COMP303 - Computer
Architecture

Lecture 10

Multi-Cycle Design & Exceptions

Single Cycle Datapath

We designed a processor that requires one cycle per instruction

Instruction<31:0>

% Instruction A 1A |A |a

. o

| Rd I Rt Fetch Unit ':) g : =

RegDst Clk _0|> v 7 ¢ |V

S L Mux 0 AR AN N
Rs Rt Rt Rs Rd Imml6

RegWr er 5 5+ 5+ ALUctr
7
busA Equal MemtoReg

o rw Ra Rb / qual | MemWr 1

y 32 32-bit 32 > o\
32 Registers busB / O\ c| 32’

Clk 7 <

—Ol> 32 < c

S 32 X
m 4—s| WIEn Adr [#—{1-

& 0 l— 1/ Data In 39
immle——+—1 3€| 32 Data | |
16 % Clk Memory
ALUSIC C|;

MemRd

What’s wrong with our CPI=1 processor?

Arithmetic & Logical
PC I Inst Memoryl Reg File ImuxI ALU Imuxlsetup

Load

PC | Inst Memoryl Reg File |mU><| ALU IData Mem ImUXISetup
Critical Path

Store

PC | Inst Memoryl Reg File Imuxl ALU IData Mem

Branch
PC | InstMemoryl Reg File |cmp|mux

Long cycle time
All instructions take as much time as the slowest

Real memory is not so nice as our idealized memory
o cannot always get the job done in one (short) cycle

Reducing Cycle Time

Cut combinational dependency graph and insert register / latch
Do same work in two fast cycles, rather than one slow one

> storage element > storage element

4)
4 .) Acyclic
Acyclic S
. Combinational
Combinational

Logic / q Logic (A) J

=> > storage element
\- / Acyclic
Combinational
> storage element Logic (B)

> storage element

Basic Limits on Cycle Time

Next address logic = ALU execution
2 PC <= Dbranch ? PC + 4 + offset = ALUOUt<=AopB
:PC+4 = Data Memory Access
Instruction Fetch = M <= Mem[ALUout]
a InstructionReg <= Mem[PC] = Result Store
Operand Fetch = R[rd] <= ALUOuUt

o A<=R[rs], B <=R][r]

£ Control)

— o > ra) —
" s 5 T 83
©) D <) S lo
a - L C
§ B
O .5 g; ’[>~\ ?“’
o 8 *gﬁ G G Exec 5§ x iT
= o o O o
3 7L o L zg | o
Z c @) = <

____/

Result Store

Partitioning the CPI=1 Datapath

Add registers between smallest steps

OO

— > - A
3 x = —
5 <l>q.> cv&
) :
O = 2 D v
O JO ©Q 9 I X iL
2 o 2 O O O A
v n WL o |
Z c @

Allow the instruction to take multiple cycles.

Result Store

xample Multicycle Datapath

B B\
_{
A 4

IMBay
> °=lid
1sgboy g Boy W 9J0]S JNSay

Hoyo | WA
=
IMWBIN SSaddyY
PHWaN WS
n
DOV~ Ay
<{ m yale-
puetadO
o 2
X i
T SR
dl UONoN.ISU|
J
od

195 2dU [54 1xeN

Additional registers are added to store values between

stages.

R-type instructions (add, sub, . . .)

Inst Loqgical Reqister Transfers
ADD R[rd] € R[rs] + R[rt]; PC € PC +4

inst Physical Reqgister Transfers
IR < MEMIPC]
ADD A< R|rs|; B € R]rt]
SEA+B
R[rd] € S; PC & PC+4

< —
< —

PC

Exec

Next PC

\—

Inst. Mem

-

Mem
Access

Reg. [=—
File

I.oad instruction

Inst

Logical Reqgister Transfers

LW

R[rt] € MEM(R[rs] + sx(Im16);
PC < PC+4

inst

Physical Reqgister Transfers

LW

IR < MEM[PC]

AT R[S B € R[]

S € A+ SignEx(Im16)

M € MEM[S]

R[rd] € M; PCEPC+4

PC

Next PC

Inst. Mem

< —
< —
< —

N—o

Mem
Access

Reg.
File

Store 1nstruction

inst Logical Reqister Transfers
SwW MEM(R[rs] + sx(Im16) € R[rt];
PC &< PC+4
inst Physical Register Transfers
IR < MEMI[PC]
SW A €< R[rs]; B € R[rt]
S & A+ SignEx(Im16);
MEMI[S] € B PC € PC +4
O GE) o
zE8m 2 [5 3
2 2 -

-

N—o

Mem
Access

< —

Reg. |=——
File

< —

Branch instruction

inst Logical Register Transfers
BEQ iIf R[rs] == R[rt]
then PC €« PC + sx(Im16) || 00
else PC < PC +4

inst Physical Register Transfers
IR €< MEM[pc]
A€ R[rs]; B € RJrt]
Eq=(A-B==0)

BEQ&EqQ PC €« PC + sx(Im16) || 00

| < —

PC

Next PC

Inst. Mem

e

Mem

Access

| < —

Reg. |=—

< —

File

Multicycle Implementation

Each step in a multicycle implementation will take 1
clock cycle.

Multicycle implementation allows a functional unit to be
used more than once per instruction, as long as it is
used on different clock cycles.

Using a functional unit more than once can help to
reduce the amount of hardware required.

The ability to allow instructions to take different number
of clock cycles is another advantage of multicycle
Implementation.

Multicycle Datapath (Figure 5.26, p.320)

I

I\OA Instruction »|Read

sl Address [25-21] regl ead

X Memory Instruction > Read data 1

1 [20-16] | reg2
MemData™91 |nstruction Registers

register yata 2

Write
data

0 .
Write
- M |-t
[15-0] [] Instr. u
X
1

= \Write data Instryction
register

Instruction| 0
[15-0] M
u
Memory X
™ data 1
register o+ ;
16 32

= Differences between single-cycle and multicycle datapath
= A single memory unit is used for both instruction and data.
= There is a single ALU, rather than an ALU and two adders.

= One or more registers are added after every major functional unit
to hold the output of that unit until the value is used in a
subsequent clock cycle.

Multicycle Datapath with Control Lines

MemRead
lorD MemWrite IRWrite RegDst RegWrite ALUSrcA
L'PC I\OA Instruction »|Read ,a
4+t Address [25-21] regl g u
x Instruction Read —> A x
1 Memory [20-16] 1 ™ reg 2R qa:a 1 1
MemData Instruction | la Write CI'>Ers
[15-0] |II§U1-1 y register yata 2 [B 0
—> \\rite data Instruction .[_i X Write 1
register 1 data 2
Instruction] 0 3)

[15-0] M

u

Memory X

data - shift
register| ¢ L
1/6 445 left 2
®
Instruction [5-0]
MemtoReg ALUSrcB ALUop

Figure 5.28: Complete Datapath & Control Signals for

Multicycle Implementation (including jump instruction)

PC

register J

/
/ extend
16

32

Instruction [5-0]

|_‘ PCWriteCond /\ PCSource
i PCWrite
\A lorD / Outputs \ ALUOD
or ALUSrcB
MemRead Control
AL A
MemWrite usre
MemtoReg . RegWrite
- p RegDst
IRWrite \ Q_O]
3 o
] J
Instruction [25-0] agglrgss [31-0] T
> left 2 [T v
Instruction
[31-26]
0 Instruction l
2 Read
B" Address [25-21] Preg 1 Read]
Instruction Read ea
Xl Memory [20-16] reg 2 data 1 A
; — ALUOut
MemData -—e—- Instruction 4 Write Reglls?terj — —
[15-0] register dateaaz B
Write Instruction Write —
data register data
Instruction 0
[15-0]| M
u
Memory X
data 1 sign
i

Execution Steps (1)

= Instruction Fetch

IR = Memory[PC];
PC =PC + 4,

Execution Steps (2)

= Instruction Decode and Register Fetch

A = Reg[IR[25..21]];
B = Reg[IR[20..16]];
ALUOuUt = PC + (signExtend(IR[15..0]) << 2);

Execution Steps (3)

= Execution, memory address computation or branch
completion
o Memory Reference:

ALUOut = A + signExtend(IR[15..0));
o Arithmetic/Logical Operation:

ALUOut = A op B;
o Branch:

If (A ==B) PC = ALUOut;
o Jump:

PC = PC[31 ..28] || (IR[25..0) << 2);

Execution Steps (4)

= Memory access or R-type instruction completion
o Memory Reference:

MDR = Memory[ALUOut];
or
Memory[ALUOut] = B;
o Arithmetic/Logical Instructions (R-type):
Reg[IR[15..11]] = ALUOut;
o Branch, Jump:
Nothing

Execution Steps (5)

Memory Read completion (Load only)

2 Reg[IR[20..16]] = MDR:

Finite State Machine Control for Multicycle Datapath

Instruction fetch Instruction decode/
register fetch

MemRead
ALUSrcA=0
lorD=0
IRWrite
ALUSrcB =01
ALUOp =00
PCWrite
PCSource =00

ALUSrcA=0
ALUSrcB =11
ALUOp =00

Start

A 4

Memory address
computation

=

Jump
completion

Execution

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource =01

ALUSrcA=1
ALUSrcB = 10
ALUOp =00

ALUSrcA=1
ALUSrcB =00
ALUOp =10

PCWrite
PCSource =10

Memory
access

Memory
access

(Op ="LW)

R-type completion

MemRead MemWrite RegDst = 1
lorD=1 lorD = 1 RegWrite
MemtoReg =0

Memory read
completion step

RegDst=0
RegWrite

\ AR 4

MemtoReg = 1

Implementation of Finite State Machine Controller

Datapath
control
outputs

PCWrite
Combinational PCWriteCond
control logic lorD Datapath
MemR
ALUOp T em ez.ald control
ALUSrcB MemWrite outputs
ALUSIrcA — IRWrite
e utpu
RegWrite P MemtoReg
RegDst PCSource
— NS3
NS2
Inputs NS1
A NSO
- -
VIS N[H|D
S1818181&81 3|33 Next State
Instruction | |State register
register
opcode field -

Logic Equation for Control Signal Outputs

Output Current States

PCWrite stateO + state9
PCWriteCond state8

lorD state3 + state5
MemRead stateO + state3
MemWrite stateb

IRWrite stateO
MemtoReg state4
PCSourcel state9
PCSource0 state8

ALUOp1 state6

ALUOpO state8
ALUSrcB1 statel + state2
ALUSrcBO stateO + statel
ALUSIcA state2 + state6 + state8
RegWrite state4 + state7
RegDst state7

For Example:
PCWrite = S3-52-S1-S0 +
$3-52-51-S0

Logic Equation for Next State Outputs

Output Current States Op
NextStateO | state4 + state5 + state/ + state8 + state9
NextStatel | stateO
NextState2 | statel (Op =‘lw") + (Op = 'sw’)
NextState3 | state2 (Op = ‘w)
NextStated4 | state3
NextState5 | state2 (Op = ‘sw’)
NextState6 | statel (Op = ‘R-type’)
NextState/7 | state6
NextState8 | statel (Op = ‘beq’)
NextState9 | statel (Op = ‘jump’)

For Example:

NextStatel = State0 = S3-52-S1-S0

NextState3 = State2 - (Op[5-0]='Iw’)

=S3-52-51-50- Op5 - Op4 - Op3 - Op2 - Opl

Performance |

What is the average CPI?

Hvaluation

o state diagram gives CPI for each instruction type

o workload gives frequency of each type

Type CPI. for type Frequency | CPI x freq;
Arith/Logic 4 40% 1.6
Load 5 30% 1.5
Store 4 10% 0.4
branch 3 20% 0.6

Average CPI: 4.1

Exceptions and Interrupts

Exceptions are ‘exceptional events’ that disrupt the
normal flow of a program

Terminology varies between different machines

Examples of Interrupts

o User hitting the keyboard

o Disk drive asking for attention
o Arrival of a network packet

Examples of Exceptions

o Divide by zero

o Overflow

o Invalid instruction

o Page fault (non-resident page in memory)

Exception Flow

When an exception (or interrupt) occurs, control is
transferred to the OS

User program Operating System

Event Y exception

\' System exception handler

Exception return (optional)

\

PS convention

Exception means any unexpected change in control flow,
without distinguishing internal or external,;

Use the term interrupt only when the event is externally
caused.

Type of event From where? MIPS terminology
/O device request External Interrupt

Invoke OS from user program Internal Exception
Arithmetic overflow Internal Exception

Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or

Interrupt

Handling Exceptions and Interrupts

When do we jump to an exception?

Upon detection, invoke the OS to “service the event”

o What about in the middle of executing a multi-cycle instruction
Difficult to abort the middle of an instruction

o Processor checks for event at the end of every instruction

o Processor provides EPC & Cause registers to inform OS of cause

EPC — a 32-bit register used to hold the address of the
affected instruction.

Cause — a register used to record the cause of the
exception. To simplify the discussion, assume

o undefined instruction=0

o arithmetic overflow=1

Handling Exceptions and Interrupts

Status - interrupt mask and enable bits and determines
what exceptions can occur.

Control signals to write EPC, Cause, and Status

Be able to write exception address into PC, increase
mux set PC to exception address (8000 0180,,,).

May have to undo PC = PC + 4, since want EPC to point
to offending instruction (not its successor); PC = PC -4

Figure 5.39: The multicycle datapath with the
addition needed to implement exceptions

— PCWriteCond = ___CauseWrite
\\A(PCWrite / \ IntCause
lorD [ouwuts \ Epcwrite
MemRead PCSource
. Control ALUOp
MemWrite ALUSICB
MemtoReg o ALUSIrcA
: p { RegWrite
IRW [=2
fie \Q'O] RegDst
a > OM
. Jump = |
Instruction [25-0] 2,6‘ Shift 28 address [31-0] | . 2;‘
T "\ left 2 o
8000 0180 =4=»{ 3
Instruction
[31-26]
0 Instruction l
- Read
N Address [25-21] Plreg 1 Read —
Instruction Read eal
Xl Memory [20-16] reg2 datal 1A | —
i — u
MemData (mge—p-! Instruction) Write Reglzteeards — —T-> — EPC
[15-0] register yata 2 > B >
- \Write Instruction Write — |4
data register data
Instructionl 0 3 0)
[15-0] M M
u u Cause
Memory X X
| data 1 Si 1 > 1
register / Ign
9 | / extend
16 32
Instruction [5-0]

How Control Detects Exceptions

Undefined Instruction — detected when no next state is defined
from state 1 for the op value.

o We handle this exception by defining the next state value for all op
values other than Iw, sw, 0 (R-type), j, and beq as new state 10.

o Shown symbolically using “other” to indicate that the op field does not
match any of the opcodes that label arcs out of state 1.

Arithmetic overflow — included logic in the ALU to detect overflow,
and a signal called Overflow is provided as an output from the ALU.
This signal is used in the modified finite state machine to specify an
additional possible next state.

Note: Challenge in designing control of a real machine is to handle
different interactions between instructions and other exception-
causing events such that control logic remains small and fast.

o Complex interactions makes the control unit the most challenging aspect
of hardware design

Figure 5.40: Finite state machine to handle exception detection

Instruction fetch Instruction decode/
Register fetch

MemRead
ALUSrcA=0
lorD=0
IRWrite
ALUSrcB =01
ALUOp =00
PCWrite
PCSource =00

ALUSrcA=0
ALUSrcB =11
ALUOp =00

Start

A 4

Memory address -
computation

Execution completion

ALUSrcA=1
ALUSrcB = 00
ALUOp =01
PCWriteCond
PCSource =01

ALUSrcA=1
ALUSrcB =01
ALUOp =00

ALUSrcA=1
ALUSrcB =00
ALUOp =10

PCWrite
PCSource =10

Memory
access

Memory
access

(Op ="LW)

R-type completion

IntCause =1 IntCause =0
ReaDst = 1 CauseWrite 10 CauseWrite
MemRead egbs : ALUSrcA=0 ALUSrcA=0
lorD = 1 Nllng)Rzeid Regwrite | Overflow ALUSICB = 01 ALUSICB = 01
MemtoReg = 0 ALUOp =01 ALUOp =01
EPCWrite EPCWrite
PCWrite PCWrite

PCSource =11 PCSource = 11

Write-back step Overflow

RegWrite
MemtoReg = 1

\ 4
<
i
<
&
<

\ A 4

RegDst=0

Summary

Disadvantages of the Single Cycle Processor

o Long cycle time
o Cycle time is too long for all instructions except the Load

Multicycle implementations have the advantage of using a
different number of cycles for executing each instruction.

Multicycle Processor:
o Divide the instructions into smaller steps
o Execute each step (instead of the entire instruction) in one cycle

Control is specified by finite state diagram
(Microprogramming is used for complex instruction set)

The most widely used machine implementation is neither
single cycle, nor multicycle — it's the pipelined
Implementation (next improvement we will study).

‘ Optional Homework

= In Ch.5: 2, 8, 10, 27, 30, 33, 36, 43

	COMP303 - Computer Architecture�Lecture 10
	Single Cycle Datapath
	What’s wrong with our CPI=1 processor?
	Reducing Cycle Time
	Basic Limits on Cycle Time
	Partitioning the CPI=1 Datapath
	Example Multicycle Datapath
	R-type instructions (add, sub, . . .)
	Load instruction
	Store instruction
	Branch instruction
	Multicycle Implementation
	Multicycle Datapath (Figure 5.26, p.320)
	Multicycle Datapath with Control Lines
	Figure 5.28: Complete Datapath & Control Signals for Multicycle Implementation (including jump instruction)
	Execution Steps (1)
	Execution Steps (2)
	Execution Steps (3)
	Execution Steps (4)
	Execution Steps (5)
	Finite State Machine Control for Multicycle Datapath
	Implementation of Finite State Machine Controller
	Logic Equation for Control Signal Outputs
	Logic Equation for Next State Outputs
	Performance Evaluation
	Exceptions and Interrupts
	Exception Flow
	MIPS convention
	Handling Exceptions and Interrupts
	Handling Exceptions and Interrupts
	Figure 5.39: The multicycle datapath with the �addition needed to implement exceptions
	How Control Detects Exceptions
	Figure 5.40: Finite state machine to handle exception detection
	Summary
	Optional Homework

