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Abstract

We propose a new iterative isometric point correspon-
dence method that relies on diffusion distance to handle
challenges posed by commodity depth sensors, which usu-
ally provide incomplete and noisy surface data exhibiting
holes and gaps. We formulate the correspondence problem
as finding an optimal partial mapping between two given
point sets, that minimizes deviation from isometry. Our
algorithm starts with an initial rough correspondence be-
tween keypoints, obtained via a standard descriptor match-
ing technique. This initial correspondence is then pruned
and updated by iterating a perfect matching algorithm un-
til convergence to find as many reliable correspondences as
possible. For shapes with intrinsic symmetries such as hu-
man models, we additionally provide a symmetry aware ex-
tension to improve our formulation. The experiments show
that our method provides state of the art performance over
depth frames exhibiting occlusions, large deformations and
topological noise.

1. Introduction
Depth sensors have become commodity in the last half

decade, and this has opened up new opportunities in the
field of computer vision and graphics as well as new chal-
lenges. Finding correspondences from depth is a key step
for the success of various tasks in 3D computer vision, such
as registration [10] and reconstruction [27].

Although the field of 3D shape correspondence has be-
come quite mature in the last decade, finding reliable cor-
respondences from depth, especially for non-rigid objects,
is still an open problem. The first challenge is that the
depth data is incomplete by acquisition since objects can
be sensed only from one direction; hence correspondences
exist only partially. Second, while estimating correspon-
dences on shapes with intrinsic symmetries such as hu-
man body, symmetric flip issues commonly complicate the
matching process. Third, noisy data provided by commod-
ity depth sensors, exhibiting holes and large gaps, makes es-
timation of geodesic distances on the surface geometry very

difficult. Moreover, when objects undergo non-rigid defor-
mation, their topology can change drastically, which makes
computation of geodesic distances inconsistent between the
poses; hence reliable isometric point-based matching tech-
niques that are able to overcome the problematic struc-
ture of depth frames are currently less mature compared to
mesh-based techniques.

The most common and generic approach for non-rigid
point correspondence is to match individual surface points
based on local shape descriptors [4, 9, 20, 48, 56]. How-
ever, since a local approach discards global shape cues such
as isometry, it can easily yield incorrect correspondences
especially when the shapes exhibit large variations in their
local geometry, or when there are many points that are lo-
cally similar. A number of works in the literature address
the problem of isometric point matching [2, 16, 18, 26,
32, 34, 55]. Most of these works however perform poorly
in the case of noisy and incomplete data since they rely
on fitting intermediate mesh-based representations to point
clouds and/or computation of geodesic distances. In this pa-
per, we present a new mesh-free point-based method which
can estimate reliable sparse correspondences on non-rigid
objects undergoing large isometric deformations from noisy
and incomplete depth data. We show that starting from an
initial correspondence obtained by any standard descriptor
matching technique, it is possible to iteratively prune and
update the initial matching, and obtain a set of sparse but
reliable correspondences even with challenging noisy and
incomplete data under occlusion. We additionally provide
a symmetry-aware extension to our formulation in order to
further boost our correspondence results on shapes with in-
trinsic symmetries such as human models. In our experi-
mental results, we have cases where the initial correspon-
dences are completely incorrect with 0% precision and we
still obtain up to 100% precision. On average, we improve
the ground truth error of the initial correspondences by 23x.

We formulate the correspondence problem as finding an
optimal partial mapping between two given point sets, min-
imizing deviation from isometry. We measure deviation
from isometry based on a diffusion-based distance metric
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that we compute in a robust manner over noisy point clouds
using an approximation of graph Laplacian. At the core of
our method, we make use of an iterative pruning algorithm
that outputs as many reliable correspondences as possible.

Related work. Isometric deformations are the most
common forms of non-rigidity. There exist a mature lit-
erature on isometric 3D correspondence methods that can
find sparse [6, 45, 47, 51, 63] and/or dense [7, 11, 57,
21, 38, 44, 49, 52] accurate correspondences between com-
plete mesh representations of 3D shapes. Yet, finding cor-
respondences between representations with partial similar-
ity is still an active research topic with solutions devised
to specifically handle partially correspondent mesh mod-
els [6, 5, 14, 29, 30, 39, 51, 58, 61, 62].

Many isometric correspondence methods for mesh struc-
tures rely on geodesic distance information [6, 11, 51].
However, conventional ways of computing geodesic dis-
tances such as shortest path algorithms become invalid on
noisy surfaces with holes and gaps. A better alternative
for noisy mesh data is employing diffusion-based distance
[7, 13, 45, 62]. Diffusion distance takes into account all
paths between two keypoints, thereby reducing the negative
effects of topological noise and incomplete data on reliable
estimation of distances.

There are isometric point correspondence estimation
techniques that handle unorganized point cloud data [2, 8,
16, 18, 23, 26, 46, 55, 60]. Most of these methods, except
[2, 16, 23, 46, 55], are not actually mesh-free techniques, re-
lying on intermediate mesh representations fit to input point
clouds, so that geodesic distances can be computed.

The mesh-free method presented by Guo et al. [16]
addresses the correspondence problem through piecewise
rigid point registration by discovering parts in an iterative
process. Their method hence relies heavily on correct esti-
mation of rigid parts as well as approximation of geodesic
distances by k-nearest neighbor graph distances. This is es-
pecially problematic in the case of occlusions as with depth
data provided by commodity sensors. The base correspon-
dence estimation part of our algorithm looks in spirit like
the RANSAC-like method [55] which however uses a prob-
abilistic approach relying again on geodesic distances. An-
other related method is the point-based dense correspon-
dence technique of [2], which uses medial diffusion to deal
with incomplete data. However, their medial axis prior is
mostly dependent on shape topology and intolerant to large
missing data, making it inapplicable to partial depth data
with severe occlusions. Kovnatsky et al. [23] extend the
initial functional map framework proposed in [38] so as to
handle data with missing parts and partially similar models.
Rodola et al. [46] then take the functional map framework
one step further to target partial correspondence problem,
but they do not explicitly address topological change and
symmetry problems, both of which are targeted by our ap-

Figure 1. Block diagram of our point correspondence algorithm.

proach. They employ functional maps by calculating Lapla-
cian over point clouds or meshes in order to provide dense
correspondences, while we aim to provide sparse but reli-
able correspondences.

Probabilistic non-rigid registration techniques also as a
by product provide us with point correspondences between
point clouds [3, 12, 17, 19, 33, 34, 36]. They find correspon-
dences by optimizing a global objective to align point sets.
Myronenko and Song [36] and Ma et al. [33] introduce non-
rigid point registration methods that estimate parameters of
transformations using Gaussian mixture models (GMMs).
In addition to global cues, Ma et al. [33] incorporate lo-
cal features to take into account similarity of neighboring
structure of the points. While point registration methods
generate correspondences by matching all the points avail-
able, our focus is on finding partial mappings between point
clouds based on isometric cues, with as many reliable cor-
respondences as possible.

The symmetric flip problem is inherent to all isomet-
ric matching methods. There exist several shape corre-
spondence methods in the literature, addressing explic-
itly this problem such as in [15, 38, 39, 50, 61, 62, 63].
These methods are however all mesh-based. The symmet-
ric flip problem is also closely related to the problem of
symmetry detection, which is addressed in various works
[25, 28, 35, 40, 43, 53, 59]. In our correspondence estima-
tion scheme, we employ the method of Lipman et al. [28]
which detects global intrinsic symmetries on noisy, partial
models with non-rigid deformation. Their methodology of
generating the symmetry orbit for each point provides us
with reflectional symmetry planes that we make use of to
resolve symmetric flip ambiguities in frontal human shapes
under a point-based setting.

2. Overview
Our reliable isometric point correspondence algorithm

consists of two main parts as visualized in Figure 1: pre-
processing and base correspondence estimation. The input
is a pair of point cloud representations obtained from depth
frames of the object of interest. In the preprocessing step,
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we first apply a standard keypoint detection technique, and
then match the detected points using a standard descriptor
based matching algorithm. The resulting matching serves
as the initial correspondence to be further improved. In this
step, we also compute the graph Laplacian matrices of both
point clouds, which we will later use to calculate diffusion
based distances between keypoints. An optional task in this
step is computation of the symmetry planes and matching
the corresponding sides, to be carried out only if the given
shapes are symmetric such as human shapes.

During base correspondence estimation, the initial corre-
spondence set computed in the preprocessing step is itera-
tively pruned and updated employing a diffusion-based per-
fect matching technique until convergence. This step con-
tains two nested loops, the outer one for update and the in-
ner one for pruning. For the diffusion-based matching task
of the inner loop, we construct an isometric cost matrix and
apply perfect matching. Each entry of the cost matrix rep-
resents the deviation of a given correspondence pair from
isometry, which can be computed using diffusion distances
only if a set of (base) correspondences is known a priori;
hence the need for the initial correspondence obtained via
descriptor matching. The diffusion-based matching yields
an updated correspondence set that usually includes incor-
rect matchings due to incomplete and noisy nature of the
data, and thus needs to be pruned. The pruning iterations
eliminate these outliers one by one based on an isometric er-
ror criterion, each time repeating the diffusion-based match-
ing, hence resulting in a smaller but more reliable set of
correspondences. This relatively more reliable set replaces
the existing correspondences at the beginning of each outer
loop iteration, and is gradually improved until convergence.

To address the symmetrical flip problem that inherently
occurs while matching symmetric shapes, we introduce a
symmetry-aware version of the cost matrix used during the
perfect matching phase. This version penalizes matching of
the points on the non-corresponding sides of the shapes in
proportion to their distances from the symmetry planes.

3. Preprocessing
3.1. Point-based Laplacian

To calculate the diffusion distance between two given
points on a point cloud, we compute the graph Laplacian
directly on point representations in a similar way as de-
scribed in Belkin and Niyogi [1]. To do this, we first find,
for each point xn in the point set X = {x1 , x2 , ..., xN},
the K nearest neighboring points {y1 , y2 , ..., yK} within
a predesignated fixed distance threshold and generate a
graph structure. We then calculate a weight w(i, k) be-
tween xi and each yk in the neighborhood (all initially

set to 0) by w(i, k) = e−
||xn−yk||2

ϵ , where the parameter
ϵ = 1

N

∑N
n=1 maxk ||xn − yk||, which is related to the av-

erage extent of the neighborhood [42]. We then construct a
diagonal matrix D, where each diagonal entry (i, i) is the
sum of the weights w(i, k) over k for a given point xi. Fi-
nally, the Laplacian matrix is L = D −W . We denote the
source and target point clouds extracted from depth frames
by PS and PT , and their corresponding Laplacian matri-
ces by LS and LT , respectively. The smallest M eigenval-
ues λS = {λS,1 , . . . ,λS,M}, λT = {λT,1 , . . . ,λT,M} and
the corresponding eigenvectors φS = {φS,1 , . . . ,φS,M},
φT = {φT,1 , . . . ,φT,M} are used for computing diffusion
distances as explained in Section 4.1, where M is an exper-
imentally chosen parameter.
3.2. Keypoint detection and matching

For initialization, we detect keypoints on the given pair
of point clouds and match them using descriptor match-
ing. Any point-based 3D keypoint detection algorithm, such
as SIFT [31] or intrinsic shape signature (ISS) [64], can
be used for this purpose. We represent the keypoint sets
for the source and target with S = {s1 , s2 , ..., s|S|} and
T = {t1 , t2 , ..., t|T |}, respectively. We match the detected
keypoints based on the Euclidean distance between the de-
scriptors, in two directions: from target to source and from
source to target. The intersection of the resulting corre-
spondence sets, referred to as reciprocal correspondences
[41], is used as the initial base correspondence set B0 in the
next step. For our implementation, we tried various descrip-
tors such as FPFH[48], and eventually chose to employ the
SHOT descriptor [56] due to its accuracy and speed.

4. Base correspondence estimation
4.1. Diffusion-based perfect matching

The detected keypoints can be reconsidered for a better
matching based on global isometric clues. For this purpose,
we construct an isometric cost matrix C, where each entry
cij represents the deviation from isometry of a candidate
correspondence pair. To compute deviations from isome-
try, we need to rely on a set of known correspondences.
We refer to this set as base correspondence denoted with
B = {(bS1 , bT1 ), (bS2 , bT2 ), . . . , (bS|B|, b

T
|B|)}. The set B is

initially set to B0 , that is, the correspondence obtained in
the preprocessing step via local descriptor matching. We
also employ diffusion distance [13, 24] as in Eq. (1) for the
calculation of the isometric cost.

dX,t(x, y) =
M∑

m=1

e−2λmt(φm(x)− φm(y))2 , (1)

where the distance is calculated between two points x and y
at time t, {λm} and {φm} are the (smallest) M eigenvalues
and the corresponding eigenvectors of the Laplacian matrix.

The isometric cost of matching a keypoint si on the
source keypoint set S with tj on the target T is then cal-
culated as follows:
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cij =
1

|B|
∑

(bSl ,bTl )∈B

|dS(si, bSl )− dT (tj , b
T
l )|. (2)

The resulting cost matrix C is bipartite, so we can apply
the Blossom V algorithm, minimum-weight perfect match-
ing algorithm of Kolmogorov [22] to match all the key-
points from scratch, similar to [51]. Each entry cij ∈ C
is normalized to be in the range [0, 1) by cij ← (1− e−cij ).

Note that the number of keypoints may vary between
point sets, whereas the perfect matching algorithm we em-
ploy requires a square cost matrix. Thus, we add virtual
nodes to the smaller keypoint set and set the corresponding
cost for non-existent pairs to infinity. The perfect matching
algorithm results in a one-to-one and onto mapping, from
which we then remove the pairs including virtual nodes.

4.2. Extension for symmetric shapes
The isometric cost calculated using diffusion distance as

given in Eq. 2 fails to handle the symmetric flip problem
which is inherent to all isometric correspondence methods.
Hence while dealing with objects with intrinsic symmetries,
we propose to use a modified version of this cost function
so as to penalize symmetrically flipped correspondences.

To this effect, we first find the symmetry plane on each
point cloud by implementing the method of Lipman et al.
[28]. We then set the orientations of these planes such that
the angle between their normals is less than 90 degrees.
This setting allows us to match the sides of the shapes. For
example, in the case of human shapes, this strategy enables
us to differentiate the left and right hand sides of the human
shapes assuming that they are both in frontal pose. Both
facing backward pose would also work.

We incorporate this orientation information into our cost
calculation by penalizing matching of the points that are on
non-matching sides of the two shapes, in proportion to their
distances from the symmetry planes:

c′ij = cij ∗(1 +α∗
dsym(si, tj)−min

k,l
dsym(sk, tl)

max
k,l

dsym(sk, tl)
) (3)

where dsym(si, tj) is the joint distance from points
{si, tj} to the corresponding symmetry planes calculated by
dsym(si, tj) = max(dSsym(si), dTsym(tj)), where dSsym(si)
and dTsym(tj) are the distances to the corresponding sym-
metry planes. The penalization constant α > 0 is experi-
mentally set as α = 10. Note that for α = 0, the symmetry-
aware cost c′ij becomes identical to cij .

4.3. Iterative pruning and update
The perfect matching process results in a one-to-one and

onto mapping B. We iteratively modify this matching B to
make it as reliable as possible. We achieve this goal with
a nested loop of pruning and update iterations. While the

inner loop prunes unreliable correspondences based on an
isometric error criterion, the outer iterations gradually up-
date the initial correspondence B0 with which we initialize
the base correspondence set in the first place. At the end of
these iterations, we expect to end up with a partial one-to-
one mapping that establishes a reliable but possibly sparse
correspondence between keypoints.

We compute the isometric error, Eiso(bSi , b
T
i ), of a given

correspondence pair (bSi , bTi ) ∈ B, in terms of its deviation
from isometry with respect to other available pairs in B:

Eiso(b
S
i , b

T
i ) =

1

|B|− 1

∑

(bSl ,bTl )∈B
i≠l

|dS(bSi , bSl )−dT (b
T
i , b

T
l )|

(4)
If (bSi , bTi ) ∈ B is a correct matching pair, its isometric error
is expected to be close to zero. Hence the correspondence
set B can be pruned by eliminating the pairs having rela-
tively larger errors compared to others. The reliability of the
isometric error defined in Eq. 4 depends on the correctness
of B itself. Thus we perform pruning in an iterative scheme,
one pair (the worst one) at a time, and each time we rein-
voke the diffusion-based perfect matching algorithm with
the pruned base correspondence set. At each iteration, we
also remove the keypoints of the eliminated pair from the
keypoint sets S and T . The pruning and perfect matching
tasks are iterated until the gap between maximum and min-
imum isometric errors over the pairs becomes small enough
according to a predesignated threshold value τ .

The modified correspondence set B resulting from the it-
erative pruning algorithm is smaller but usually much more
reliable than the input correspondence. Hence it can be used
to update the initial base correspondence for the next run of
the iterative pruning algorithm in the outer loop. At the
beginning of each outer iteration, the initial base correspon-
dence is renewed with the current B, whereas the keypoint
sets, S and T , are set back to their original content. Hence,
the keypoints that are discarded during iterative pruning due
to mismatches are reconsidered for other possible matches
based on a more reliable estimation of isometric errors. The
outer iterations terminate when the mean isometric error
converges, i.e., when there is no further improvement on
the base correspondence set B.

Computational complexity. The complexity of our cor-
respondence estimation algorithm is dominated by the min-
weight perfect matching algorithm with O(N 2

0 logN0 ) cost
[22], where N0 = max(|S|, |T |), the number of key points,
which is better than O(Q2N0 ) complexity of the PR-GLS
algorithm [33] (one of our baselines), where Q ∼ N0 in
practice. On the other hand, the CPD algorithm [36], which
can be seen as precedent to the PR-GLS method, has O(N0 )
time complexity.
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5. Results
Datasets. We evaluate the performance of our point cor-

respondence estimation algorithm on two depth datasets:
The Berkeley motion human action dataset (MHAD) [37,
54], and the dataset (Human) that we collected, both con-
taining noisy and incomplete depth data of freely moving
subjects, captured using Kinect v1. We convert all depth
frames to 3D point cloud representations and discard color.

We picked 11 depth frames (Figure 2(a)) exhibiting large
non-rigid deformations with respect to each other with vi-
sual inspection, and generated their 55 pair combinations
using MHAD dataset. Each frame has approximately 26K
points and 43 ground-truth marker positions.

The other dataset (Human) that we collected contains
RGB-D frames of a human subject exhibiting larger non-
rigid motion than the MHAD contains. The Human dataset,
in Figure 2(b), includes 6 frames with 33 manually selected
ground-truth keypoints out of approximately 22K points on
each, and thus 15 model pairs.

(a) MHAD

(b) Human

Figure 2. The frames of each dataset with ground-truth points dis-
played in green.

Evaluation. The baselines are the SHOT descriptor
matching algorithm as in Section 3.2 using a publicly avail-
able implementation (pointclouds.org), and two other state
of the art methods for non-rigid point registration with pub-
licly available codes: the CPD method of Myronenko and
Song [36] and the PR-GLS method of Ma et al. [33]. We
compare our method with these three point-based state of
the art methods based on two evaluation metrics: 1) devi-
ation from isometry, and 2) deviation from ground-truth.
The deviation from isometry, i.e., the isometric error, for
a given correspondence set is computed by averaging Eiso

measure given in Eq. 4 over all pairs in the set. The devia-
tion from ground-truth, i.e., the ground-truth error is calcu-
lated by averaging the deviations over all pairs with respect
to the ground-truth correspondence. The ground-truth error
Ebase

grd for a given base correspondence pair (bSi , bTi ) is sim-
ply given by Ebase

grd (bSi , b
T
i ) = dT (gTi , b

T
i ), where gTi repre-

sents the ground-truth match for bSi . Each of these metrics

is then averaged over the whole dataset.
To make a fair comparison between our method and the

baseline methods, we equalize the number of matchings for
each pair, by selecting the best R correspondences resulting
from each method, where R is the size of the correspon-
dence set with the fewer number of pairs.

Implementation details. We normalize the coordinates
of each point cloud in a given dataset so that all the points
lie within the unit sphere centered at the origin. For com-
putation of Laplacian matrices, we select up to K = 120
neighboring points within a distance threshold. To calcu-
late the distance threshold, we take the mean distance be-
tween each point and its K closest neighbors for each point
cloud. Then, we set the distance threshold as the maximum
of those mean distances within the dataset. If a point has
less than K/4 neighbors within that distance, we pick the
closest K/4 neighbors for that vertex regardless of the dis-
tance threshold. This helps avoid singularity problems in
eigen analysis of the Laplacian matrix. For diffusion dis-
tance, we use the smallest M = 20 eigenvalues and the
corresponding eigenvectors of the Laplacian matrix. Also,
the time step parameter t is incremented from 1 to 600 to
compute the average diffusion distance. The error threshold
coefficients for base correspondence algorithm is set exper-
imentally as τ = 2.3.

Correspondence estimation results. Our initial ex-
periments have shown that incorporation of the symmetry-
aware cost function defined in Eq. 3 increases the precision
results between 14% and 20% with up to 2.9x ground-truth
error improvement. Hence all the results provided in this
section are obtained by using the symmetry-aware exten-
sion. Note that all the shapes in both datasets are in approx-
imately frontal pose exhibiting reflectional symmetries.

In Table 1, we observe that our algorithm significantly
outperforms the baseline algorithm in terms of isometric
and ground truth errors. This is especially pronounced in
the human dataset which contains very large deformations,
mainly because local similarities in this case quickly drop
due to occlusions resulting from large motion, whereas the
MHAD dataset exhibits more rigidity between model pairs.
Therefore, the baseline methods have higher success on
MHAD compared to the Human dataset.

In Figure 3, we observe that the worst matchings of
our method on the MHAD dataset are reasonably close to
the true matchings, while the other methods contain corre-
spondences that are symmetrically flipped or very inaccu-
rate such as matches between hand/foot and hip/head. Our
algorithm improves the initial correspondences obtained
between ground-truth keypoints via descriptor matching,
yielding mostly reliable matchings, pruning relatively un-
reliable ones, finding correct correspondences even on the
left arm with large deformation.

We test the performance of our base correspondence al-

1270



Method Ground Truth Error Isometric Error Isometric Error with Key Points
(×10−5) (×10−5) (×10−5)

MHAD Human MHAD Human MHAD Human
Descriptor matching 4.35 9.93 6.04 7.83 7.88 7.75

CPD 0.53 7.27 4.29 10.30 6.24 9.24
PR-GLS 1.37 5.48 3.84 6.57 6.01 8.51

Our method 0.19 0.44 0.52 0.32 0.97 0.86

Table 1. Quantitative evaluation of our correspondence estimation in comparison to baseline methods.

(a) Descriptor matching

(b) CPD

(c) PRGLS

(d) OUR

Figure 3. The worst matches on the MHAD dataset for each
method according to ground-truth (left column, black lines) and
isometric errors (right column, green lines).

gorithm also with automatically detected keypoints. For
keypoint detection, we use Intrinsic Shape Signatures (ISS)
method [64], though any keypoint detection algorithm
could be employed for this purpose. The average number of
base correspondences found using this automatic keypoint
detection algorithm is 15 for the Human and 20 for MHAD
dataset. In this case, we can evaluate the matching results of
each method based only on mean isometric error provided
in the last two columns of Table 1. Our algorithm still pro-
vides more reliable matching results compared to baseline
methods in terms of isometric error. We visualize an ex-
ample pair result of each method in Figure 4, which further
supports our improvement over the other methods. We find
visually correct correspondences even on the right arm and
left leg, where the nonrigid motion is large.

6. Conclusion
We have proposed an isometric mesh-free diffusion-

based method to find reliable sparse correspondences be-
tween point clouds generated from partial depth data ex-
hibiting noise, large deformations, and occlusions. Our ex-
periments have shown that our method provides state of the
art performance on such challenging datasets, particularly
on those exhibiting large deformations. We have also pro-
vided a symmetry-aware extension that significantly boosts
our performance on symmetric human shapes which are in
approximately frontal pose. We stress that our method fo-
cuses on finding as many reliable correspondences as pos-
sible, pruning whenever reliable matching is not possible.
Extending our work so as to find denser correspondences
and generalizing our symmetry-aware extension will be our
future work.
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[46] E. Rodolà, L. Cosmo, M. M. Bronstein, A. Torsello, and
D. Cremers. Partial functional correspondence. In Computer
Graphics Forum, volume 36, pages 222–236. Wiley Online
Library, 2017. 2

[47] E. Rodola, A. Torsello, T. Harada, Y. Kuniyoshi, and D. Cre-
mers. Elastic net constraints for shape matching. In ICCV,
2013. 2

[48] R. B. Rusu, N. Blodow, and M. Beetz. Fast point feature
histograms (fpfh) for 3d registration. In ICRA, 2009. 1, 3
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