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Abstract. In these notes we study rotations in R3 and Lorentz transformations in R4. First
we analyze the full group of Lorentz transformations and its four distinct, connected components.
Then we focus on one subgroup, the restricted Lorentz transformations. This group contains the
proper rotations of R3, and also the group of proper, orthochronous Lorentz transformations of
R4. We investigate the correspondence between the space-time symmetries of the restricted Lorentz
transformations acting on R4, on the one hand, and the group of 2 × 2 complex matrices with
determinant one. This both gives insight into the structure of Lorentz transformations, and also
into charge conjugation. The latter describes symmetry between spin- 12 particles (like electrons,
protons, neutrons, and quarks) and their anti-particles.
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I. Lorentz Transformations

I.1. Points in R4 and Lorentz Transformations L. Let us designate a point in R4 by the
4-vector with real coordinates x = (x0, x1, x2, x3) = (ct, ~x) ∈ R4. In other words, we use units
for which the four components of x all have dimension length, and we say that the four-vector x
comprises a time component and a 3-vector spatial part. A homogeneous Lorentz transformation Λ
is a 4×4 real matrix that acts on x ∈ R4 that preserves the Minkowski length x2

M = x2
0−x2

1−x2
2−x2

3

of every 4-vector x. Let L denote the set of all such Lorentz transformation matrices.
More explicitly, let us denote a Lorentz transformation x 7→ x′ by

x′ = Λx , with x′µ =
3∑

ν=0

Λµνxν ,

with the property x
′2
M = x2

M . The Minkowski square can be written in terms of the Minkowski-space
metric

g =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

Denote by 〈 , 〉 the standard scalar product on Euclidean space, 〈x, y〉 =
∑3

µ=0 xµyµ . We take
the Minkowski scalar product to equal

〈x, y〉M = 〈x, gy〉 =
3∑

µ,ν=0

xµ gµν yν = x0y0 − ~x · ~y . (I.1)

Thus the Lorentz transformation Λ satisfies the relation

〈Λx, gΛx〉 = 〈x, gx〉 , for all x ,

or the matrix relation

ΛtrgΛ = g , (I.2)

where Λtr is the transpose of the matrix Λ. The matrix Λ has 16 entries Λij. There are 10
independent equations arising from (I.2), which is an equation for a symmetric matrix. Thus there
are

6 = 16− 10 independent real parameters (I.3)

that describe the possible matrices Λ.
A multiplicative group G is a set of elements that has three properties:

• There is an associative multiplication: g1, g2 ∈ G ensures g1g2 ∈ G, with (g1g2)g3 = g1(g2g3).
• G contains an identity (sometimes denoted Id, e, 1, I, or 1). If g ∈ G, then g Id = Id g = g.
• Every element g ∈ G has an inverse g−1 in g such that gg−1 = Id.

Proposition I.1. The set Lorentz transform L form a multiplicative group. Every Λ ∈ L has
det Λ = ±1. The transpose Λtr of any Λ ∈ L is a Lorentz transformation.
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Proof. It is clear from (I.2) that if Λ1,Λ2 ∈ L, then

(Λ1Λ2)tr gΛ1Λ2 = Λtr
2 (Λtr

1 gΛ1)Λ2 = Λtr
2 gΛ2 = g . (I.4)

Hence the product of two Lorentz transformations is another Lorentz transformation. Furthermore
taking the determinant of (I.2), and using det(AB) = (detA)(detB), along with det g = −1, shows
that (det Λtr)(det Λ) = 1. But det Λ = det Λtr, so det Λ = ±1. Hence every Lorentz transformation
matrix Λ has an inverse matrix Λ−1.

As Λ preserves x2
M , so does Λ−1. We can also verify this fact algebraically, by using (Λtr)

−1
=

(Λ−1)
tr

, and observing,

g =
(
Λ−1

)tr
Λtr gΛΛ−1 =

(
Λ−1

)tr
gΛ−1 . (I.5)

This is the identity of the form (I.2) that Λ−1 is a Lorentz transformation.
Also note that the identity matrix is a Lorentz transformation. So the Lorentz transformations

form a multiplicative group. Finally the inverse of (I.2) ensures Λ−1g (Λtr)
−1

= g, or g = Λ gΛtr,
which shows that if Λ is a Lorentz transformation, then Λtr is a Lorentz transformation. �

I.2. Components of L. We classify the matrices Λ ∈ L, the set of all Lorentz transformations,
into four distinct connected components.1 We will show that there are four connected components of
L that are determined by the sign of det Λ and the sign of Λ00. Those transformations Λ ∈ L with
det Λ = 1 are caller proper Lorentz transformations, and one denotes the set of such transformations
as L+. Those transformations Λ ∈ L with Λ00 > 0 are called isochronous Lorentz transformations,
and one denotes the set of such transformations as L↑.

Proposition I.2. The Lorentz transformations L fall into four disconnected, disjoint components
according to the sign of det Λ = ±1, and the sign of Λ00 for which |Λ00| > 1.

Proof. We have seen in the proof of Proposition I.1 that det Λ = ±1. As det Λ is a polynomial in the
matrix elements Λij, it depends continuously on these matrix elements. Hence L has disconnected
components according to the sign of det Λ.

The relation (I.2) also shows that |Λ00| > 1. In fact the 00 matrix element of the identity (I.2)
requires that

Λ2
00 −

3∑
i=1

Λ2
i0 = 1 , namely |Λ00| =

(
1 +

3∑
i=1

Λ2
i0

)1/2

> 1 . (I.6)

In Proposition I.1 we saw that if Λ′ ∈ L, then Λ′ tr ∈ L. Thus from (I.6) we infer

∣∣Λ′ 200

∣∣ =

(
1 +

3∑
j=1

Λ′ 2j0

)
> 1 . (I.7)

1One says that a set LX ⊂ L of Lorentz transformations is a connected component, if one can find a continuous
trajectory of matrices between any two given Λ1,Λ2 ∈ LX . This means that for a parameter 0 6 s 6 1, there
is a family of Lorentz transformations Λ(s) ∈ LX , with matrix elements Λij(s), such that Λ(s = 0) = Λ1 and
Λ(s = 1) = Λ2.
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We now see that sgn ((ΛΛ′)00) = sgn Λ00 sgn Λ′00. In fact matrix multiplication yields

(ΛΛ′)00 = Λ00 Λ′00 +
3∑
j=1

Λ0jΛ
′
j0 . (I.8)

Using the Schwarz inequality∣∣∣∣∣
3∑
j=1

Λ0jΛ
′
j0

∣∣∣∣∣ ≤
(

3∑
i=1

Λ2
0i

)1/2 ( 3∑
j=1

Λ′j0

)1/2

. (I.9)

If Λ00 and Λ′00 have the same sign, the first term on the right of (I.8) is positive, and the bound
in (I.9) yields (always for positive square roots),

(ΛΛ′)00 >

(
1 +

3∑
i=1

Λ2
0i

)1/2(
1 +

3∑
j=1

Λ′ 2j0

)1/2

−

(
3∑
i=1

Λ2
0i

)1/2 ( 3∑
j=1

Λ′j0

)1/2

> 0 . (I.10)

If Λ00 and Λ′00 have the opposite sign, one has similarly (with positive square roots)

(ΛΛ′)00 6 −

(
1 +

3∑
i=1

Λ2
0i

)1/2(
1 +

3∑
j=1

Λ′ 2j0

)1/2

+

(
3∑
i=1

Λ2
0i

)1/2 ( 3∑
j=1

Λ′j0

)1/2

6 0 . (I.11)

As |(ΛΛ′)00| > 1 for any ΛΛ′ ∈ L, we infer that the components determined by Λ00 are disjoint. �

I.3. The Components of L. We denote the four components of L by L↑+, L↑−, L↓+, and L↓−. Here
the subscript ± denotes the sign of the determinant, and the superscript arrows denote the sign
of Λ00 (arrow of time). The condition det Λ = ±1 divides L into two disconnected components
L±, called proper and improper Lorentz transformations. The condition sgn (Λ00) = ±1 divides
L into two disconnected components, which one denotes L↑ and L↓, and calls orthochronus and
non-orthochronous.

The fundamental Lorentz transformations which we study are the restricted Lorentz group L↑+.
These are the Lorentz transformations that are both proper, det Λ = +1, and orthochronous,
Λ00 > 1. There are some elementary transformations in L that map one component into another,
and which have special names:

• The parity transformation P : (x0, ~x) 7→ (x0,−~x).
• The time-reversal transformation T : (x0, ~x) 7→ (−x0, ~x).
• The space-time-inversion transformation PT : (x0, ~x) 7→ (−x0,−~x).

The other three components of L arise from applying to L↑+ the discrete element listed in the third
column of Table 1,

L↑− = PL↑+ , L↓− = TL↑+ , L↓+ = PTL↑+ . (I.12)

The subset L↑ = L↑+ ∪ L
↑
− is a group, like the subset L+ = L↑+ ∪ L

↓
+. Another subgroup of

Lorentz transformations consists of Lorentz transformation matrices for which Λ00 det Λ > 1 which
is L0 = L↑+ ∪ L

↓
−. But the components L↑− or L↓+, as well as the subsets L↓ or L− are not closed

under multiplication, so they do not by themselves constitute groups.
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Table 1. Components and Subgroups of the Lorentz Group L

det Λ sgn Λ00 Discrete Element Components of L Symbol

+1 +1 I : x 7→ x proper, isochronous L↑+
-1 +1 P : x 7→ (x0,−~x) space (parity) inverting L↑−
-1 -1 T : x 7→ (−x0, ~x) time inversion L↓−
+1 -1 PT : x 7→ −x proper, time reversing L↓+

Subgroups of L with entire components

±1 ±1 full Lorentz group L
+1 +1 restricted group (proper, isochronous group) L↑+
±1 +1 isochronous group L↑

+1 ±1 proper group L+

+1 +1 another subgroup L0 = L↑+ ∪ L
↓
−

-1 −1

Table 2. The Multiplication Table for the Components of the Lorentz Group L

L↑+ L↑− L
↓
+ L↓−

L↑+ L↑+ L↑− L
↓
+ L↓−

L↑− L↑− L
↑
+ L↓− L

↓
+

L↓+ L↓+ L↑+ L↑+ L↑−
L↓− L↓− L

↓
+ L↑− L

↑
+

II. Restricted Lorentz Transformations

We have reduced the analysis of a general Lorentz transformation Λ ∈ L to the analysis of
a restricted Lorentz transformation Λ ∈ L↑+ with det Λ = 1 and Λ00 > 1, along with the study
of the discrete transformations P, T and PT . In this section we analyze the restricted Lorentz
transformations in detail. We find that they can be factored into a proper rotation R times a
proper, orthochronous boost B.

II.1. Proper Rotations. A restricted Lorentz transformation Λ = R in L↑+ is said to be a proper
rotation, if it leaves the time unchanged, namely Λ00 = 1. By definition detR = 1. Note that the re-
striction (I.6), along with the fact established in Proposition I.1 that Rtr is a Lorentz transformation,
means that a pure rotation has the form

R =

(
1 0

0 R

)
. (II.1)
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We use the letter R to denote the 3 × 3 orthogonal matrix with determinant 1 that implements
the rotation three-vectors ~x. Technically, R ∈ SO(3), the group of real, orthogonal, 3× 3 matrices
with determinant one.

Each pure rotation matrix R ∈ SO(3) is specified by an axis, namely a unit vector ~n in 3-
space, and an angle θ of rotation about this axis. One writes R = R(~n, θ). The rotation leaves ~n
unchanged, and acts in the plane orthogonal to ~n. For example, a rotation by angle θ about the
third axis ~n = ~e3 is given by the matrix

R(~e3, θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 , (II.2)

or imbedded in a transformation on space-time,

R(~e3, θ) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 . (II.3)

Here the sign of the angle θ is a convention: one can interpret the rotation as rotating the coordinate
system (one sign) or rotating the space in a fixed coordinate system (the other sign). The former
is called a passive transformation, while the latter is called an active transformation.

II.2. Pure Lorentz Boost: A restricted Lorentz transformation Λ ∈ L↑+ is a pure boost in the
direction ~n (here ~n is a unit vector in 3-space), if it leaves unchanged any vectors in 3-space in the
plane orthogonal to ~n. Such a pure boost in the direction ~n depends on one more real parameter
χ ∈ R that determines the magnitude of the boost. By choosing the direction of the boost to be
±~n, we can restrict the parameter χ to be non-negative, 0 6 χ.

For example the pure Lorentz boost along the first coordinate axis is Λ = B(~e1, χ), where
~e1 denotes a unit vector for the Cartesian direction x1, and with parameter χ. This Lorentz
transformation is given by the real, symmetric matrix

B(~e1, χ) =


coshχ sinhχ 0 0

sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

 . (II.4)

Clearly B = B(~e1, χ) satisfies the defining relation BtrgB = g of a Lorentz transformation, and also

detB = +1. Furthermore B00 = coshχ > 1. Thus B ∈ L↑+. One has the transformed point

x′0 = x0 coshχ+ x1 sinhχ , and x′1 = x0 sinhχ+ x1 coshχ , x′2 = x2 , and x′3 = x3 . (II.5)
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It is interesting to use another parameterization. Define β = tanhχ ∈ [0, 1), and so using the
relation cosh2 χ− sinh2 χ = 1, we see that

coshχ =
1√

1− β2
, and sinhχ =

β√
1− β2

. (II.6)

So in the example,

B(~e1, χ) =


1√

1−β2

β√
1−β2

0 0

β√
1−β2

1√
1−β2

0 0

0 0 1 0

0 0 0 1

 . (II.7)

Thus in this example we can write x′ = B(~e1, χ)x, expressed above as (II.5), in the familiar form

x′0 =
x0 + x1β√

1− β2
, and x′1 =

βx0 + x1√
1− β2

, x′2 = x2 , and x′3 = x3 . (II.8)

This is a standard form of the pure Lorentz boost along the first axis, where x0 = ct (to give x0 and
x1 the same dimension) and β = v/c is the dimensionless velocity of the boost. Here the velocity is
characterized by 0 6 v < c. (Of course one could also consider negative v or β if one wished.) Note
that x

′ 2
0 − x

′ 2
1 = x2

0 − x2
1.

II.3. The Structure of Restricted Lorentz Transformations. The following describes the
structure of a restricted Lorentz transformation in L↑+. We state these properties now in a propo-
sition. We show that this proposition is true toward the end of these notes. Meanwhile we develop
some properties relating points on R4 to hermitian matrices, which we need to analyze Lorentz
transformations in a simple way.

Proposition II.1 (Restricted Lorentz Transformations). Every restricted Lorentz transfor-

mation Λ ∈ L↑+ has a unique decomposition as a product of a pure rotation R followed by a pure
boost B,

Λ = BR . (II.9)

The rotation has the form (II.1) with R ∈ SO(3); the boost is a symmetric matrix B ∈ SO(1, 3)+.

Remark II.2. One could write this decomposition of a restricted transformation in the reverse

order Λ = RB̃, with a pure boost B̃ = R−1BR along a different direction. Alternatively there is a
pair of pure rotations R1, R2, and a pure boost B(~e1, χ) of the form (II.4), such that

Λ = R1B(~e1, χ)R2 . (II.10)

This decomposition is also unique, unless the Lorentz transformation Λ is a pure rotation.

III. 2× 2 Matrices and Points in R4

The restricted Lorentz transformations have a special relation to the group of 2 × 2 matrices
with determinant +1, namely the group SL(2,C). We develop this connection here. The first step
is to understand a mapping between R4 and 2× 2 hermitian matrices.
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III.1. R4 and H2. There is a 1-1 transformation between points in R4 and the space of 2 × 2
hermitian matrices that we denote by H2. We consider the map

x = (x0, ~x) = (x0, x1, x2, x3) ←→ x̂ =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (III.1)

We use this correspondence in order to analyze the structure of a general Lorentz transformation.
It is natural to define a scalar product on 2× 2 matrices as

〈A,B〉 =
1

2
Tr(A∗B) . (III.2)

The trace of a matrix, denoted Tr, is the sum of the diagonal entries. It is convenient to introduce
four hermitian matrices σµ for µ = 0, 1, 2, 3, as a basis for H2. Let

σ0 =

(
1 0

0 1

)
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (III.3)

Note that one can write the 4-vector σ = (I, ~σ). The zero component σ0 is the identity matrix;
the three-vector with components σi for i = 1, 2, 3 are equal to the 2 × 2 Pauli matrices. Then
σ1σ2 = iσ3 = −σ2σ1, and similarly for cyclic permutation of 1, 2, 3. The matrices σµ are orthonormal
in this scalar product,

〈σµ, σν〉 = δµν , for µ, ν = 0, 1, 2, 3 .

In other words, the σµ are an orthonormal basis for the space of 2× 2 hermitian matrices. We
summarize the properties of x̂ that follow immediately from this observation:

Proposition III.1. Consider the transformation x 7→ x̂ from R4 to H2 defined by

x̂ = x0σ0 + x1σ1 + x2σ2 + x3σ3 =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (III.4)

The corresponding inverse transformation x̂ 7→ x from H2 to R4 is

xµ = 〈σµ, x̂〉 =
1

2
Tr (σµx̂) . (III.5)

Both transformations are linear and 1 to 1.

Proof. The fact that (III.4) and (III.1) agree follows from our choice of σµ. The inverse transforma-
tion is a consequence of the orthonormal property of the σµ’s in the scalar product 〈 , 〉. Finally
for x, y ∈ R4 and λ ∈ R, the linearity of the correspondence between x and x̂ follows from

̂(x+ λy) = x̂+ λŷ , and (x+ λy)µ =
〈
σµ, x̂+ λy

〉
= 〈σµ, x̂〉+ λ 〈σµ, ŷ〉 = xµ + λyµ . (III.6)

Thus x↔ x̂ is linear and 1-to-1. �
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III.2. Determinants and Minkowski Geometry. The link between the mappings of (III.4)–
(III.5) and Minkowski geometry comes from observing that the determinant of the hermitian matrix
x̂ is the Minkowski length squared of the four-vector x = (x0, ~x). In particular defining x2

M = x2
0−~x 2,

one has
det x̂ = (x0 + x3)(x0 − x3)− |x1 − ix2|2 = x2

0 − ~x 2 = x2
M .

Now we study transformations x̂ 7→ x̂′ that are linear and that preserve the determinant of x̂.

III.3. Irreducible Sets of Matrices.

Definition III.2. A set of matrices A is irreducible, if any matrix C that commutes with every
matrix in A must be a multiple of the identity matrix.

Proposition III.3. Any two of the three Pauli matrices {σ1, σ2, σ3} are an irreducible set of 2× 2
matrices.

Proof. Take C =

(
a b

c d

)
for arbitrary complex numbers a, b, c, d. Explicitly

Cσ1 =

(
a b

c d

)(
0 1

1 0

)
=

(
b a

d c

)
, and σ1C =

(
0 1

1 0

)(
a b

c d

)
=

(
c d

a b

)
.

Hence Cσ1 = σ1C means that b = c and a = d. Likewise

Cσ2 =

(
a b

c d

)(
0 −i
i 0

)
=

(
ib −ia
id −ic

)
, and σ2C =

(
0 −i
i 0

)(
a b

c d

)
=

(
−ic −id
ia ib

)
.

Hence Cσ2 = σ2C means that b = −c and a = d. And finally

Cσ3 =

(
a b

c d

)(
1 0

0 −1

)
=

(
a −b
c −d

)
, while σ3C =

(
1 0

0 −1

)(
a b

c d

)
=

(
a b

−c −d

)
.

Hence Cσ3 = σ3C means that b = c = 0.
Inspecting the consequences of any two of the three conditions Cσj = σjC, we infer b = c = 0

and a = d. In other words, C commuting with any two Pauli matrices shows that

C =

(
a b

c d

)
= a

(
1 0

0 1

)
= a I .

Thus any two of the Pauli matrices form an irreducible set of 2× 2 matrices. �

III.4. Unitary Matrices are Exponentials of Anti-Hermitian Matrices. The matrix H is
hermitian, H = H∗, if and only if the matrix A = iH is anti-hermitian, A = −A∗.

Proposition III.4. Unitary matrices have the following properties:

(1) Every unitary N ×N matrix U can be written U = eiH , where H is hermitian.
(2) In case N = 2, the matrix H can be written H =

∑3
j=0 λjσj for real constants λj.

(3) In case N = 2 and detU = 1, the matrix H can be written H =
∑3

j=1 λjσj, namely λ0 = 0.
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Proof. Every unitary matrix is normal, so there is another unitary V so that V ∗UV = D is diagonal.
The diagonal entries Djj = dj of D are the eigenvalues of U , and they have absolute value 1.
Therefore dj = eiλj for some real λj. Hence D = eiΛ where Λ is the diagonal hermitian matrix with
real entries Λij = λjδij. Hence H = V ΛV ∗ is hermitian and U = V DV ∗ = V eiΛV ∗ = eiV ΛV ∗ = eiH

has the form claimed in (1).
In case N = 2, we know that the σj for j = 0, 1, 2, 3 are a basis for hermitian matrices,

that is orthonormal in the scalar product (III.2). Therefore the given H has a unique expansion
H =

∑3
j=0 λjσj. In case that detU = 1 as well, one has

detU = det(V ∗DV ) = det(V V ∗D) = detD = det
(
eiΛ
)

= eiTrΛ = e2iλ0 .

Thus one needs to choose λ0 = nπ for integer n. But all these choices yield the same U , so we
choose n = 0. �

III.5. Strictly-Positive Hermitian Matrices are Exponentials of Hermitian Matrices. A
strictly-positive N × N hermitian matrix is one with strictly positive eigenvalues, hj > 0, for
j = 1, . . . , N .

Proposition III.5. A strictly positive hermitian matrix has the following properties:

(1) Every N ×N hermitian matrix H can be written H = eK, where K is hermitian.
(2) In case N = 2, the matrix K can be written K =

∑3
j=0 λjσj for real constants λj.

(3) In case N = 2 and detH = 1, the matrix K can be written K =
∑3

j=1 λjσj, namely λ0 = 0.

Proof. The proof is very similar to the proof of Proposition III.4. One significant difference is that
for hj > 0, we can find real λj for which hj = eλj . Also detH = e2λ0 ; so detH = 1 ensures
λ0 = 0. �

IV. The Group SL(2,C) Acting on H2

Let A denote an element of the two-dimensional special linear group, namely the set of 2 × 2
matrices with complex entries and with determinant 1. As A has non-vanishing determinant, it has
a matrix inverse. Each matrix A ∈ SL(2,C) defines a linear transformation of hermitian matrices,

x̂ 7→ x̂ ′ = A x̂A∗ , (IV.1)

that preserves the determinant. Clearly both A and −A determine the same transformation x̂ 7→ x̂′.
Linearity follows from

(x̂+ λŷ)′ = A (x̂+ λŷ)A∗ = Ax̂A∗ + λAŷA∗ = x̂ ′ + λŷ ′ .

Also det x̂′ = det (A x̂A∗) = (detA)(det x̂)(detA∗) = det x̂.

Proposition IV.1. Any linear transformation taking hermitian, 2×2 matrices x̂ to hermitian 2×2
matrices x̂′, with det x̂ = det x̂′, and with x0x

′
0 > 0, can be written in the form (IV.1) for some

matrix A ∈ SL(2,C). Furthermore the transformation x̂ 7→ x̂′ uniquely determines A, up to its
overall sign.
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Proof. Since the linear, determinant-preserving transformations x̂ 7→ x̂′ are in 1 to 1 correspondence
with Lorentz transformations, we know from (I.3) that there is a 6 real-parameter family of such
transformations. An arbitrary 2×2 matrix has 4 complex or 8 real parameters. The restriction that
detA = 1 gives two equations, one for the real and one for the imaginary part of the determinant.
That leaves 6 = 8 − 2 real parameters for matrices in SL(2,C). Therefore matrices A ∈ SL(2,C)
have the correct number of independent parameters to describe all Lorentz transformations.

Just to cover all bases, let us consider a more general transformation of the form x̂′ = Ax̂B,
for both A,B ∈ SL(2,C). Since x̂′ must be hermitian for all x̂, one must have Ax̂B = B∗x̂A∗

for all x̂. This is the case if and only if B∗−1Ax̂ = x̂A∗B−1 for all x̂. Taking x̂ = I shows that
T = B∗−1A must be hermitian. It then follows that T x̂ = x̂T for all x̂. But the matrices (σ1, σ2)
are an irreducible set of matrices. They equal x̂ for the choices x = (0, 1, 0, 0) and x = (0, 0, 1, 0)
respectively. Thus T commutes with an irreducible set and must be a multiple of the identity,
T = λI, with λ ∈ R as T = T ∗. Also detT = 1, so λ2 = 1 and λ = ±1. This is equivalent to
B = ±A∗, and to

x̂′ = ±Ax̂A∗ . (IV.2)

The + sign in (IV.2) gives (IV.1). On the other hand suppose that for the − sign, one has

x̂′ = Λ̂x. Then

Λ00 = −〈σ0, Aσ0A
∗〉 = −1

2
Tr(AA∗) < 0 . (IV.3)

In this case Λ reverses the sign of the time, so it is ruled out by the assumption that x0x
′
0 > 0.

Note on the other hand that for x̂′ = Ax̂A∗, the same argument shows that Λ00 = 1
2
Tr(AA∗) > 0,

so x0x
′
0 > 0.

Finally let us suppose that A and B are two different SL(2,C) matrices that yield the same
transformation x̂ 7→ x̂′. Then Ax̂A∗ = Bx̂B∗ for all x̂. In other words B−1Ax̂(B−1A)∗ = x̂ for all x̂.
Taking x̂ = I shows that B−1A is unitary, and so B−1A commutes with x̂ for all x̂. Again choosing
x̂ to be σ1 and σ2 shows that B−1A = λI where λ is a constant, or A = λB. Since both A and B
have determinant 1, we infer that λ2 = 1 and λ = ±1. Hence A is determined uniquely up to its
overall sign. �

Corollary IV.2. There is a 2 to 1 correspondence between matrices A ∈ SL(2,C) and restricted

Lorentz transformations Λ ∈ L↑+, given by the representation

Λ̂x = A x̂A∗ . (IV.4)

The matrices Λ = Λ(A) = Λ(−A) are a representation of SL(2,C), namely Λ(AB) = Λ(A) Λ(B).
The matrix elements of Λ(A) are given by

Λ(A)µν = 〈σµ, A σν A∗〉 =
1

2
Tr (σµAσν A

∗) , and Λ(A)µν = Λ(A)µν , (IV.5)

and are real. If A = U is unitary, then Λ(U) = R has the form (II.1) with R ∈ SO(3), a proper
rotation. It has Λ(U)00 = 1, and Λ(U)0i = Λ(U)i0 = 0 for i = 1, 2, 3. On the other hand, if A = H
is hermitian, then Λ(H) is symmetric and equal to a pure Lorentz boost.

Proof. We have shown in Proposition IV.1 that the map (IV.4) gives a restricted Lorentz trans-
formation, and that for a given restricted Lorentz transformation A is unique up to its overall
sign.
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In order to show that A 7→ Λ(A) is a representation, note that for every x,

(Λ(AB)x)∧ = AB x̂B∗A∗ = A Λ̂(B)xA∗ = (Λ(A)Λ(B)x)∧ .

Hence for any x, one can invert the map to hermitian matrices to show Λ(AB)x = Λ(A) Λ(B)x. As
a consequence, the identity Λ(AB) = Λ(A) Λ(B) also holds.

In order to see that the Lorentz transformation Λ(A) is an element of L↑+ , we argue that both
det Λ(A) and Λ(A)00 are continuous functions of the matrix A. For every A ∈ SL(2,C) we can find
a continuous path A(α) from A(0) = I to A(1) = A, which we construct as follows. The matrix A
has a unique polar decomposition A = HU , where 0 < H is a positive hermitian matrix, and U is
a unitary matrix. Every hermitian H and unitary U has an orthonormal basis of eigenvectors, so
we can raise H and U to an arbitrary fractional power α ∈ [0, 1]. Define

A(α) = HαUα , for which A(0) = I , and A(1) = A .

As ΛtrgΛ = g, we infer that det Λ2 = 1, so det Λ = ±1. Also Λ(A(0)) = I, and det Λ(A(α)) is a
continuous function of α; so det Λ(A) = det Λ(A(1)) = 1. Likewise Λ(A(α))2

00 > 1 is continuous in
α, and Λ(A(α))00 = 1 for α = 0. Hence Λ(A)00 > 1. Taken together, these two facts show that

Λ(A) ∈ L↑+.
We can compute Λ(A) from

3∑
ν=0

Λ(A)µν xν = (Λ(A)x)µ =
〈
σµ, Λ̂(A)x

〉
= 〈σµ, A x̂A∗〉 =

3∑
ν=0

〈σµ, A σν A∗〉 xν . (IV.6)

The values of the matrix elements Λ(A)µν are the coefficients of xν in the relation (IV.6). Thus
Λ(A)µν = 〈σµ, A σν A∗〉 = 1

2
Tr(σµAσν A

∗). Also

Λ(A)µν =
1

2
Tr(σµAσν A∗) =

1

2
Tr (Aσν A

∗ σµ) =
1

2
Tr (σµAσν A

∗) = Λ(A)µν ,

so the matrix elements of Λ(A) are real.
As Λ(A) is a representation, Λ(A−1) = Λ(A)−1. In case that A = U is unitary, Λ(U)00 =

1
2
Tr(I) = 1. Also Λ(U)0i = 1

2
Tr(UσiU

∗) = 1
2
Tr(σi) = 0, and similarly Λ(U)i0 = 0. Furthermore

Λ(U)µν =
1

2
Tr (σµ Uσν U

∗) =
1

2
Tr
(
σµ U

−1 ∗σν U
−1
)

=
1

2
Tr
(
σν U

−1 σµ U
−1 ∗) = Λ(U−1)νµ

=
(
Λ(U)−1

)
νµ

. (IV.7)

Hence Λ(U) = R(U) is orthogonal.
On the other hand, if A = H is hermitian, then

Λ(H)µν =
1

2
Tr(σµH σν H) =

1

2
Tr(H σν H σµ) =

1

2
Tr(σν H σµH) = Λ(H)νµ ,

so Λ(H) is symmetric. �
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V. Structure of Restricted Lorentz Transformations

We now identify the transformations Λ(U) and Λ(H) arising from unitary or self-adjoint matrices
A as rotations and boosts. Also we decompose an arbitrary restricted Lorentz transformation into
a product of a rotation and a boost, and this decomposition is unique.

First note that every matrix A ∈ SL(2,C) has a polar decomposition into a strictly-positive
hermitian matrix times a unitary matrix,

A = HU , where 0 < H , and UU∗ = I . (V.1)

One takes H as the positive square root of the hermitian matrix AA∗, namely H = (AA∗)1/2, and
defines U = H−1A = (AA∗)−1/2A. One then sees that U is unitary, for

UU∗ = H−1AA∗H−1 = (AA∗)−1/2AA∗ (AA∗)−1/2 = I . (V.2)

Note that H and U are uniquely determined. We summarize this as:

Proposition V.1. We therefore have a unique decomposition of Λ(A) into

Λ(A) = Λ(HU) = Λ(H) Λ(U) , where 0 < H = H∗ , UU∗ = I . (V.3)

Along the properties established in Corollary IV.2, this completes the proof of Proposition II.1.
We now find out in detail what are the transformations Λ(H) and Λ(U).

Proposition V.2 (Identification of Λ(U) and Λ(H)). If U = e−i
θ
2
~n·~σ, then Λ(U) = R(~n, θ)

rotates by angle θ about the axis ~n. If H = e
χ
2
~n·~σ, then Λ(H) = B(~n, χ) is a pure boost along the

axis ~n by velocity v
c

= β = tanhχ.

Proof. In order to identify the rotation arising from U = e−i
θ
2
~n·~σ, note that U commutes with the

matrix n̂ =
∑3

j=1 njσj. Thus Un̂U∗ = n̂, so n̂′ = n̂, and consequently Λ(U) leaves ~n unchanged. In
other words it is a rotation about the axis ~n.

In order to analyze the angle by which one rotates, it is sufficient to choose ~n = ~e3. Then we
claim that

Λ(U) = Λ(e−i
θ
2
σ3) = Λ(e−i

θ
2
σ3) =


1 0 0 0

0 cos θ − sin θ 0

0 sin θ cos θ 0

0 0 0 1

 , (V.4)

which is just the rotation by angle θ about the third axis found in (II.3). We compute the matrix
elements of Λ(U) and show that they equal the matrix elements in (V.4). We have already shown
in Corollary IV.2 that Λ(U)00 = 1 and Λ(U)0i = Λ(U)i0 = 0, for i = 1, 2, 3. We also have

Λ(U)11 =
1

2
Tr
(
σ1e
−i θ

2
σ3σ1e

i θ
2
σ3
)

=
1

2
Tr
(
σ2

1e
iθ σ3
)

=
1

2
Tr

(
eiθ 0

0 e−iθ

)
=

1

2

(
eiθ + e−iθ

)
= cos θ ,
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Λ(U)12 =
1

2
Tr
(
σ1e
−i θ

2
σ3σ2e

i θ
2
σ3
)

=
1

2
Tr
(
σ1σ2e

iθ σ3
)

=
1

2
Tr
(
iσ3e

iθ σ3
)

= i
1

2
Tr

(
eiθ 0

0 −e−iθ

)
= − 1

2i

(
eiθ − e−iθ

)
= − sin θ ,

Λ(U)13 =
1

2
Tr
(
σ1e
−i θ

2
σ3σ3e

i θ
2
σ3
)

=
1

2
Tr (σ1σ3) =

1

2
Tr (−iσ2) = 0 ,

Λ(U)21 =
1

2
Tr
(
σ2e
−i θ

2
σ3σ1e

i θ
2
σ3
)

=
1

2
Tr
(
σ2σ1e

iθ σ3
)

= −Λ(U)12 = sin θ ,

Λ(U)22 =
1

2
Tr
(
σ2e
−i θ

2
σ3σ2e

i θ
2
σ3
)

=
1

2
Tr
(
σ2

2e
iθ σ3
)

=
1

2
Tr

(
eiθ 0

0 e−iθ

)
= cos θ ,

Λ(U)23 =
1

2
Tr
(
σ2e
−i θ

2
σ3σ3e

i θ
2
σ3
)

=
1

2
Tr (σ2σ3) =

1

2
Tr (iσ1) = 0 ,

Λ(U)31 =
1

2
Tr
(
σ3e
−i θ

2
σ3σ1e

i θ
2
σ3
)

=
1

2
Tr
(
σ3σ1e

iθσ3
)

=
1

2
Tr
(
iσ2e

iθσ3
)

=
1

2
Tr

((
0 1

−1 0

)(
eiθ 0

0 e−iθ

))
=

1

2
Tr

(
0 e−iθ

−eiθ 0

)
= 0 ,

Λ(U)32 =
1

2
Tr
(
σ3e
−i θ

2
σ3σ2e

i θ
2
σ3
)

=
1

2
Tr
(
σ3σ2e

iθσ3
)

=
1

2
Tr
(
−iσ1e

iθσ3
)

=
1

2
Tr

((
0 −i
−i 0

)(
eiθ 0

0 e−iθ

))
=

1

2
Tr

(
0 −ie−iθ

−ieiθ 0

)
= 0 ,

and

Λ(U)33 =
1

2
Tr
(
σ3e
−i θ

2
σ3σ3e

i θ
2
σ3
)

=
1

2
Tr
(
σ2

3

)
=

1

2
Tr(I) = 1 .

Putting together all these matrix elements shows that the rotation Λ(U) just equals (II.3), as
claimed.

Similarly we can work out the matrix Λ(H), for

H = e
1
2
~n·~σχ = e

1
2
~n·~σχ , (V.5)

where ~n is a unit vector and χ is a real parameter. As in the case of the rotation, we include the
factor 1

2
in the exponent, so that everything works out nicely.

For i, j = 1, 2, 3, we have

σiσj = −σjσi + 2δijI , for i, j = 1, 2, 3 .

Assume that y = (0, ~y) where ~y ∈ R3 is orthogonal to ~n, namely ~y · ~n = 0. Then

(~y · ~σ) (~n · ~σ) = −(~n · ~σ) (~y · ~σ) ,

and it follows from (V.5) that

~y · ~σ H = H−1 ~y · ~σ .
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Then

Λ̂(H)y = H~y · ~σH = ~y · ~σ = ŷ . (V.6)

So Λ(H) leaves ~y ⊥ ~n unchanged. This is the definition of a pure Lorentz boost along ~n. We denote
this transformation B(H).

Let us compute the components of B(H) for H or the form (V.5) and with ~n = e1. We claim
that in this case,

B(H) =


coshχ sinhχ 0 0

sinhχ coshχ 0 0

0 0 1 0

0 0 0 1

 . (V.7)

In other words, we claim that B(H) is exactly the boost B(~e1, χ) given in the example (II.4).
In the case that A = H is hermitian, we have shown in Corollary IV.2 that the corresponding

Lorentz boost B(H) is always a real, symmetric matrix, so in order to determine B(H), we only
need to find B(H)µν for µ 6 ν. These components are

B(H)00 =
1

2
Tr
(
σ0 e

χ
2
σ1 σ0 e

χ
2
σ1
)

=
1

2
Tr (eχσ1) =

1

2
Tr

(
coshχ sinhχ

sinhχ coshχ

)
= coshχ ,

B(H)01 =
1

2
Tr
(
σ0 e

χ
2
σ1 σ1 e

χ
2
σ1
)

=
1

2
Tr (σ1 e

χσ1) =
1

2
Tr

(
sinhχ coshχ

coshχ sinhχ

)
= sinhχ ,

B(H)02 =
1

2
Tr
(
σ0 e

χ
2
σ1 σ2 e

χ
2
σ1
)

=
1

2
Tr (σ2) = 0 ,

and

B(H)03 =
1

2
Tr
(
σ0 e

χ
2
σ1 σ3 e

χ
2
σ3
)

=
1

2
Tr (σ3) = 0 .

Also

B(H)11 =
1

2
Tr
(
σ1 e

χ
2
σ1 σ1 e

χ
2
σ1
)

=
1

2
Tr (eχσ1) = coshχ ,

B(H)12 =
1

2
Tr
(
σ1 e

χ
2
σ1 σ2 e

χ
2
σ1
)

=
1

2
Tr (σ1 σ2) =

1

2
Tr (iσ3) = 0 ,

B(H)13 =
1

2
Tr
(
σ1 e

χ
2
σ1 σ3 e

χ
2
σ1
)

=
1

2
Tr (σ1 σ3) =

1

2
Tr (−iσ2) = 0 ,

B(H)22 =
1

2
Tr
(
σ2 e

χ
2
σ1 σ2 e

χ
2
σ1
)

=
1

2
Tr (I) = 1 ,

B(H)23 =
1

2
Tr
(
σ2 e

χ
2
σ1 σ3 e

χ
2
σ1
)

=
1

2
Tr (σ2 σ3) =

1

2
Tr (iσ1) = 0 ,

and

B(H)33 =
1

2
Tr
(
σ3 e

χ
2
σ1 σ3 e

χ
2
σ1
)

=
1

2
Tr (I) = 1 .

So these all agree with (V.7). �
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VI. Complex-Conjugate Representations in SU(2) and SL(2,C)

By the complex conjugate of the matrix A =

(
a b

c d

)
, we mean the matrix A =

(
a b

c d

)
, where

a denotes the complex conjugate of the matrix element a.

VI.1. The Group SU(2). We remark that for the unitary matrices U ∈ SU(2), the transformation

U 7→ U ′ = σ2Uσ2 (VI.1)

maps any U to its complex conjugate matrix U . To verify this, note that

σ2σ1σ2 = −σ1 = −σ1 , σ2σ2σ2 = σ2 = −σ2 , σ2σ3σ2 = −σ3 = −σ3 . (VI.2)

In summary, for j = 1, 2, 3, and for i =
√
−1,

σ2 (iσj)σ2 = (iσj) . (VI.3)

Using the fact that σ2 is unitary and self adjoint, it follows that

σ2 (iσj)
n σ2 = (iσj)

n
. (VI.4)

Writing U = e−iθ~n·~σ, and using σ2 = σ∗2, we see that

σ2 Uσ
∗
2 = σ2 Uσ2 = U . (VI.5)

Now consider two representations of the group SU(2) by 2 × 2 unitary matrices. In the first
case we take the representation U 7→ U given by the identity function. Let us call this the standard
representation of SU(2). Multiplication in this representation of the group is just the ordinary
multiplication of matrices, that defines the group, U1U2 = U3.

In the second case consider taking the complex conjugate of each matrix, U 7→ U . In order to
check that this is a representation of SU(2), note that for any matrices A and B, it is true that
AB = A B. Thus it follows that U1 U2 = U3, and the multiplication table for the complex conjugate
matrices U is the same as the multiplication table for the matrices U . Hence the complex conjugate
matrices yield another representation of the group SU(2). One calls this representation of SU(2)
the complex-conjugate representation.

What we have shown in (VI.5) is that the complex conjugate representation is unitarily equiv-
alent to the standard representation, and the unitary equivalence is implemented by the matrix
σ2,

σ2U1U2σ
∗
2 = σ2U3σ

∗
2 , means that U1 U2 = U3 . (VI.6)

VI.2. The Group SL(2,C). In the group SL(2,C) one can show as above that A 7→ A gives a
representation of the group. If A1A2 = A3 then A1 A2 = A3. This is called the complex-conjugate
representation. However now the situation with SL(2,C) is different from the situation with the

group of unitary matrices SU(2). The complex conjugate representation SL(2,C) of SL(2,C) is
not unitarily equivalent to the standard representation.

There are many ways to see if two matrices X and Y are unitarily equivalent, namely if Y =
UXU∗ for a unitary matrix U . A necessary condition for this to be the case is that

Tr(Y ) = Tr(UXU∗) = Tr(U∗UX) = Tr(X) . (VI.7)
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Here we use “cyclicity of the trace,” namely Tr(AB) = Tr(BA). Also Tr(Y ) = Tr(Y ). Therefore if

X and X are unitarily equivalent, then Tr(X) = Tr(X) must be real.
Hence one way to show that a general matrix A ∈ SL(2,C) is not unitarily equivalent to its

complex conjugate is to find an SL(2,C) matrix whose trace is complex. In fact, one can take the
diagonal 2× 2 matrix2

A = eχσ3eiθσ3 =

(
eχ+iθ 0

0 e−χ−iθ

)
∈ SL(2,C) , with χ, θ ∈ R . (VI.8)

Then
Tr(A) = 2 coshχ cos θ + 2i sinhχ sin θ . (VI.9)

This is real only if χ = 0 or θ = nπ. So if we choose χ, θ so sinhχ cos θ 6= 0, then A is not unitarily
equivalent to A.

Remark VI.1 (Particle/Anti-Particle Symmetry). In quantum theory, complex conjugation
is the symmetry that has the physical interpretation of transforming particle states to corresponding
anti-particle states. (This is a slight oversimplification.)

Furthermore the two-dimensional matrices in SU(2) or SL(2,C) are involved in the interpre-
tation of states of spin-1

2
particles, such as electrons and positrons, or protons and anti-protons.

So one can interpret the difference between rotations and Lorentz transformations as saying that
rotational symmetry does not mix spin-1

2
fermions from their anti-particles. However relativistic

symmetry can mix the two.
P.A.M. Dirac discovered this fact, when he found his relativistic wave equation for the elec-

tron, the equation we know as the “Dirac equation.” The Dirac equation is an equation for a
4-component wave function. In order to obtain this equation, one combines the 2-dimensional
standard representation of SL(2,C) (which is the familiar Pauli equation involving the Pauli matri-
ces in non-relativistic quantum theory) with the 2-dimensional complex-conjugate representation,

SL(2,C). Putting them together they make up the 4 components of the relativistic Dirac wave
function. The Weyl equation is a two-component relativistic wave equation that describes particles
or anti-particles. The Dirac equation is a four-component relativistic wave equation that describes
both.

2Our example does not need the trace as a test, for we just observe that the set of eigenvalues of A, namely the
diagonal entries, do not coincide with those of A. However it is instructive to look at invariants of A under unitary
transformations, such as Tr(A) and det(A) which must be the same for unitary equivalent matrices. These serve as
useful tests when A is not diagonal.
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