, the deformable mesh cannot
converge to the desired surface during frame transition, and hence
the tracking process fails (due to case (c) in Fig. 5). When the Sil-
houette-PR scheme is employed, pose registration carries some
surface segments (e.g., arms) of the object inside the target surface
at the beginning of the deformation, hence surface tracking be-
comes possible (case (b) in Fig. 5). However we observe severe
shrinking and re-modeling of the arms. When 3D scene flow vec-
tors are incorporated to deformation, the deformable mesh evolves

in a much smoother path towards the target surface with almost
no shrinkage and also with less number of mesh restructuring
operations.

We have tested the performance of our shape tracking method
also at a higher resolution (emin = 0.025 vs. emin = 0.015). The aver-
age statistics per frame in terms of triangle number, operation
count, iteration number and reconstruction time, are given in
Table 2. We observe that the efficiency decreases as the value of
emin decreases while the quality of the reconstruction does not sig-
nificantly improve. Note also that the computation time mainly de-
pends on the size of the mesh and the number of iterations. While
the dependence of the overall algorithmic complexity on the mesh
size is O(NvlogNv) as dictated by the collision detection algorithm,
the dependence on the number of iterations is lower than linear
complexity since as iterations proceed and as more and more ver-
tices become inactive, the time spent at each iteration significantly
reduces.

6.1.2. Real Sequence 1
In Fig. 10, we display sample frames from the mesh sequence

reconstructed with emin = 0.025 along with sample images from
the eight available silhouettes. In Table 3 we provide average sta-
tistics per frame to quantitatively assess the performance of our
method for three different schemes with different settings of the
parameter c. Recall from Section 5.4 that the parameter c deter-
mines how long the scene flow information will be effective on
the deformation process. The reconstruction times given in the

Fig. 9. Deformable mesh at various iterations for transition from frame 26 to 27. Blue (dark), white and green areas correspond to IN, OUT, and ON vertices, respectively.

Table 2
Average statistics at low and high resolutions for the Jumping Man.

emin 0.025 0.015

Triangle (#) 2790 8454
Operation (#) 11.6 72.1
Iteration (#) 21.4 48.1
Recons. time (s) 9.7 54.7
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table do not include the time spent for scene flow estimation
which takes about 4.5 s/frame. We have been able to successfully
track the time-varying geometry using the Silhouette-PR-3DSF
scheme, whereas shape tracking has failed on several occasions
when Silhouette-only or Silhouette-PR schemes is in use, especially
at certain frames that exhibit We observe from Table 3 that adding
more and more components to the base scheme improves the effi-
ciency, though the 3D scene flow vectors, when read from the
ground-truth, were more beneficial in the synthetic case.

Fig. 11 plots the number of restructuring operations and recon-
struction time for individual frames. We observe that the initial
frames of the sequence exhibit almost no motion, so the mesh con-
nectivity is preserved and the restructuring operation count re-
mains almost zero throughout these frames for all three
schemes. The oscillations observed throughout ‘‘walking’’ and
‘‘running’’ frames are mainly due to the fast motion of the body
parts while taking a step (rise) and relatively slower motion while

having the feet on the ground (fall). Note also that the frequency
and the intensity of the oscillations at ‘‘running’’ are almost twice
the oscillations at ‘‘walking’’ as expected. ‘‘Jumping’’ is the action
with the strongest global translation while ‘‘turning’’ is the action
with the strongest global rotation. Hence, the benefit of pose regis-
tration is observed to be the highest for these two actions. The local
motion is the strongest in ‘‘kick-boxing’’ (with two punches and
two kicks). Therefore the benefit of scene flow assistance is ob-
served to be the highest in this action. In Fig. 12, we display the
deformable mesh at various iterations within a frame transition
for the Silhouette-PR and Silhouette-PR-3DSF schemes using two
different settings of c. We clearly observe the benefit of scene flow
integration which smoothly guides the leg towards its target, espe-
cially with the setting c = 1.5, i.e., when the scene flow remains
effective on the deformation process for a sufficiently long dura-
tion. As observed from Table 3, the number of iterations and the
convergence time per frame increase only slightly as the value of
c increases. We also note that a total of 13 topological split and
13 merge operations are needed for reconstruction of the sequence
to handle surface contacts which are mostly due to the collisions
between the legs as well as those between the arms and the torso.

In Fig. 13, we visualize the estimated 3D scene flow vectors on
sample reconstructions. The time share of different tasks in scene
flow computation is approximately 0.4, 3.1 and 1.0 s, respectively
for building the 3D voxel grid and visibility, calculating the 2D
optical flows, and estimating the 3D scene flow. To compute the
2D optical flow vectors, we have used a Lucas–Kanade implemen-
tation of three-level hierarchy and a window size of 30 � 30 pixels.

Fig. 10. Samples from the reconstructed mesh sequence, one for each type of action, displayed together with two of the corresponding silhouette images from Real Sequence
1.

Table 3
Average statistics per frame for Real Sequence 1.

Sil-only Sil-PR Sil-PR-3DSF

c = 0.5 c = 1.0 c = 1.5 c = 2.0

Split (#) 41.5 20.5 16.7 16.5 16.8 17.3
Collapse (#) 49.1 23.8 18.1 17.2 17.4 18.0
Flip (#) 104.4 53.4 46.2 46.3 47.9 49.9
Time (s) 32.9 21.1 12.7 15.8 19.1 21.7
Iteration (#) 69.2 54.9 30.1 41.0 53.0 62.8
Max disp. (�10�3) 111 81 76 77 78 78
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6.1.3. Real Sequence 2
Our third experiment aims to track the shape of an actor wear-

ing a hat so as to challenge our shape tracking scheme in a video
sequence with severe non-rigid motion that cannot be handled
using fixed-connectivity methods (see Fig. 1). The particularity of
this video sequence is that the topology of the shape changes
due to the motion of the hat which moves between the actor’s
hand and his head, also yielding covered and uncovered surface
parts. By utilizing two topological split and two merge operations
in total along with a number of restructuring operations, we have

successfully tracked a multiview video sequence of 165 frames,
which includes taking off the hat and then putting on it back, start-
ing from an initial reconstruction and using the Silhouette-PR-
3DSF scheme with emin = 0.018. Fig. 14 displays the reconstruction
process at two different instances to demonstrate how topology
operators are incorporated into the deformation scheme. In this
experiment, the reconstruction of the mesh sequence, which con-
tains approximately 7.1 K triangles on average, has required about
50 restructuring operations and 32.7 s of computation time per
frame.

Fig. 12. Zoom on the deformable mesh at various iterations for transition from frame 1255 to frame 1256.
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Fig. 11. Number of restructuring operations (top) and reconstruction time (bottom) for individual frames of Real Sequence 1.
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6.2. Representation efficiency

Table 4 provides the bit-load B of each sequence when encoded
with the encoding scheme described in Section 5.6 as compared to
the bit-load B0 when encoded with the standard vertex-triangle list
approach, both using 12-bit geometric precision. The results show
that the representation load efficiency of the former strategy is at
least 5 times better than the classical approach. We also observe

that the contribution of restructuring operations to the total bit-
load (including the cost of the newly appeared vertices), that we
denote by Bop, is only marginal. We note that the storage costs of
the initial mesh representation, the parameter header and the
topological operations, which are all negligible, have not been in-
cluded in the bit-loads given in the table.

7. Conclusion

We have presented a deformation-based technique to track and
reconstruct the time-varying shape of a dynamic object from its
multiview images. Our findings can be summarized as follows:

	 The time-varying shape can successfully be tracked from the
multiview images of a moving object using mesh deformation.
This is mostly thanks to the robustness of the mesh evolution
process coupled with restructuring and topological operations
as well as an efficient collision detection method.
	 Since the mesh representation at each frame is reconstructed by

evolving the mesh obtained at the previous frame, the overall
reconstruction of the time-varying geometry is obtained in a
fast manner.
	 The time-varying shape can be encoded in terms of restructur-

ing operations and small-scale vertex displacements possibly
along with a very few number of topological operations, hence
the resulting representation is space efficient.
	 Both the connectivity and the geometry of the object can be

tracked, hence our method is topology-adaptive and applicable
to objects exhibiting non-rigid motion.
	 The resulting mesh representation is as smooth as possible with

the available data, both in time and space.
	 Since our method does not assume any prior object model, it

can be applied to any shape, that however makes in turn the
quality of the reconstruction heavily dependent on the quality
of the extracted silhouettes.

The main limitations of the presented method are that the
resulting surface representations lack the ability to model hidden
cavities and that the quality of the reconstructions is restricted
with the number of available camera views, which are both classi-
cal limitations of the shape-from-silhouette techniques. One can
overcome the latter restriction, to some degree, simply by increas-
ing the number of cameras used during video acquisition. We note
that such multiview video recording systems, which employ 16 or
even more cameras, are becoming more and more commonplace.
As future work we plan to address both of these limitations. Cur-
rently we utilize the multiview texture information only to com-
pute the 3D scene flow vectors. However the multistereo
information, that could be extracted from multiview texture
images, can be used to further enhance the produced silhouette-
based reconstructions so as to capture finer surface concavities.
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Table 4
Bit-loads (in megabytes) for the three sequences.

Frames (#) emin B0 B Bop

Jumping Man 220 0.025 3.73 0.56 0.009
Real Sequence 1 1280 0.025 24.01 4.19 0.38
Real Sequence 2 165 0.018 7.54 1.35 0.029

Fig. 14. (Left column, top) The initial mesh, zoomed on upper body, for transition
from frame 52 to 53, (middle) topology merging at the convergence of the first
mesh evolution process by creating a surface tunnel (marked in red) between the
colliding surface parts, and (bottom) the final mesh at the convergence of the next
mesh evolution. (Right column, top) The initial mesh for transition from frame 86 to
87, (middle) topology is split at the marked location at the convergence of the first
mesh evolution process, and (bottom) the final mesh at the convergence of the next
mesh evolution. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 13. Estimated 3D scene flow vectors displayed on sample frames.
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Appendix A. Supplementary material

Shape tracking animation videos. The animation videos of the
reconstructions of all three sequences can be accessed from the
public web site http://mvgl.ku.edu.tr/shapetracking/, and also as
supplementary content through the publisher’s web site. The vid-
eos include wireframe animations of the reconstructed mesh se-
quences for Jumping Man, Real Sequence 1 and Real Sequence 2,
as well as the shaded version of the Real Sequence 1 reconstruc-
tion, each with a view from the original sequence displayed at
the upper-left corner. While the minimum edge length parameter
emin used for reconstruction of Jumping Man and Real Sequence 1 is
0.025, this value is 0.018 for Real Sequence 2. For all cases, the Sil-
houette-PR-3DSF scheme has been used and the parameters are set
to be as j = 3 and c = 1.5. All videos are downsampled to 15 fps.
Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2012.07.001.
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multi-view silhouettes, ACM Trans. Graph. 27 (3) (2008) 1–9.

[12] C. Cagniart, E. Boyer, S. Ilic, Probabilistic deformable surface tracking from
multiple videos, in: Proc. European Conference on Computer Vision (ECCV),
2010, pp. 326–339.

[13] C. Wu, K. Varanasi, Y. Liu, H.-P. Seidel, C. Theobalt, Shading-based dynamic
shape refinement from multi-view video under general illumination, in: IEEE
Int. Conf. on Computer Vision (ICCV), 2011.

[14] B. Curless, Overview of active vision techniques, in: Proc. SIGGRAPH Course on
3D Photography, 1999.

[15] G. Pons-Moll, L. Leal-Taix, T. Truong, B. Rosenhahn, Efficient and robust shape
matching for model based human motion capture, in: Proc. of the 33rd Int.
Conf. on Pattern Recognition (DAGM), 2011.
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