
COMP303
Computer Architecture
Lecture 11
An Overview of Pipelining

Pipelining

Pipelining provides a method for executing multiple
instructions at the same time.

Laundry Example:
Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold
Washer takes 30 minutes

Dryer takes 40 minutes

“Folder” takes 20 minutes

A B C D

Sequential Laundry

Sequential laundry takes 6 hours for 4 loads
If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Pipelined Laundry: Start work ASAP

Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining Lessons

Pipelining doesn’t help
latency of single task, it
helps throughput of entire
workload
Pipeline rate limited by
slowest pipeline stage
Multiple tasks operating
simultaneously using
different resources
Potential speedup =
Number pipe stages
Unbalanced lengths of pipe
stages reduces speedup
Time to “fill” pipeline and
time to “drain” it reduces
speedup
Stall for Dependences

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Total Time for Eight Instructions

Instr.
class

Instr.
fetch

Register
read

ALU
operation

Data
access

Register
write

Total
time

Load word 2 ns 1 ns 2 ns 2 ns 1 ns 8 ns

Store word 2 ns 1 ns 2 ns 2 ns 7 ns

R-type 2 ns 1 ns 2 ns 1 ns 6 ns

Branch 2 ns 1 ns 2 ns 5 ns

R-type instructions: add, sub, and, or, slt

Single Cycle vs. Pipelined Execution

Instr.
fetch Reg ALU Data

access Reg

Instr.
fetch Reg ALU Data

access Reg

Instr.
fetch

8 ns

8 ns

8 ns

Instr.
fetch Reg ALU Data

access Reg

Instr.
fetch Reg ALU Data

access Reg

Instr.
fetch Reg ALU Data

access Reg

2 ns

2 ns

2 ns 2 ns 2 ns 2 ns 2 ns

Program
execution order

Program
execution order

lw $1,10($0)

lw $2,20($0)

lw $3,30($0)

lw $1,10($0)

lw $2,20($0)

lw $3,30($0)

Total: 24 ns

Total: 14 ns

Pipelining Speedup

If the stages are perfectly balanced:

Potential speedup = Number of pipeline stages
In previous example, 3 instructions takes 14 ns.
If we would add 1000 instructions then each
instruction will add 2 ns to the total execution time:
Total execution timepipelined = 14 + 2000 = 2014 ns
Total execution timenonpipelined = 1003 * 8 = 8024 ns

8024 / 2014 = 3.98 ~ 8 / 2

Time between instructions nonpipelined
Time between instructionspipelined =

Number of pipeline stages

=

The Five Stages of the Load Instruction

Ifetch: Instruction Fetch
Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address
Mem: Read the data from the Data Memory
Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Pipelined Execution

On a processor multiple instructions are in
various stages at the same time.
Assume each instruction takes five cycles

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem
Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch
R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

Graphically Representing Pipelines

I
n
s
t
r.

Time (clock cycles)

Inst 0

Inst 1

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Can help with answering questions like:
How many cycles does it take to execute this code?
What is the ALU doing during cycle 4?
Are two instructions trying to use the same resource
at the same time?

Why Pipeline? Because the resources are there!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Why Pipeline?

Suppose
100 instructions are executed
The single cycle machine has a cycle time of 45 ns
The multicycle and pipeline machines have cycle times of 10 ns
The multicycle machine has a CPI of 3.6

Single Cycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

Multicycle Machine
10 ns/cycle x 3.6 CPI x 100 inst = 3600 ns

Ideal pipelined machine
10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Ideal pipelined vs. single cycle speedup
4500 ns / 1040 ns = 4.33

What has not yet been considered?

Can pipelining get us into trouble?

Yes: Pipeline Hazards
structural hazards: attempt to use the same resource (hardware
unit) two different ways at the same time

E.g., two instructions try to read the same memory at the
same time

data hazards: attempt to use item before it is ready
instruction depends on result of prior instruction still in the
pipeline

add r1, r2, r3
sub r4, r2, r1

control hazards: attempt to make a decision before condition is
evaluated

branch instructions
beq r1, r2, loop
add r3, r4, r5

Can always resolve hazards by waiting
pipeline control must detect the hazard
take action (or delay action) to resolve hazards

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

L
UReg Mem Reg

A
L

UMem Reg Mem Reg

Detection is easy in this case! (right half highlight means read, left half write)

What’s the Solution?

Solution 1: Use separate instruction and data memories
Solution 2: Allow memory to read and write more than
one word per cycle
Solution 3: Stall

Mem

Solution 3: Stall

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

bubblebubble bubble bubble bubblenop

Stall: wait until decision is clear
It is possible to move up decision to 2nd stage by adding extra
hardware to check registers as being read

Impact: 2 clock cycles per branch instruction
=> slow

Control Hazard Solutions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load
A

L
UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem

Predict: guess one direction then back up if wrong
Predict not taken

Impact: 1 clock cycle per branch instruction if right, 2
if wrong (right - 50% of time)
More dynamic scheme: history of 1 branch (- 90%)

Control Hazard Solutions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Redefine branch behavior (takes place after next
instruction) “delayed branch”

Impact: 1 clock cycles per branch instruction if can find
instruction to put in “slot” (- 50% of time)

Control Hazard Solutions

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Mem Reg

Mem
A

L
UReg Mem Reg

Load Mem

A
L

UReg Mem Reg

Reg

Data Hazard on r1

Problem: r1 cannot be read by other instructions before it
is written by the add.

add r1 , r2, r3

sub r4, r1 , r3

and r6, r1 , r7

or r8, r1 , r9

xor r10, r1 , r11

Dependencies backwards in time are hazards

Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

“Forward” result from one stage to another

“or” instruction is OK if define read/write properly

Data Hazard Solution:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg
A

L
UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Dependencies backwards in time are hazards

Can’t solve with forwarding:
Must delay/stall instruction dependent on loads

Forwarding (or Bypassing): What about Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

	COMP303�Computer Architecture� Lecture 11
	Pipelining
	Sequential Laundry
	Pipelined Laundry: Start work ASAP
	Pipelining Lessons
	Total Time for Eight Instructions
	Single Cycle vs. Pipelined Execution
	Pipelining Speedup
	The Five Stages of the Load Instruction
	Pipelined Execution
	Single Cycle, Multiple Cycle, vs. Pipeline
	Graphically Representing Pipelines
	Why Pipeline? Because the resources are there!
	Why Pipeline?
	Can pipelining get us into trouble?
	Single Memory is a Structural Hazard
	What’s the Solution?
	Solution 3: Stall
	Control Hazard Solutions
	Control Hazard Solutions
	Control Hazard Solutions
	Data Hazard on r1
	Data Hazard on r1:
	Data Hazard Solution:
	Forwarding (or Bypassing): What about Loads

