
COMP 303
Computer Architecture
Lecture 3

1Comp 303 Computer Architecture

Supporting procedures in computer
hardware

The execution of a procedure
Place parameters in a place where the procedure can access
Transfer control to the procedure
Acquire the storage resources needed for the procedure
Perform the desired task
Place the result value in a place where the calling program can
access
Return control to the point of origin, since a procedure can be
called from several points in a program

Comp 303 Computer Architecture 2

Register usage conventions

$a0-$a3: four argument registers in which to pass
parameters
$v0-$v1: two value registers in which to return values
$ra: one return address register to return to the point of
origin

The jump-and-link instruction (jal): jumps to an address
and simultaneously saves the address of the following
instruction in register $ra

jal ProcedureAddress

Comp 303 Computer Architecture 3

Program counter

We need a register to hold the address of the current instruction
being executed

“Program Counter” (due to historical reasons) PC in MIPS
jal saves PC+4 in register $ra
At the end of the procedure we jump back to the $ra (an
unconditional jump)

jr $ra

The caller puts the parameter values in $a0-$a3
The caller uses jal X to jump to procedure X
The callee performs the calculations, places the results in $v0-$v1
Returns control to the caller by jr $ra

Comp 303 Computer Architecture 4

Stack

Suppose the procedure needs more than 4 arguments
We store the values in Stack (a last-in-first-out queue)
A stack needs a pointer to the most recently allocated
address in the stack: stack pointer
Placing data onto the stack is called a Push. Removing
data from the stack is called a Pop.
The stack pointer in MIPS is $sp. By convention stacks
“grow” from higher addresses to lower addresses!!! (You
push values onto the stack by subtracting from the stack
pointer)

Comp 303 Computer Architecture 5

Procedure call
When making a procedure call, it is necessary to

1. Place inputs where the procedure can access them
2. Transfer control to procedure
3. Acquire the storage resources needed for the procedure
4. Perform the desired task
5. Place the result value(s) in a place where the calling program

can access it
6. Return control to the point of origin
MIPS

Provides instructions to assist in procedure calls (jal) and
returns (jr)
Uses software conventions to

place procedure input and output values
control which registers are saved/restored by caller and callee

Uses a software stack to save/restore values

Comp 303 Computer Architecture 6

A procedure call with a stack
int leaf-example (int g, int h, int i, int j)
{

int f;
f = (g+h)-(i+j);
return f;

}

Comp 303 Computer Architecture 7

Assume the parameter variables g, h, i,
and j correspond to the argument registers
$a0, $a1, $a2, and $a3, and f corresponds
to $s0.

leaf_example:
sub $sp, $sp, 12 # adjust stack to make room for 3 items
sw $t1, 8($sp) # save register $t1 for use afterwards
sw $t0, 4($sp) # save register $t0 for use afterwards
sw $s0, 0($sp) # save register $s0 for use afterwards
add $t0, $a0, $a1 # register $t0 contains g + h
add $t1, $a2, $a3 # register $t1 contains i + j
sub $s0, $t0, $t1 # register $s0 contains (g + h) - (i + j)
add $v0, $s0, $zero # register $v0 contains the result
lw $s0, 0($sp) # restore register $s0 for caller
lw $t0, 4($sp) # restore register $t0 for caller
lw $t1, 8($sp) # restore register $t1 for caller
add $sp, $sp, 12 # adjust stack to delete 3 items
jr $ra # jump back to calling routine

A procedure call with a stack (cont’d)

Comp 303 Computer Architecture 8

Content of reg. $t1

$sp

$sp

$sp

High
address

Low address

Before procedure call During procedure call After procedure call

Content of reg. $t0

Content of reg. $s0

Some register conventions

Comp 303 Computer Architecture 9

R16 $s0

R17 $s1

R18 $s2

R19 $s3

R20 $s4

R21 $s5

R22 $s6

R23 $s7

R24 $t8

R25 $t9

R26 $k0

R27 $k1

R28 $gp

R29 $sp

R30 $s8

R31 $ra

Callee saved
temporaries:
may not be
overwritten by
called
procedures

R0 $zero

R1 $at

R2 $v0

R3 $v1

R4 $a0

R5 $a1

R6 $a2

R7 $a3

R8 $t0

R9 $t1

R10 $t2

R11 $t3

R12 $t4

R13 $t5

R14 $t6

R15 $t7

Constant 0

Reserved for
assembler
Return Values

Procedure
arguments

Caller saved
temporaries:
may be
overwritten by
called
procedures

Caller save
temp

Reserved for
operating system

Global pointer

Stack pointer

Callee save temp

Return address

Recursion (Nested procedure call)

Comp 303 Computer Architecture 10

int fact (int n)
{

if (n < 1)
return 1;

else
return (n * fact(n-1));

}

Recursion
fact:

addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4($sp) # save the return address
sw $a0, 0($sp) # save the argument n

slti $t0, $a0, 1 # test for n<1
beq $t0, $zero, L1 # if n>=1, goto L1
addi $v0, $zero, 1 # return 1
addi $sp, $sp, 8 # pop 2 items off stack
jr $ra # return to after jal

L1:
addi $a0, $a0, -1 # n>=1: argument gets (n-1)
jal fact # call fact with (n-1)
lw $a0, 0($sp) # return from jal: restore argument n
lw $ra, 4($sp) # restore the return address
addi $sp, $sp, 8 # adjust stack pointer to pop 2 items

mul $v0, $a0, $v0 # return n*fact(n-1)
jr $ra

Comp 303 Computer Architecture 11

Stack allocation in MIPS

The stack is also used to store variables that are local to
the procedure that do not fit in registers (local arrays or
structures)
The segment of the stack containing a procedure’s
saved registers and local variables is called a procedure
frame or activation record.
Some MIPS software use a frame pointer ($fp) to point
to the first word of the frame of a procedure

Comp 303 Computer Architecture 12

Stack allocation in MIPS

Comp 303 Computer Architecture 13

Saved argument
register (if any)

Saved return address
Saved saved
register (if any)

Local arrays and
structures (if any)

$fp

$fp
$sp

$sp

$fp

$sp

High
address

Low address

Before procedure call During procedure call After procedure call

Policy of use conventions

Comp 303 Computer Architecture 14

Register 1 ($at) reserved for assembler, 26-27 for operating
system

Name Register number Usage Preserved on call?
$zero 0 the constant value 0 n.a.
$v0-$v1 2-3 values for results and expression evaluation no
$a0-$a3 4-7 arguments yes
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t8-$t9 24-25 more temporaries no
$gp 28 global pointer yes
$sp 29 stack pointer yes
$fp 30 frame pointer yes

Global pointer

C has two storage classes: automatic and static
Automatic: variables that are local to a procedure and are
discarded when the procedure exits
Static: they exist across exits from and entries to procedures. C
variables declared outside all procedures are considered static
(or those declared with keyword static)

To simplify access to static data MIPS uses global
pointer or $gp

Comp 303 Computer Architecture 15

MIPS addressing

Register addressing where the operand is a register

Comp 303 Computer Architecture 16

MIPS addressing

Base or displacement addressing where the operand is
at the memory location whose address is the sum of a
register and a constant in the instruction

Comp 303 Computer Architecture 17

MIPS addressing

Immediate addressing where the operand is a constant
within the instruction itself

Comp 303 Computer Architecture 18

MIPS addressing

PC-relative addressing where the address is the sum of
the PC and a constant in the instruction

Comp 303 Computer Architecture 19

MIPS addressing

Pseudodirect addressing where the jump address is the
26 bits of the instruction concatenated with the upper bits
of the PC

Comp 303 Computer Architecture 20

	COMP 303�Computer Architecture�Lecture 3
	Supporting procedures in computer hardware
	Register usage conventions
	Program counter
	Stack
	Procedure call
	A procedure call with a stack
	A procedure call with a stack (cont’d)
	Some register conventions
	Recursion (Nested procedure call)
	Recursion
	Stack allocation in MIPS
	Stack allocation in MIPS
	Policy of use conventions
	Global pointer
	MIPS addressing
	MIPS addressing
	MIPS addressing
	MIPS addressing
	MIPS addressing

