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Single Cycle Datapath

We designed a processor that requires one cycle per instruction
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What’s wrong with our CPI=1 processor?

Long cycle time
All instructions take as much time as the slowest
Real memory is not so nice as our idealized memory

cannot always get the job done in one (short) cycle
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Reducing Cycle Time

Cut combinational dependency graph and insert register / latch
Do same work in two fast cycles, rather than one slow one
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Basic Limits on Cycle Time

Next address logic
PC <= branch ? PC + 4 + offset 

: PC + 4
Instruction Fetch

InstructionReg <= Mem[PC]
Operand Fetch

A <= R[rs],  B <= R[rt]
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ALU execution
ALUOut <= A op B

Data Memory Access
M <= Mem[ALUout]

Result Store
R[rd] <= ALUOut



Partitioning the CPI=1 Datapath

Add registers between smallest steps

Allow the instruction to take multiple cycles.
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Example Multicycle Datapath

Additional registers are added to store values between 
stages.
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R-type instructions (add, sub, . . .)

inst Logical Register Transfers

ADD R[rd] R[rs] + R[rt];  PC PC + 4

inst Physical Register Transfers
IR MEM[PC]

ADD A R[rs]; B R[rt]
S A + B
R[rd] S;    PC PC + 4
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Load instruction
inst Logical Register Transfers

LW R[rt] MEM(R[rs] + sx(Im16); 

PC PC + 4
inst Physical Register Transfers

IR MEM[PC]
LW A R[rs]; B R[rt]

S A + SignEx(Im16)
M MEM[S]
R[rd] M;    PC PC + 4
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Store instruction
inst Logical Register Transfers

SW MEM(R[rs] + sx(Im16) R[rt];

PC PC + 4
inst Physical Register Transfers

IR MEM[PC]
SW A R[rs];  B R[rt]

S A + SignEx(Im16); 
MEM[S] B PC PC + 4
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Branch instruction
inst Logical Register Transfers
BEQ if R[rs] == R[rt] 

then PC PC + sx(Im16) || 00

else PC PC + 4

inst Physical Register Transfers
IR MEM[pc]
A R[rs]; B R[rt]
Eq =(A - B = = 0)

BEQ&Eq PC PC + sx(Im16) || 00
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Multicycle Implementation

Each step in a multicycle implementation will take 1 
clock cycle.
Multicycle implementation allows a functional unit to be 
used more than once per instruction, as long as it is 
used on different clock cycles.
Using a functional unit more than once can help to 
reduce the amount of hardware required.
The ability to allow instructions to take different number 
of clock cycles is another advantage of multicycle 
implementation.



Multicycle Datapath (Figure 5.26, p.320)

Differences between single-cycle and multicycle datapath
A single memory unit is used for both instruction and data.
There is a single ALU, rather than an ALU and two adders.
One or more registers are added after every major functional unit 
to hold the output of that unit until the value is used in a 
subsequent clock cycle.
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Multicycle Datapath with Control Lines
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Figure 5.28: Complete Datapath & Control Signals for 
Multicycle Implementation (including jump instruction)
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Execution Steps (1)

Instruction Fetch

IR = Memory[PC];
PC = PC + 4;



Execution Steps (2)

Instruction Decode and Register Fetch

A = Reg[IR[25..21]];
B = Reg[IR[20..16]];
ALUOut = PC + (signExtend(IR[15..0]) << 2);



Execution Steps (3)

Execution, memory address computation or branch 
completion

Memory Reference:
ALUOut = A + signExtend(IR[15..0]);

Arithmetic/Logical Operation:
ALUOut = A op B;

Branch:
If (A == B) PC = ALUOut;

Jump:
PC = PC[31 ..28] || (IR[25..0) << 2);



Execution Steps (4)

Memory access or R-type instruction completion
Memory Reference:

MDR = Memory[ALUOut];
or
Memory[ALUOut] = B;

Arithmetic/Logical Instructions (R-type):

Reg[IR[15..11]] = ALUOut;
Branch, Jump:

Nothing



Execution Steps (5)

Memory Read completion (Load only)

Reg[IR[20..16]] = MDR;



Finite State Machine Control for Multicycle Datapath
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Implementation of Finite State Machine Controller

instruction 
register 

opcode field

Next State

Datapath 
control 
outputs

Outputs

Combinational 
control logic

Inputs

State register

PCWrite

PCWriteCond

IorD

MemRead

MemWrite

IRWrite

MemtoReg

PCSource

ALUOp

ALUSrcB

ALUSrcA

RegWrite

RegDst

Datapath 
control 
outputs

NS3
NS2
NS1
NS0

S0S1S2S3O
p0

O
p1

O
p2

O
p3

O
p4

O
p5



Logic Equation for Control Signal Outputs

Output Current States
PCWrite state0 + state9

PCWriteCond state8

IorD state3 + state5

MemRead state0 + state3

MemWrite state5

IRWrite state0

MemtoReg state4

PCSource1 state9

PCSource0 state8

ALUOp1 state6

ALUOp0 state8

ALUSrcB1 state1 + state2

ALUSrcB0 state0 + state1

ALUSrcA state2 + state6 + state8

RegWrite state4 + state7

RegDst state7

For Example:

PCWrite = S3·S2·S1·S0 +

S3·S2·S1·S0 



Logic Equation for Next State Outputs

Output Current States Op

NextState0 state4 + state5 + state7 + state8 + state9

NextState1 state0

NextState2 state1 (Op = ‘lw’) + (Op = ‘sw’)

NextState3 state2 (Op = ‘lw’)

NextState4 state3

NextState5 state2 (Op = ‘sw’)

NextState6 state1 (Op = ‘R-type’)

NextState7 state6

NextState8 state1 (Op = ‘beq’)

NextState9 state1 (Op = ‘jump’)

For Example:
NextState1 = State0 = S3·S2·S1·S0
NextState3 = State2 · (Op[5-0]=‘lw’)

= S3 · S2 · S1 · S0 · Op5 · Op4 · Op3 · Op2 · Op1



Performance Evaluation

What is the average CPI?
state diagram gives CPI for each instruction type
workload gives frequency of each type

Type CPIi for type Frequency CPIi x freqi

Arith/Logic 4 40% 1.6

Load 5 30% 1.5

Store 4 10% 0.4

branch 3 20% 0.6

Average CPI: 4.1



Exceptions and Interrupts

Exceptions are ‘exceptional events’ that disrupt the 
normal flow of a program
Terminology varies between different machines
Examples of Interrupts

User hitting the keyboard
Disk drive asking for attention
Arrival of a network packet

Examples of Exceptions
Divide by zero
Overflow
Invalid instruction
Page fault (non-resident page in memory)



Exception Flow

When an exception (or interrupt) occurs, control is 
transferred to the OS

User program

exception
System exception handler

Exception return (optional)

Operating System

Event



MIPS convention

Exception means any unexpected change in control flow, 
without distinguishing internal or external; 
Use the term interrupt only when the event is externally 
caused.

Type of event From where? MIPS terminology
I/O device request External    Interrupt
Invoke OS from user program Internal    Exception
Arithmetic overflow Internal    Exception
Using an undefined instruction Internal    Exception
Hardware malfunctions Either Exception or 

Interrupt



Handling Exceptions and Interrupts

When do we jump to an exception?
Upon detection, invoke the OS to “service the event”

What about in the middle of executing a multi-cycle instruction
Difficult to abort the middle of an instruction

Processor checks for event at the end of every instruction
Processor provides EPC & Cause registers to inform OS of cause

EPC – a 32-bit register used to hold the address of the 
affected instruction. 
Cause – a register used to record the cause of the 
exception. To simplify the discussion, assume

undefined instruction=0 
arithmetic overflow=1 



Handling Exceptions and Interrupts

Status - interrupt mask and enable bits and determines 
what exceptions can occur. 
Control signals to write EPC, Cause, and Status
Be able to write exception address into PC, increase 
mux set PC to exception address (8000 0180hex).
May have to undo PC = PC + 4, since want EPC to point 
to offending instruction (not its successor); PC = PC – 4



Figure 5.39: The multicycle datapath with the 
addition needed to implement exceptions
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How Control Detects Exceptions

Undefined Instruction – detected when no next state is defined 
from state 1 for the op value. 

We handle this exception by defining the next state value for all op 
values other than lw, sw, 0 (R-type), j, and beq as new state 10. 
Shown symbolically using “other” to indicate that the op field does not 
match any of the opcodes that label arcs out of state 1.

Arithmetic overflow – included logic in the ALU to detect overflow, 
and a signal called Overflow is provided as an output from the ALU. 
This signal is used in the modified finite state machine to specify an 
additional possible next state.
Note: Challenge in designing control of a real machine is to handle 
different interactions between instructions and other exception-
causing events such that control logic remains small and fast. 

Complex interactions makes the control unit the most challenging aspect 
of hardware design



Figure 5.40: Finite state machine to handle exception detection
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Summary

Disadvantages of the Single Cycle Processor
Long cycle time
Cycle time is too long for all instructions except the Load

Multicycle implementations have the advantage of using a
different number of cycles for executing each instruction.

Multicycle Processor:
Divide the instructions into smaller steps
Execute each step (instead of the entire instruction) in one cycle

Control is specified by finite state diagram
(Microprogramming is used for complex instruction set)

The most widely used machine implementation is neither
single cycle, nor multicycle – it’s the pipelined
implementation (next improvement we will study).



Optional Homework

In Ch.5: 2, 8, 10, 27, 30, 33, 36, 43
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