
COMP303
Computer Architecture Memory Hierarchy and

Cache Design

Lecture 14

The Big Picture: Where are We Now?

The Five Classic Components of a Computer
Memory is usually implemented as:

Dynamic Random Access Memory (DRAM) - for main memory
Static Random Access Memory (SRAM) - for cache

Control

Datapath

Memory

Processor
Input

Output

Technology Trends

DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1995 64 Mb 120 ns
1998 256 Mb 100 ns
2001 1 Gb 80 ns

Capacity Speed (latency)
Logic: 2x in 3 years 2x in 3 years
DRAM: 4x in 3 years 2x in 10 years
Disk: 4x in 3 years 2x in 10 years

1000:1! 2:1!

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Who Cares About Memory?

Today’s Situation: Microprocessors

Rely on caches to bridge gap
Cache is a high-speed memory between the processor
and main memory
1980: no cache in µproc;
1997 2-level cache, 60% trans. on Alpha 21164 µproc

An Expanded View of the Memory System

Control

Datapath

Memory

Processor

M
em

ory

Memory
Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:
Size:

Cost:

Memory Hierarchy: How Does it Work?

Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the processor

Spatial Locality (Locality in Space):
=> Move blocks consists of contiguous words to the upper levels

Lower Level
MemoryUpper Level

MemoryProcessor

D
at

a
ar

e
tr

an
sf

er
re

d

Memory Hierarchy: Terminology

Hit: If the data requested by a processor appears in some
block in the upper level.

Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss
Hit Rate: The fraction of memory access found in the upper
level

Miss: If the data is not found in the upper level.
Miss Rate = 1 - (Hit Rate)
Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block the processor

Hit Time << Miss Penalty

Memory Hierarchy of a Modern Computer System

By taking advantage of the principle of locality:
Present the user with as much memory as is available in the
cheapest technology.
Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

How is the hierarchy managed?

Registers <-> Memory
by compiler (programmer?)

cache <-> memory
by the hardware

memory <-> disks
by the hardware and operating system (virtual memory)
by the programmer (files)

Memory Hierarchy Technology

Random Access:
“Random” is good: access time is the same for all locations
DRAM: Dynamic Random Access Memory

High density, low power, cheap, slow
Dynamic: need to be “refreshed” regularly

SRAM: Static Random Access Memory
Low density, high power, expensive, fast
Static: content will last “forever” (until lose power)

“Non-so-random” Access Technology:
Access time varies from location to location and from time
to time
Examples: Disk, CDROM

Sequential Access Technology: access time linear in
location (e.g.,Tape)

General Principles of Memory

Locality
Temporal Locality : referenced memory is likely to be referenced
again soon (e.g. code within a loop)
Spatial Locality : memory close to referenced memory is likely to
be referenced soon (e.g., data in a sequentially access array)

Definitions
Upper : memory closer to processor
Block : minimum unit that is present or not present
Block address : location of block in memory
Hit : Data is found in the desired location
Hit time : time to access upper level
Miss rate : percentage of time item not found in upper level

Locality + smaller HW is faster = memory hierarchy
Levels : each smaller, faster, more expensive/byte than level
below
Inclusive : data found in upper level also found in the lower level

Memory Hierarchy

Registers (D Flip-Flops)

L1 Cache (SRAM)

L2 Cache (SRAM)

Main Memory (DRAM)

Disks (Magnetic)
Secondary
Storage

Memory
Hierarchy

Processor

Lower level

Upper level

Differences in Memory Levels

Level Memory
Technology

Typical Size Typical
Access Time

Cost per
Mbyte

Registers D Flip-
Flops

64 32-bit 2 -3 ns N/A

L1 Cache
(on chip)

SRAM 16 Kbytes 5 - 25 ns $100 - $250

L2Cache
(off chip)

SRAM 256 Kbytes 5 - 25 ns $100 - $250

Main
Memory

DRAM 256 Mbytes 60 - 120 ns $5 - $10

Secondary
Storage

Magnetic
Disk

8 Gbytes 10 - 20 ms $0.10-$0.20

Four Questions for Memory Hierarchy Designers

Q1: Where can a block be placed in the upper level?
(Block placement)

Q2: How is a block found if it is in the upper level?
(Block identification)

Q3: Which block should be replaced on a miss?
(Block replacement)

Q4: What happens on a write?
(Write strategy)

Q1: Where can a block be placed?

Direct Mapped: Each block has only one place that
it can appear in the cache.
Fully associative: Each block can be placed
anywhere in the cache.
Set associative: Each block can be placed in a
restricted set of places in the cache.

If there are n blocks in a set, the cache is called n-way set
associative

What is the associativity of a direct mapped cache?

Direct Mapped Caches

Mapping for direct mapped cache:
(Block address) MOD (Number of blocks in the cache)

00
0

00
1

01
0

01
1

10
0

10
1

11
0

11
1

00001 00101 01001 01101 10001 10101 11001 11101

Cache

Memory

Associativity Examples

Cache size is 8 blocks
Where does word 12 from memory go?

Fully associative:
Block 12 can go anywhere

Direct mapped:
Block no. = (Block address) mod

(No. of blocks in cache)
Block 12 can go only into block 4
(12 mod 8 = 4)
=> Access block using lower 3 bits

2-way set associative:
Set no. = (Block address) mod

(No. of sets in cache)
Block 12 can go anywhere in set 0
(12 mod 4 = 0)
=> Access set using lower 2 bits

Fully associative:
block 12 can go
anywhere

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Cache

Memory

Block
no:

Block
no:

Block
no:

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6
1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 Block

no:

Set
0

Set
1

Set
2

Set
3

Block frame address

Q2: How Is a Block Found?

The address can be divided into two main parts
Block offset: selects the data from the block

offset size = log2 (block size)
Block address: tag + index

index: selects set in cache
index size = log2 (#blocks/associativity)

tag: compared to tag in cache to determine hit
tag size = address size - index size - offset size

Each block has a valid bit that tells if the block is valid -
the block is in the cache if the tags match and the valid
bit is set.

Block address
Tag Index

Block
offset

A 4-KB Cache Using 1-word (4-byte) Blocks

Index Valid Tag Data

0
1
2
…

…
…

1021
1022
1023

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Hit

=

20 32

Data

Address

Index
Tag 20 10

• Cache index is used
to select the block

• Tag field is used to
compare with the value
of the tag filed of the
cache

• Valid bit indicates if a
cache block have valid
information

Two-way Set-associative Cache

= =

31 30 . . . 13 12 11 . . . 2 1 0
Byte
offset

Address

V Tag Data V Tag DataIndex
0
1
2

1021
1022
1023

2-to-1 multiplexor

Hit Data

1020

Example: Alpha 21064 Data Cache

The data cache of the Alpha 21064 has the following
features

8 KB of data
32 byte blocks
Direct mapped placement
Write through (no-write allocate, 4-block write buffer)
34 bit physical address composed of

5 bit block offset
8 bit index
21 bit tag

Example: Alpha 21064 Data Cache

A cache read has 4 steps

(1) The address from the
cache is divided into the
tag, index, and block offset

(2) The index selects block

(3) The address tag is
compared with the tag in
the cache, the valid bit is
checked, and data to be
loaded is selected

(4) If the valid bit is set, the
data is loaded into the
processor

If there is a write, the data is
also sent to the write buffer

. . .

<21> <8> <5>

Block address Block
offset

Tag index

=

<1><21> <256>
Valid Tag Data

4:1 Mux

Lower level memory

Write
buffer

CPU addr.

Data
in

Data
out

1

2

3

4

. . .

0
1

255

Q3: Which Block Should be Replaced on a Miss?

Easy for Direct Mapped - only on choice
Set Associative or Fully Associative:

Random - easier to implement
Least Recently Used (the block has been unused for the longest
time) - harder to implement

Miss rates for caches with different size, associativity and
replacement algorithm.

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.18% 5.69% 4.67% 5.29% 4.39% 4.96%
64 KB 1.88% 2.01% 1.54% 1.66% 1.39% 1.53%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

For caches with low miss rates, random is almost as good as LRU.

Q4: What Happens on a Write?

Write through: The information is written to both the block
in the cache and to the block in the lower-level memory.
Write back: The information is written only to the block in
the cache. The modified cache block is written to main
memory only when it is replaced.

is block clean or dirty? (add a dirty bit to each block)
Pros and Cons of each:

Write through
Read misses cannot result in writes to memory,
Easier to implement
Always combine with write buffers to avoid memory latency

Write back
Less memory traffic
Perform writes at the speed of the cache

Q4: What Happens on a Write?

Since data does not have to be brought into the cache on
a write miss, there are two options:

Write allocate
The block is brought into the cache on a write miss
Used with write-back caches
Hope subsequent writes to the block hit in cache

No-write allocate
The block is modified in memory, but not brought into the cache
Used with write-through caches
Writes have to go to memory anyway, so why bring the block into the cache

Calculating Bits in Cache

How many total bits are needed for a direct- mapped cache with 64
KBytes of data and one word blocks, assuming a 32-bit address?

64 Kbytes = 16 K words = 2^14 words = 2^14 blocks
block size = 4 bytes => offset size = 2 bits,
#sets = #blocks = 2^14 => index size = 14 bits
tag size = address size - index size - offset size = 32 - 14 - 2 = 16 bits
bits/block = data bits + tag bits + valid bit = 32 + 16 + 1 = 49
bits in cache = #blocks x (bits/block) = 2^14 x 49 = 98 Kbytes

How many total bits would be needed for a 4-way set associative
cache to store the same amount of data

block size and #blocks does not change
#sets = #blocks/4 = (2^14)/4 = 2^12 => index size = 12 bits
tag size = address size - index size - offset = 32 - 12 - 2 = 18 bits
bits/block = data bits + tag bits + valid bit = 32 + 18 + 1 = 51
bits in cache = #blocks x (bits/block) = 2^14 x 51 = 102 Kbytes

Increase associativity => increase bits in cache

Calculating Bits in Cache

How many total bits are needed for a direct-mapped
cache with 64 KBytes of data and 8 word blocks,
assuming a 32-bit address?

64 Kbytes = 2^14 words = (2^14)/8 = 2^11 blocks
block size = 32 bytes => offset size = 5 bits,
#sets = #blocks = 2^11 => index size = 11 bits
tag size = address size - index size - offset size = 32 - 11 - 5 = 16
bits
bits/block = data bits + tag bits + valid bit = 8x32 + 16 + 1 = 273
bits
bits in cache = #blocks x (bits/block) = 2^11 x 273 = 68.25 Kbytes

Increase block size => decrease bits in cache

Summary

CPU-Memory gap is major performance obstacle for
achieving high performance
Memory hierarchies

Take advantage of program locality
Closer to processor => smaller, faster, more expensive
Further from processor => bigger, slower, less expensive

4 questions for memory hierarchy
Block placement, block identification, block replacement,
and write strategy

Cache parameters
Cache size, block size, associativity

	COMP303�Computer Architecture� Memory Hierarchy and Cache Design
	The Big Picture: Where are We Now?
	Technology Trends
	Who Cares About Memory?
	Today’s Situation: Microprocessors
	An Expanded View of the Memory System
	Memory Hierarchy: How Does it Work?
	Memory Hierarchy: Terminology
	Memory Hierarchy of a Modern Computer System
	How is the hierarchy managed?
	Memory Hierarchy Technology
	General Principles of Memory
	Memory Hierarchy
	Differences in Memory Levels
	Four Questions for Memory Hierarchy Designers
	Q1: Where can a block be placed?
	Direct Mapped Caches
	Associativity Examples
	Q2: How Is a Block Found?
	A 4-KB Cache Using 1-word (4-byte) Blocks
	Two-way Set-associative Cache
	Example: Alpha 21064 Data Cache
	Example: Alpha 21064 Data Cache
	Q3: Which Block Should be Replaced on a Miss?
	Q4: What Happens on a Write?
	Q4: What Happens on a Write?
	Calculating Bits in Cache
	Calculating Bits in Cache
	Summary

