
COMP303
Computer Architecture
Lecture 16
Virtual Memory

What is virtual memory?

Physical
Address Space

Virtual
Address Space

Disk storage

Virtual memory => treat main
memory as a cache for the disk
Terminology: blocks in this cache
are called “Pages”

Typical size of a page: 4K — 64K

Page table maps virtual page
numbers to physical frames

Virtual Memory

Virtual memory (VM) allows main memory (DRAM) to
act like a cache for secondary storage (magnetic disk).
VM address translation provides a mapping from the
virtual address of the processor to the physical address
in main memory and secondary storage.
VM provides the following benefits

Allows multiple programs to share the same physical memory
Allows programmers to write code (or compilers to generate
code) as though they have a very large amount of main memory
Automatically handles bringing in data from disk

Cache terms vs. VM terms
Cache block => page
Cache miss => page fault

Virtual and Physical Addresses

A virtual address consists of a virtual page number and
a page offset.
The virtual page number gets translated to a physical
page number.
The page offset is not changed

Virtual Page Number Page offset

Physical Page Number Page offset

Translation

Virtual Address

Physical Address

20 bits

18 bits

12 bits

12 bits

Address Translation

Virtual Page number Page offset

Virtual Address

Page
table

Main
memory

Address Translation with Page Tables

A page table translates a virtual page number into a
physical page number.
A page table register indicates the start of the page table.
The virtual page number is used as an index into the
page table that contains

The physical page number
A valid bit that indicates if the page is present in main
memory
A dirty bit to indicate if the page has been written
Protection information about the page (read only,
read/write, etc.)

Since page tables contain a mapping for every virtual
page, no tags are required.

Page Table Diagram
Page table register

Virtual Page Number Page offset

Physical Page NumberValid

Physical Page Number Page offset

Virtual address
31 30 29 28 15 14 13 12 11 10 9 2 1 0

29 28 27 15 14 13 12 11 10 9 2 1 0

Page Table

Physical address

If 0 then page is not
presented in memory

20
12

18

Accessing Main Memory or Disk (See Figure 7.22 on page 518)

If the valid bit of the page table is zero, this means that
the page is not in main memory.
In this case, a page fault occurs, and the missing page
is read in from disk.

1
1
1
1
0
1
1
0
1
1
0
1

Virtual page
number Page table

Physical page or
disk addressValid

Physical memory

Disk storage

Determining Page Table Size
Assume

32-bit virtual address
30-bit physical address
4 KB pages => 12 bit page offset
Each page table entry is one word (4 bytes)

How large is the page table?
Virtual page number = 32 - 12 = 20 bits
Number of entries = number of pages = 2^20
Total size = number of entries x bytes/entry

= 2^20 x 4 = 4 Mbytes
Each process running needs its own page table

Since page tables are very large, they are almost always
stored in main memory, which makes them slow.

Large Address Spaces

Two-level Page Tables

32-bit address:

P1 index P2 index page offset

4 bytes

4 bytes

4KB

10 10 12

1K
PTEs

° 4 GB virtual address space
° 4 KB of PTE1
° 4 MB of PTE2

– paged, holes

PTE: Page Table Entry

Caching Virtual Addresses

Virtual memory seems to be really slow:
Must access memory on load/store -- even cache hits!
Worse, if translation is not completely in memory, may
need to go to disk before hitting in cache!

Solution: Caching!
Keep track of most common translations and place them in
a “Translation Lookaside Buffer” (TLB)

CPU Trans-
lation Cache Main

Memory

VA PA miss

hit
data

Making address translation practical: TLB
Virtual memory => memory acts like a cache for the disk
Page table maps virtual page numbers to physical frames
Translation Look-aside Buffer (TLB) is a cache for
translations

TLB

Page Table

2

0

1
3

virtual address

page off

2
frame page

2
50

physical address

page off

Physical
Address Space

Virtual
Address Space

Disk storage

Translation-Lookaside Buffer (TLB)

A TLB acts as a cache for the page table, by storing physical addresses
of pages that have been recently accessed.

Virtual page
number

1
1
1
1
0
1
1
0
1
1
0
1

Page table
Physical page or

disk addressValid

Physical memory

Disk storage

1
1
1
1
0
1

Physical page
addressValid Tag

TLB

MIPS R2000 TLB and Cache
31 30 29 15 14 13 12 11 10 . . . 1 0

=
=
=
=
=
=

=

Physical address

Virtual address

Physical page number

Physical tag address

Page offset

Cache index
Byte
offset

20

12
20

Valid Dirty Tag Data

TLB hit

TLB

Cache

Valid Tag Data

DataCache hit

2

32

TLB and Cache Operation (See Figure 7.26 on page 594)

On a memory access, the following operations occur.
Virtual address

TLB access

TLB hit

Write

Try to read
data from

cache

Cache hitCache miss
stall

Write
access bit

on

Write data into cache,
update the tag, and
put the data and the
address into the write

bufferDeliver data
to the CPU

Write protection
exception

TLB miss
exception Physical address

No Yes

YesNo

No Yes

YesNo

Cache and Main Memory Parameters

Parameter L1 Cache Main Memory

Block (page) size 16-128 bytes 4096-65,536 bytes

Hit time 1-2 cycles 40-100 cycles

Miss Penalty 8-100 cycles 1 to 6 million cycles

Miss rate 0.5-10% 0.00001-0.001%

Memory size 16 KB to 1 MB 16 MB to 8 GB

4 Qs for Virtual Memory
Q1: Where can a block be placed in the upper level?

Miss penalty for virtual memory is very high
Have software determine location of block while accessing disk
Allow blocks to be place anywhere in memory (fully associative)
to reduce miss rate.

Q2: How is a block found if it is in the upper level?
Address divided into page number and page offset
Page table and translation buffer used for address translation

Q3: Which block should be replaced on a miss?
Want to reduce miss rate & can handle in software
Least Recently Used typically used

Q4: What happens on a write?
Writing to disk is very expensive
Use a write-back strategy

TLB organization: include protection

TLB usually organized as fully-associative cache
Lookup is by Virtual Address
Returns Physical Address + other info

Dirty => Page modified (Y/N)?
Ref => Page touched (Y/N)?
Valid => TLB entry valid (Y/N)?
Access => Read? Write?
ASID => Which User?

Virtual Address Physical Address Dirty Ref Valid Access ASID

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

TLB Characteristics
The following are characteristics of TLBs

TLB size : 32 to 4,096 entries
Block size : 1 or 2 page table entries (4 or 8 bytes each)
Hit time: 0.5 to 1 clock cycle
Miss penalty: 10 to 100 clock cycles (go to page table)
Miss rate: 0.01% to 1%
Associative : Fully associative or set associative
Write policy : Write back (replace infrequently)

The MIPS R2000 TLB has the following characteristics
TLB size: 64 entries
Block size: 1 entry of 64 bits (20 bit tag, 1 valid bit, 1 dirty bit,
several bookkeeping bits)
Hit time: 0.5 clock cycles
Miss penalty: Average of 16 cycles
Associative : Fully associative
Write policy: write back

Example: R3000 pipeline includes TLB stages

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg
TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Memory Protection
With multiprogramming, a computer is shared by several
programs or processes running concurrently

Need to provide protection
Need to allow sharing

Mechanisms for providing protection
Provide both user and supervisor (operating system) modes
Provide CPU state that the user can read, but cannot write

user/supervisor bit, page table pointer, and TLB
Provide method to go from user to supervisor mode and vice
versa

system call or exception : user to supervisor
system or exception return : supervisor to user

Provide permissions for each page in memory
Store page tables in the operating systems address space - can’t
be accessed directly by user.

Handling TLB Misses and Page Faults

When a TLB miss occurs either
Page is present in memory and update the TLB

occurs if valid bit of page table is set
Page is not present in memory and O.S. gets control to handle
a page fault

If a page fault occur, the operating system
Access the page table to determine the physical location of the
page on disk
Chooses a physical page to replace - if the replaced page is
dirty it is written to disk
Reads a page from disk into the chosen physical page in main
memory.

Since the disk access takes so long, another process is
typically allowed to run during a page fault.

Pitfall: Address space to small
One of the biggest mistakes than can be made
when designing an architect is to devote to few bits
to the address

address size limits the size of virtual memory
difficult to change since many components depend on it
(e.g., PC, registers, effective-address calculations)

As program size increases, larger and larger
address sizes are needed

8 bit: Intel 8080 (1975)
16 bit: Intel 8086 (1978)
24 bit: Intel 80286 (1982)
32 bit: Intel 80386 (1985)
64 bit: Intel Merced (Itanium) (2001)

Virtual Memory Summary

Virtual memory (VM) allows main memory (DRAM)
to act like a cache for secondary storage
(magnetic disk).
Page tables and TLBs are used to translate the
virtual address to a physical address
The large miss penalty of virtual memory leads to
different strategies from cache

Fully associative
LRU or LRU approximation
Write-back
Done by software

	COMP303�Computer Architecture� Lecture 16
	What is virtual memory?
	Virtual Memory
	Virtual and Physical Addresses
	Address Translation
	Address Translation with Page Tables
	Page Table Diagram
	Accessing Main Memory or Disk (See Figure 7.22 on page 518)
	Determining Page Table Size
	Large Address Spaces
	Slide Number 11
	Slide Number 12
	Translation-Lookaside Buffer (TLB)
	MIPS R2000 TLB and Cache
	TLB and Cache Operation (See Figure 7.26 on page 594)
	Cache and Main Memory Parameters
	4 Qs for Virtual Memory
	Slide Number 18
	TLB Characteristics
	Slide Number 20
	Memory Protection
	Handling TLB Misses and Page Faults
	Pitfall: Address space to small
	Virtual Memory Summary

