
COMP 303
Computer Architecture
Lecture 2

1Comp 303 Computer Architecture

Hardware Operations

Every computer must be able to perform arithmetic
add a, b, c

In order to do a = b+c+d+e
add a, b, c # Sum of b+c to a
add a, a, d # Sum of b+c+d to a
add a, a, e # Sum of b+c+d+e to a

Comp 303 Computer Architecture 2

Hardware operations

is used for comments (until the end of line)
The natural number of operands for an operation like
addition is three.

Design Principle 1: Simplicity favors regularity

Comp 303 Computer Architecture 3

Compiling a complex C assignment into
MIPS
f=(g+h)-(i+j)

add t0, g, h # temporary variable t0 contains g+h
add t1, i, j # temporary variable t1 contains i+j
sub f, t0, t1# f gets t0-t1

Comp 303 Computer Architecture 4

MIPS Assembly Language

Arithmetic operations
add. Usage: add a,b,c Meaning: a=b+c
sub. Usage: sub a,b,c Meaning: a=b-c

Comp 303 Computer Architecture 5

Operands of the hardware

Operands of the instructions are from a limited number
of special locations called registers
The size of registers in MIPS is 32 bit.
The word size in MIPS is 32 bit.
MIPS has 32 registers. The reason of 32 registers in
MIPS is

Design Principle 2: Smaller is faster

Comp 303 Computer Architecture 6

Compiling a C assignment using registers

f=(g+h)-(i+j)
The variables f, g, h, i and j are assigned to the registers
$s0, $s1, $s2, $s3 and $s4, respectively

add $t0, $s1, $s2 # temporary variable t0 contains g+h
add $t1, $s3, $s4 # temporary variable t1 contains i+j
sub $s0, $t0, $t1 # f gets t0-t1

Comp 303 Computer Architecture 7

Memory operands

MIPS must include instructions that transfer data
between memory and registers:

Data transfer instructions

Comp 303 Computer Architecture 8

Compiling an assignment when an operand
is in memory

g = h + A[8]
We can add two numbers when they are in registers. So
transfer the memory data (A[8])into a register.
Assume the base address of the array is stored in $s3

lw $t0,8($s3) # temp reg $t0 gets A[8]

A[8] is in $t0
add $s1, $s2, $t0 # g = h + A[8]

Comp 303 Computer Architecture 9

Offset

Base register

Memory organization

Viewed as a large, single-dimension array, with an
address.
A memory address is an index into the array
"Byte addressing" means that the index points to a byte
of memory.

Comp 303 Computer Architecture 10

Memory organization

 Bytes are nice, but most data items use larger "words"
 For MIPS, a word is 32 bits or 4 bytes.

 232 bytes with byte addresses from 0 to 232-1

 230 words with byte addresses 0, 4, 8, ... 232-4

Comp 303 Computer Architecture 11

Hardware/Software Interface

In MIPS, words must start at addresses that are multiple
of 4

Alignment restriction

Computers divide into those that use the address of the
leftmost (or “big end”) byte as the word address versus
that use the rightmost (or “little end”) byte.
MIPS is big-endian. In order to get A[8] we should load
32nd byte (which is the 8.th word)

Comp 303 Computer Architecture 12

Alignment

Comp 303 Computer Architecture 13

Load and Store

Assume h is in $s2. The base address of the array A is
in $s3.

A[12] = h + A[8]

lw $t0,32($s3) # Temporary reg $t0 gets A[8]
add $t0, $s2, $t0 # Temporary reg $t0 gets h+A[8]
sw $t0, 48($s3) # Stores h+A[8] back into A[12]

Comp 303 Computer Architecture 14

Constant or immediate operands

Adding constants to registers.
Two way:

Load the constant from the memory location
Add immediate

addi $s3, $s3, 4 # $s3 = $s3 + 4

Constant operands occur frequently

Design Principle 3: Make the common case fast

There is no subtract immediate! Why?

Comp 303 Computer Architecture 15

Representing insturctions in the computer

Since all kind of information is stored in computer as
binary digits (bits) there should be binary representations
of instructions.
Mapping of register names into numbers.
In MIPS assembly language

registers $s0 to $s7 map onto register numbers 16 to 23
registers $t0 to $t7 map onto register numbers 8 to 15

Comp 303 Computer Architecture 16

Translating a MIPS Assembly instruction
into a machine instruction

add $t0, $s1, $s2

registers have numbers, $t0=8, $s1=17, $s2=18

Instruction Format:

op: operation code (opcode)
rs: the first register source operand
rt: the second register source operand
rd: the register destination operand
shamt: shift amount. Used in shift operations
funct: function. Specific variant of the opcode (function code)

Comp 303 Computer Architecture 17

Instruction formats

R-type (for register) or R-format
I-type (for immediate) or I-format

Example: lw $t0, 32($s2)

The formats are distinguished by the values in the first
field

Comp 303 Computer Architecture 18

Logical operations

Comp 303 Computer Architecture 19

Instruction Example Meaning

And and $s1,$s2,$s3 $s1 = $s2 & $s3

Or or $s1,$s2,$s3 $s1 = $s2 | $s3

Nor nor $s1,$s2,$s3 $s1 = ~($s2 | $s3)

And immediate andi $s1,$s2,100 $s1 = $s2 & 100

Or immediate ori $s1,$s2,100 $s1 = $s2 | 100

Shift left logical sll $s1,$s2,10 $s1 = $s2<<10

Shift right logical srl $s1,$s2,10 $s1 = $s2>>10

Branch instructions

beq register1, register2, L1

goes to L1 if register1 == register2
bne register1, register2, L1

goes to L1 if register1 != register2

Comp 303 Computer Architecture 20

if-then-else

Replace the C code for
if (i = = j) f = g + h; else f = g - h;

by equivalent MIPS instructions.
 Assume variables f through j correspond to registers
$s0 through $s4.
Instruction Comment

bne $s3, $s4, Else if (i != j) goto Else
add $s0, $s1, $s2 f = g + h
j Exit go to Exit

Else: sub $s0, $s1, $s2 f = g - h
Exit:

Comp 303 Computer Architecture 21

Jump to Exit

For loop

 Branch instructions end up the way we implement C-
style loops

for (j = 0; j < 10; j++) {
a = a + j;

}

assume s0 == j; s1 == a; t0 == temp;
Instruction Comment

addi $s0, $zero, 0 j = 0 + 0
addi $t0, $zero, 10 temp = 0 + 10

Loop: beq $s0, $t0, Exit if (j == temp) goto Exit
add $s1, $s1, $s0 a = a + j
addi $s0, $s0, 1 j = j + 1
j Loop goto Loop

Exit: … exit from loop and continue

Comp 303 Computer Architecture 22

Set on less than

slt $t0, $s3, $s4

Register $t0 is set to 1 if the value in register $s3 is less
than the value in register $s4

slti $t0, $s3, 10

Register $t0 is set to 1 if the value in register $s3 is less
than the immediate value 10

Comp 303 Computer Architecture 23

	COMP 303�Computer Architecture�Lecture 2
	Hardware Operations
	Hardware operations
	Compiling a complex C assignment into MIPS
	MIPS Assembly Language
	Operands of the hardware
	Compiling a C assignment using registers
	Memory operands
	Compiling an assignment when an operand is in memory
	Memory organization
	Memory organization
	Hardware/Software Interface
	Alignment
	Load and Store
	Constant or immediate operands
	Representing insturctions in the computer
	Translating a MIPS Assembly instruction into a machine instruction
	Instruction formats
	Logical operations
	Branch instructions
	if-then-else
	For loop
	Set on less than

