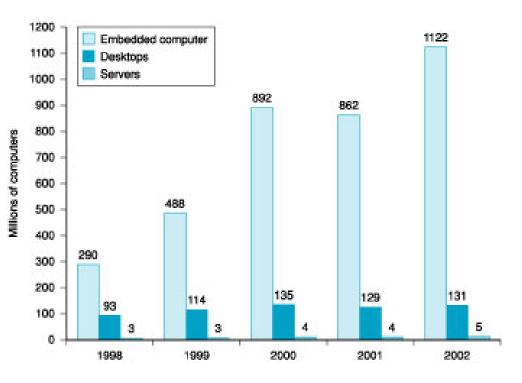
COMP 303 Computer Architecture Lecture 1

Roy Kucukates

Introduction


- This course is all about how computers work
- But what do we mean by a computer?
 - Different types: desktop, servers, embedded devices
 - Different uses: automobiles, graphics, finance, genomics...
 - Different manufacturers: Intel, Apple, IBM, Microsoft, Sun...
 - Different underlying technologies and different costs!

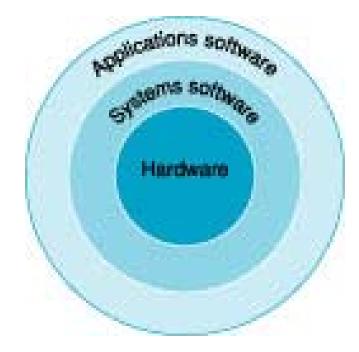
Introduction

- Analogy: Consider a course on "automotive vehicles"
 - Many similarities from vehicle to vehicle (e.g., wheels)
 - Huge differences from vehicle to vehicle (e.g., gas vs. electric)
- Best way to learn:
 - Focus on a specific instance and learn how it works
 - While learning general principles and historical perspectives

Classes of Computing Apps.

- Desktop computers
- Servers
- Super computers
- Embedded computers

What to learn

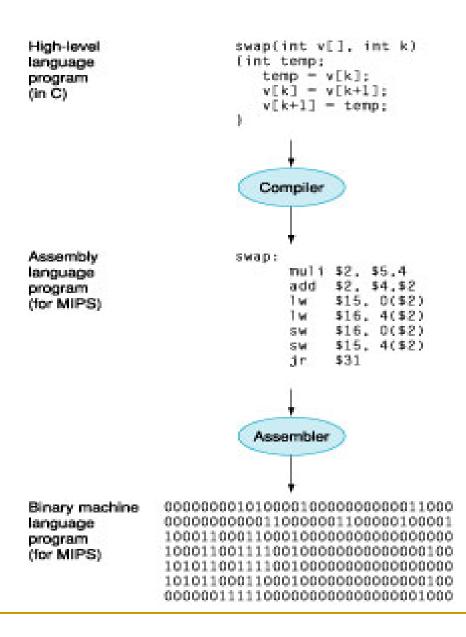

- How are programs written in a high-level language, translated into the language of the hardware
- What is the interface between the software and the hardware, and how does software instruct the hardware to perform needed function
- What determines the performance of a program
- What techniques can be used by hardware designers to improve performance

Performance

- Both Hardware and Software affect performance:
 - Algorithm determines number of source-level statements
 - Language/Compiler/Architecture determine machine instructions
 - (Chapter 2 and 3)
 - Processor/Memory determine how fast instructions are executed

(Chapter 5, 6, and 7)

Below the application



What is a computer?

Components:

- input (mouse, keyboard)
- output (display, printer)
- memory (disk drives, DRAM, SRAM, CD)
- network
- Our primary focus: the processor (datapath and control)
 - implemented using millions of transistors
 - Impossible to understand by looking at each transistor

How do computers work?

Need to understand abstractions such as:

- Applications software
- Systems software
- Assembly Language
- Machine Language
- Architectural Issues: i.e., Caches, Virtual Memory, Pipelining
- Sequential logic, finite state machines
- Combinational logic, arithmetic circuits
- Boolean logic, 1s and 0s
- Transistors used to build logic gates (CMOS)
- Semiconductors/Silicon used to build transistors

Properties of atoms, electrons, and quantum dynamics

Comp 303 Computer Architecture

Instruction Set Architecture

A very important abstraction

- interface between hardware and low-level software
- standardizes instructions, machine language bit patterns, etc.
- advantage: *different implementations of the same architecture*
- disadvantage: sometimes prevents using new innovations

True or False: Binary compatibility is extraordinarily important?

Modern instruction set architectures:

□ IA-32, PowerPC, MIPS, SPARC, ARM, and others

Historical Perspective

- ENIAC built in World War II was the first general purpose computer
 - Used for computing artillery firing tables
 - B0 feet long by 8.5 feet high and several feet wide
 - Each of the twenty 10 digit registers was 2 feet long
 - Used 18,000 vacuum tubes
 - Performed 1900 additions per second

-Since then:

Moore's Law:

transistor capacity doubles every 18-24 months

Comp 303 Computer Architecture

Reading Assignment

Read Ch 1. Especially 1.4 Performance