
COMP303 - Computer
Architecture
Lecture 10
Multi-Cycle Design & Exceptions

Single Cycle Datapath

We designed a processor that requires one cycle per instruction

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Sign
E

xtender

M
ux

Mux

3216
imm16

ALUSrc

MemRd

M
ux

MemtoReg

Clk

Data In
WrEn

32
Adr

Data
Memory

32

MemWr
A

L
U

Instruction
Fetch Unit

Clk

Equal

Instruction<31:0>

0

1

0

1

01
<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRsRt

nPC_sel

What’s wrong with our CPI=1 processor?

Long cycle time
All instructions take as much time as the slowest
Real memory is not so nice as our idealized memory

cannot always get the job done in one (short) cycle

PC Inst Memory mux ALU Data Mem mux

PC Reg FileInst Memory mux ALU mux

PC Inst Memory mux ALU Data Mem

PC Inst Memory cmp mux

Reg File

Reg File

Reg File

Arithmetic & Logical

Load

Store

Branch

Critical Path

setup

setup

Reducing Cycle Time

Cut combinational dependency graph and insert register / latch
Do same work in two fast cycles, rather than one slow one

storage element

Acyclic
Combinational
Logic

storage element

storage element

Acyclic
Combinational
Logic (A)

storage element

storage element

Acyclic
Combinational
Logic (B)

=>

Basic Limits on Cycle Time

Next address logic
PC <= branch ? PC + 4 + offset

: PC + 4
Instruction Fetch

InstructionReg <= Mem[PC]
Operand Fetch

A <= R[rs], B <= R[rt]

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec R
eg

.
Fi

le

M
em

or
y

A
cc

es
s

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

A
LU

ct
r

R
eg

D
st

A
LU

Sr
c

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

Control

ALU execution
ALUOut <= A op B

Data Memory Access
M <= Mem[ALUout]

Result Store
R[rd] <= ALUOut

Partitioning the CPI=1 Datapath

Add registers between smallest steps

Allow the instruction to take multiple cycles.

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec R
eg

.
Fi

le

M
em

or
y

A
cc

es
s

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

A
LU

ct
r

R
eg

D
st

A
LU

Sr
c

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

Example Multicycle Datapath

Additional registers are added to store values between
stages.

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h

E
xt

A
LU R

eg
.

Fi
le

M
em

A
cc

es
s

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

A
LU

ct
r

R
eg

D
st

A
LU

Sr
c

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

IR
A

B

S

M

Reg
File

M
em

To
R

eg

R-type instructions (add, sub, . . .)

inst Logical Register Transfers

ADD R[rd] R[rs] + R[rt]; PC PC + 4

inst Physical Register Transfers
IR MEM[PC]

ADD A R[rs]; B R[rt]
S A + B
R[rd] S; PC PC + 4

E
xe

c R
eg

.
Fi

le

M
em

A
cc

es
s

A

B

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Load instruction
inst Logical Register Transfers

LW R[rt] MEM(R[rs] + sx(Im16);

PC PC + 4
inst Physical Register Transfers

IR MEM[PC]
LW A R[rs]; B R[rt]

S A + SignEx(Im16)
M MEM[S]
R[rd] M; PC PC + 4

E
xe

c R
eg

.
Fi

le

M
em

A
cc

es
s

A

B

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Store instruction
inst Logical Register Transfers

SW MEM(R[rs] + sx(Im16) R[rt];

PC PC + 4
inst Physical Register Transfers

IR MEM[PC]
SW A R[rs]; B R[rt]

S A + SignEx(Im16);
MEM[S] B PC PC + 4

E
xe

c R
eg

.
Fi

le

M
em

A
cc

es
s

A

B

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Branch instruction
inst Logical Register Transfers
BEQ if R[rs] == R[rt]

then PC PC + sx(Im16) || 00

else PC PC + 4

inst Physical Register Transfers
IR MEM[pc]
A R[rs]; B R[rt]
Eq =(A - B = = 0)

BEQ&Eq PC PC + sx(Im16) || 00

E
xe

c R
eg

.
Fi

le

M
em

A
cc

es
s

A

B

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Multicycle Implementation

Each step in a multicycle implementation will take 1
clock cycle.
Multicycle implementation allows a functional unit to be
used more than once per instruction, as long as it is
used on different clock cycles.
Using a functional unit more than once can help to
reduce the amount of hardware required.
The ability to allow instructions to take different number
of clock cycles is another advantage of multicycle
implementation.

Multicycle Datapath (Figure 5.26, p.320)

Differences between single-cycle and multicycle datapath
A single memory unit is used for both instruction and data.
There is a single ALU, rather than an ALU and two adders.
One or more registers are added after every major functional unit
to hold the output of that unit until the value is used in a
subsequent clock cycle.

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

0

3

M
u
x

0

1

1
2

PC

Memory
Address

Write data

MemData

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] Instr.

[15-11]

Instruction
[15-0]

Memory
data

register

Instruction
register

Read
reg 1
Read
reg 2

Write
register
Write
data

Sign
extend

Shift
left 2

A

B
4

ALU
ALU

result

zero
ALUout

Read
data 1

Read
data 2

Registers

16 32

Multicycle Datapath with Control Lines

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

0

3

M
u
x

0

1

1
2

PC

Memory
Address

Write data

MemData

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] Instr.

[15-11]

Instruction
[15-0]

Memory
data

register

Instruction
register

Read
reg 1
Read
reg 2

Write
register
Write
data

Sign
extend

Shift
left 2

A

B
4

ALU
ALU

result

zero
ALUout

Read
data 1

Read
data 2

Registers

16 32

Instruction [5-0]

IorD

MemRead

MemWrite IRWrite RegDst RegWrite ALUSrcA

MemtoReg ALUSrcB ALUop

ALU
control

Figure 5.28: Complete Datapath & Control Signals for
Multicycle Implementation (including jump instruction)

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

PC

Memory

Address

Write
data

MemData

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] Instr.

[15-11]

Instruction
[15-0]

Memory
data

register

Instruction
register

Read
reg 1
Read
reg 2

Write
register

Write
data

Sign
extend

A

B
4

ALU

ALU
result

Zero
ALUOut

Read
data 1

Read
data 2

Registers

16 32

Instruction
[31-26]

0
1
2

M
u
x

ALU
control

Control

0
1
2

3

M
u
x

PCSource

ALUOp
ALUSrcB

ALUSrcA

RegWrite

RegDst

PCWriteCond
PCWrite

lorD
MemRead

MemWrite

MemtoReg
IRWrite

Outputs

Op
[5-0]

26 28

PC [31-28]

Jump
address [31-0]

Instruction [5-0]

Instruction [25-0]

Shift
left 2

Shift
left 2

Execution Steps (1)

Instruction Fetch

IR = Memory[PC];
PC = PC + 4;

Execution Steps (2)

Instruction Decode and Register Fetch

A = Reg[IR[25..21]];
B = Reg[IR[20..16]];
ALUOut = PC + (signExtend(IR[15..0]) << 2);

Execution Steps (3)

Execution, memory address computation or branch
completion

Memory Reference:
ALUOut = A + signExtend(IR[15..0]);

Arithmetic/Logical Operation:
ALUOut = A op B;

Branch:
If (A == B) PC = ALUOut;

Jump:
PC = PC[31 ..28] || (IR[25..0) << 2);

Execution Steps (4)

Memory access or R-type instruction completion
Memory Reference:

MDR = Memory[ALUOut];
or
Memory[ALUOut] = B;

Arithmetic/Logical Instructions (R-type):

Reg[IR[15..11]] = ALUOut;
Branch, Jump:

Nothing

Execution Steps (5)

Memory Read completion (Load only)

Reg[IR[20..16]] = MDR;

Finite State Machine Control for Multicycle Datapath

MemRead
ALUSrcA = 0

lorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

MemRead
lorD = 1

RegDst = 0
RegWrite

MemtoReg = 1

MemWrite
lorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

Start

Instruction fetch

Memory address
computation

Instruction decode/
register fetch

Memory
access

Memory
access R-type completion

Memory read
completion step

Execution
Branch

completion
Jump
completion

0

1

2 6 8 9

3 5 7

4

(O
p

=
‘J

’)

(O
p

=
‘L

W
’)

Implementation of Finite State Machine Controller

instruction
register

opcode field

Next State

Datapath
control
outputs

Outputs

Combinational
control logic

Inputs

State register

PCWrite

PCWriteCond

IorD

MemRead

MemWrite

IRWrite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Datapath
control
outputs

NS3
NS2
NS1
NS0

S0S1S2S3O
p0

O
p1

O
p2

O
p3

O
p4

O
p5

Logic Equation for Control Signal Outputs

Output Current States
PCWrite state0 + state9

PCWriteCond state8

IorD state3 + state5

MemRead state0 + state3

MemWrite state5

IRWrite state0

MemtoReg state4

PCSource1 state9

PCSource0 state8

ALUOp1 state6

ALUOp0 state8

ALUSrcB1 state1 + state2

ALUSrcB0 state0 + state1

ALUSrcA state2 + state6 + state8

RegWrite state4 + state7

RegDst state7

For Example:

PCWrite = S3·S2·S1·S0 +

S3·S2·S1·S0

Logic Equation for Next State Outputs

Output Current States Op

NextState0 state4 + state5 + state7 + state8 + state9

NextState1 state0

NextState2 state1 (Op = ‘lw’) + (Op = ‘sw’)

NextState3 state2 (Op = ‘lw’)

NextState4 state3

NextState5 state2 (Op = ‘sw’)

NextState6 state1 (Op = ‘R-type’)

NextState7 state6

NextState8 state1 (Op = ‘beq’)

NextState9 state1 (Op = ‘jump’)

For Example:
NextState1 = State0 = S3·S2·S1·S0
NextState3 = State2 · (Op[5-0]=‘lw’)

= S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1

Performance Evaluation

What is the average CPI?
state diagram gives CPI for each instruction type
workload gives frequency of each type

Type CPIi for type Frequency CPIi x freqi

Arith/Logic 4 40% 1.6

Load 5 30% 1.5

Store 4 10% 0.4

branch 3 20% 0.6

Average CPI: 4.1

Exceptions and Interrupts

Exceptions are ‘exceptional events’ that disrupt the
normal flow of a program
Terminology varies between different machines
Examples of Interrupts

User hitting the keyboard
Disk drive asking for attention
Arrival of a network packet

Examples of Exceptions
Divide by zero
Overflow
Invalid instruction
Page fault (non-resident page in memory)

Exception Flow

When an exception (or interrupt) occurs, control is
transferred to the OS

User program

exception
System exception handler

Exception return (optional)

Operating System

Event

MIPS convention

Exception means any unexpected change in control flow,
without distinguishing internal or external;
Use the term interrupt only when the event is externally
caused.

Type of event From where? MIPS terminology
I/O device request External Interrupt
Invoke OS from user program Internal Exception
Arithmetic overflow Internal Exception
Using an undefined instruction Internal Exception
Hardware malfunctions Either Exception or

Interrupt

Handling Exceptions and Interrupts

When do we jump to an exception?
Upon detection, invoke the OS to “service the event”

What about in the middle of executing a multi-cycle instruction
Difficult to abort the middle of an instruction

Processor checks for event at the end of every instruction
Processor provides EPC & Cause registers to inform OS of cause

EPC – a 32-bit register used to hold the address of the
affected instruction.
Cause – a register used to record the cause of the
exception. To simplify the discussion, assume

undefined instruction=0
arithmetic overflow=1

Handling Exceptions and Interrupts

Status - interrupt mask and enable bits and determines
what exceptions can occur.
Control signals to write EPC, Cause, and Status
Be able to write exception address into PC, increase
mux set PC to exception address (8000 0180hex).
May have to undo PC = PC + 4, since want EPC to point
to offending instruction (not its successor); PC = PC – 4

Figure 5.39: The multicycle datapath with the
addition needed to implement exceptions

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1

PC

Memory

Address

Write
data

MemData

Instruction
[25-21]

Instruction
[20-16]

Instruction
[15-0] Instr.

[15-11]

Instruction
[15-0]

Memory
data

register

Instruction
register

Read
reg 1
Read
reg 2

Write
register

Write
data

Sign
extend

A

B
4

ALU

ALU
result

Zero
ALUOut

Read
data 1

Read
data 2

Registers

16 32

Instruction
[31-26]

EPC

0
1
2

3

M
u
x

M
u
x

0

1

Cause

ALU
control

Shift
left 2

Control

0

1

0
1
2

3

M
u
x

CauseWrite
IntCause
EPCWrite
PCSource
ALUOp
ALUSrcB
ALUSrcA
RegWrite

RegDst

PCWriteCond
PCWrite
lorD
MemRead

MemWrite

MemtoReg
IRWrite

Outputs

Op
[5-0]

26 28

PC [31-28]

Jump
address [31-0]

Instruction [5-0]

8000 0180

Instruction [25-0]

Shift
left 2

How Control Detects Exceptions

Undefined Instruction – detected when no next state is defined
from state 1 for the op value.

We handle this exception by defining the next state value for all op
values other than lw, sw, 0 (R-type), j, and beq as new state 10.
Shown symbolically using “other” to indicate that the op field does not
match any of the opcodes that label arcs out of state 1.

Arithmetic overflow – included logic in the ALU to detect overflow,
and a signal called Overflow is provided as an output from the ALU.
This signal is used in the modified finite state machine to specify an
additional possible next state.
Note: Challenge in designing control of a real machine is to handle
different interactions between instructions and other exception-
causing events such that control logic remains small and fast.

Complex interactions makes the control unit the most challenging aspect
of hardware design

Figure 5.40: Finite state machine to handle exception detection

MemRead
ALUSrcA = 0

lorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSource = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01

PCWriteCond
PCSource = 01

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 01
ALUOp = 00

MemRead
lorD = 1

RegWrite
MemtoReg = 1

RegDst = 0

MemRead
lorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

IntCause = 1
CauseWrite
ALUSrcA = 0

ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

IntCause = 0
CauseWrite
ALUSrcA = 0

ALUSrcB = 01
ALUOp = 01

EPCWrite
PCWrite

PCSource = 11

Start

Instruction fetch

Memory address
computation

Instruction decode/
Register fetch

Memory
access

Memory
access

Overflow

Overflow

R-type completion

Write-back step

Execution
Branch

completion
Branch
completion

0

1

2 6 8 9

3 5 7

4

11 10

(O
p

=
‘J

’)

(O
p

=
‘L

W
’)

Summary

Disadvantages of the Single Cycle Processor
Long cycle time
Cycle time is too long for all instructions except the Load

Multicycle implementations have the advantage of using a
different number of cycles for executing each instruction.

Multicycle Processor:
Divide the instructions into smaller steps
Execute each step (instead of the entire instruction) in one cycle

Control is specified by finite state diagram
(Microprogramming is used for complex instruction set)

The most widely used machine implementation is neither
single cycle, nor multicycle – it’s the pipelined
implementation (next improvement we will study).

Optional Homework

In Ch.5: 2, 8, 10, 27, 30, 33, 36, 43

	COMP303 - Computer Architecture�Lecture 10
	Single Cycle Datapath
	What’s wrong with our CPI=1 processor?
	Reducing Cycle Time
	Basic Limits on Cycle Time
	Partitioning the CPI=1 Datapath
	Example Multicycle Datapath
	R-type instructions (add, sub, . . .)
	Load instruction
	Store instruction
	Branch instruction
	Multicycle Implementation
	Multicycle Datapath (Figure 5.26, p.320)
	Multicycle Datapath with Control Lines
	Figure 5.28: Complete Datapath & Control Signals for Multicycle Implementation (including jump instruction)
	Execution Steps (1)
	Execution Steps (2)
	Execution Steps (3)
	Execution Steps (4)
	Execution Steps (5)
	Finite State Machine Control for Multicycle Datapath
	Implementation of Finite State Machine Controller
	Logic Equation for Control Signal Outputs
	Logic Equation for Next State Outputs
	Performance Evaluation
	Exceptions and Interrupts
	Exception Flow
	MIPS convention
	Handling Exceptions and Interrupts
	Handling Exceptions and Interrupts
	Figure 5.39: The multicycle datapath with the �addition needed to implement exceptions
	How Control Detects Exceptions
	Figure 5.40: Finite state machine to handle exception detection
	Summary
	Optional Homework

