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The Big Picture: Where are We Now? 

The Five Classic Components of a Computer
Memory is usually implemented as:

Dynamic Random Access Memory (DRAM) - for main memory
Static Random Access Memory (SRAM) - for cache
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Technology Trends

DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1995 64 Mb 120 ns
1998 256 Mb 100 ns
2001 1 Gb 80 ns

Capacity Speed (latency)
Logic: 2x  in  3 years 2x  in 3 years
DRAM: 4x  in  3 years 2x  in 10 years
Disk: 4x  in  3 years 2x  in 10 years

1000:1! 2:1!



µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1
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Who Cares About Memory?



Today’s Situation: Microprocessors 

Rely on caches to bridge gap
Cache is a high-speed memory between the processor 
and main memory
1980: no cache in µproc; 
1997 2-level cache, 60% trans. on Alpha 21164  µproc



An Expanded View of the Memory System
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Memory Hierarchy: How Does it Work?

Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the processor

Spatial Locality (Locality in Space):
=> Move blocks consists of contiguous words to the upper levels 
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Memory Hierarchy: Terminology

Hit: If the data requested by a processor appears in some 
block in the upper level.

Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
Hit Rate: The fraction of memory access found in the upper 
level

Miss: If the data is not found in the upper level.
Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level  + 
Time to deliver the block the processor

Hit Time << Miss Penalty



Memory Hierarchy of a Modern Computer System

By taking advantage of the principle of locality:
Present the user with as much memory as is available in the 
cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s  
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s  
(10s sec)

Ts



How is the hierarchy managed?

Registers <-> Memory
by compiler (programmer?)

cache <-> memory
by the hardware

memory <-> disks
by the hardware and operating system (virtual memory)
by the programmer (files)



Memory Hierarchy Technology

Random Access:
“Random” is good: access time is the same for all locations
DRAM: Dynamic Random Access Memory

High density, low power, cheap, slow
Dynamic: need to be “refreshed” regularly

SRAM: Static Random Access Memory
Low density, high power, expensive, fast
Static: content will last “forever” (until lose power)

“Non-so-random” Access Technology:
Access time varies from location to location and from time 
to time
Examples: Disk, CDROM

Sequential Access Technology: access time linear in 
location (e.g.,Tape)



General Principles of Memory

Locality
Temporal Locality : referenced memory is likely to be referenced 
again soon (e.g. code within a loop)
Spatial Locality : memory close to referenced memory is likely to 
be referenced soon (e.g., data in a sequentially access array)

Definitions
Upper : memory closer to processor
Block : minimum unit that is present or not present
Block address : location of block in memory
Hit : Data is found in the desired location
Hit time : time to access upper level
Miss rate : percentage of time item not found in upper level

Locality + smaller HW is faster = memory hierarchy
Levels : each smaller, faster, more expensive/byte than level 
below
Inclusive : data found in upper level also found in the lower level



Memory Hierarchy
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Differences in Memory Levels

Level Memory
Technology

Typical Size Typical
Access Time

Cost per
Mbyte

Registers D Flip-
Flops

64 32-bit 2 -3 ns N/A

L1 Cache
(on chip)

SRAM 16 Kbytes 5 - 25 ns $100 - $250

L2Cache
(off chip)

SRAM 256 Kbytes 5 - 25 ns $100 - $250

Main
Memory

DRAM 256 Mbytes 60 - 120 ns $5 - $10

Secondary
Storage

Magnetic
Disk

8 Gbytes 10 - 20 ms $0.10-$0.20



Four Questions for Memory Hierarchy Designers

Q1: Where can a block be placed in the upper level? 
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss? 
(Block replacement)

Q4: What happens on a write? 
(Write strategy)



Q1: Where can a block be placed?

Direct Mapped: Each block has only one place that 
it can appear in the cache. 
Fully associative: Each block can be placed 
anywhere in the cache.
Set associative:  Each block can be placed in a 
restricted set of places in the cache.

If there are n blocks in a set, the cache is called n-way set 
associative

What is the associativity of a direct mapped cache?



Direct Mapped Caches

Mapping for direct mapped cache:
(Block address) MOD (Number of blocks in the cache)
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Associativity Examples

Cache size is 8 blocks 
Where does word 12 from memory go?

Fully associative:
Block 12 can go anywhere

Direct mapped:
Block no. = (Block address) mod

(No. of blocks in cache)
Block 12 can go only into block 4
(12 mod 8 = 4) 
=> Access block using lower 3 bits

2-way set associative:
Set no. = (Block address) mod

(No. of sets in cache)
Block 12 can go anywhere in set 0
(12 mod 4 = 0)
=> Access set using lower 2 bits

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Cache

Memory
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no:
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Q2: How Is a Block Found?

The address can be divided into two main parts
Block offset: selects the data from the block

offset size = log2 (block size)
Block address: tag + index

index: selects set in cache
index size = log2 (#blocks/associativity)

tag: compared to tag in cache to determine hit
tag size = address size - index size - offset size

Each block has a valid bit that tells if the block is valid -
the block is in the cache if the tags match and the valid 
bit is set.

Block address
Tag Index

Block 
offset



A 4-KB Cache Using 1-word (4-byte) Blocks

Index   Valid    Tag Data

0
1
2
…

…
…

1021
1022
1023

31 30  . . . 13 12 11  . . . 2 1  0
Byte 
offset

Hit

=

20 32

Data

Address

Index
Tag 20 10

• Cache index is used 
to select the block

• Tag field is used to 
compare with the value 
of the tag filed of the 
cache

• Valid bit indicates if a 
cache block have valid 
information



Two-way Set-associative Cache

= =

31 30  . . . 13 12 11 . . . 2 1  0
Byte 
offset

Address

V    Tag          Data V    Tag          DataIndex
0
1
2

1021
1022
1023

2-to-1 multiplexor

Hit Data

1020



Example: Alpha 21064 Data Cache

The data cache of the Alpha 21064 has the following 
features

8 KB of data
32 byte blocks
Direct mapped placement
Write through (no-write allocate, 4-block write buffer)
34 bit physical address composed of

5 bit block offset
8 bit index
21 bit tag



Example: Alpha 21064 Data Cache

A cache read has 4 steps

(1) The address from the 
cache is divided into the 
tag, index, and block offset

(2) The index selects block

(3) The address tag is 
compared with the tag in 
the cache, the valid bit is 
checked, and data to be 
loaded is selected

(4) If the valid bit is set, the 
data is loaded into the 
processor

If there is a write, the data is 
also sent to the write buffer

. . .

<21>       <8>  <5>

Block address Block 
offset

Tag         index

=

<1><21>  <256>
Valid Tag     Data

4:1 Mux

Lower level memory

Write 
buffer

CPU addr.

Data 
in

Data 
out

1

2

3

4

. . .

0
1

255



Q3: Which Block Should be Replaced on a Miss?

Easy for Direct Mapped - only on choice
Set Associative or Fully Associative:

Random - easier to implement
Least Recently Used (the block has been unused for the longest 
time) - harder to implement

Miss rates for caches with different size, associativity and 
replacement algorithm.

Associativity: 2-way 4-way 8-way
Size           LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

For caches with low miss rates, random is almost as good as LRU.



Q4: What Happens on a Write?

Write through: The information is written to both the block 
in the cache and to the block in the lower-level memory.
Write back: The information is written only to the block in 
the cache. The modified cache block is written to main 
memory only when it is replaced.

is block clean or dirty? (add a dirty bit to each block)
Pros and Cons of each:

Write through
Read misses cannot result in writes to memory,
Easier to implement
Always combine with write buffers to avoid memory latency

Write back
Less memory traffic
Perform writes at the speed of the cache



Q4: What Happens on a Write?

Since data does not have to be brought into the cache on 
a write miss, there are two options:

Write allocate
The block is brought into the cache on a write miss
Used with write-back caches
Hope subsequent writes to the block hit in cache

No-write allocate
The block is modified in memory, but not brought into the cache
Used with write-through caches
Writes have to go to memory anyway, so why bring the block into the cache



Calculating Bits in Cache

How many total bits are needed for a direct- mapped cache with 64 
KBytes of data and one word blocks, assuming a 32-bit address?

64 Kbytes = 16 K words = 2^14 words = 2^14 blocks
block size = 4 bytes => offset size = 2 bits, 
#sets = #blocks = 2^14 => index size = 14 bits
tag size = address size - index size - offset size = 32 - 14 - 2 = 16 bits 
bits/block = data bits + tag bits + valid bit = 32 + 16 + 1 = 49
bits in cache = #blocks x (bits/block) = 2^14 x 49 = 98 Kbytes

How many total bits would be needed for a 4-way set associative 
cache to store the same amount of data

block size and #blocks does not change
#sets = #blocks/4 = (2^14)/4 = 2^12 => index size = 12 bits
tag size = address size - index size - offset = 32 - 12 - 2 = 18 bits
bits/block = data bits + tag bits + valid bit = 32 + 18 + 1 = 51
bits in cache = #blocks x (bits/block) = 2^14 x 51 = 102 Kbytes

Increase associativity => increase bits in cache



Calculating Bits in Cache

How many total bits are needed for a direct-mapped 
cache with 64 KBytes of data and 8 word blocks, 
assuming a 32-bit address?

64 Kbytes = 2^14 words = (2^14)/8 = 2^11 blocks
block size = 32 bytes => offset size = 5 bits, 
#sets = #blocks = 2^11 => index size = 11 bits
tag size = address size - index size - offset size = 32 - 11 - 5 = 16 
bits 
bits/block = data bits + tag bits + valid bit = 8x32 + 16 + 1 = 273 
bits
bits in cache = #blocks x (bits/block) = 2^11 x 273 = 68.25 Kbytes

Increase block size => decrease bits in cache



Summary

CPU-Memory gap is major performance obstacle for 
achieving high performance
Memory hierarchies

Take advantage of program locality
Closer to processor => smaller, faster, more expensive
Further from processor => bigger, slower, less expensive

4 questions for memory hierarchy
Block placement, block identification, block replacement, 
and write strategy

Cache parameters
Cache size, block size, associativity
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