
COMP 303
Computer Architecture
Lecture 4

1Comp 303 Computer Architecture

Load Upper Immediate

Comp 303 Computer Architecture 2

Example: lui R8, 255

Transfers the immediate field into the register’s top 16
bits and fills the register’s lower 16 bits with zeros

R8[31:16] <-- 255
R8[15:0] <-- 0

0000 0000 1111 11110100000000001111
31 26 25 21 20 16 15 0

op rs rt immediate

0000 0000 0000 00000000 0000 1111 1111
31 16 15 0

R8

Large constants

Comp 303 Computer Architecture 3

We'd like to be able to load a 32 bit constant into a register
Must use two instructions, new "load upper immediate" instruction

lui $t0, 1010101010101010

Then must get the lower order bits right, i.e.,

ori $t0, $t0, 1111000011001010

0000 0000 0000 00001010 1010 1010 1010
31 16 15 0

filled with zero

0000 0000 0000 00001010 1010 1010 1010

1111 0000 1100 10100000 0000 0000 0000

1111 0000 1100 10101010 1010 1010 1010

ori

MIPS data transfer instructions

Comp 303 Computer Architecture 4

Instruction Comment
sw $3, 500($4) Store word
sh $3, 502($2) Store half
sb $2, 41($3) Store byte

lw $1, 30($2) Load word
lh $1, 40($3) Load halfword
lhu $1, 40($3) Load halfword unsigned
lb $1, 40($3) Load byte
lbu $1, 40($3) Load byte unsigned

lui $1, 40 Load Upper Immediate
(16 bits shifted left by 16)

Store byte (sb) instruction

Comp 303 Computer Architecture 5

Example: sb $3, 12($1)

ALU

Immediate
000C

+

$1

$3

. . .

Data Bus

Address Bus

Registers

Memory

. . .

Load byte (lb) instruction

Comp 303 Computer Architecture 6

Example: lb $3, 12($1)

ALU

Immediate

000C

+

$1

$3

. . .

Data Bus

Address Bus

Memory

. . .

Sign Extend

Registers

Translating and starting a program

Comp 303 Computer Architecture 7

C Program

Compiler

Assembly language program

Assembler

Linker

Loader

Obj: Machine lang. module Obj: Library Routine (Mach. lang.)

Exec: Machine lang. prog

Memory

Assembly language

Assembly language is the symbolic representation of a
computer’s binary encoding, which is called machine language.
Assembly language is more readable than machine language
because it uses symbols instead of bits.
Assembly language permits programmers to use labels to
identify and name particular memory words that hold instructions
or data.
A tool called assembler translates assembly language into
binary instructions.
An assembler reads a single assembly language source file and
produces object file containing machine instructions and
bookkeeping information that helps combine several object files
into a program.

Comp 303 Computer Architecture 8

Advantages & disadvantages

Assembly programming is useful when the speed or size
of a program is important.
But assembly languages are machine specific and they
must be rewritten to run on another machine.
Another disadvantage is that assembly language
programs are longer than the equivalent programs
written in a high-level languages.
It is also true that programs written in assembly are more
difficult read and understand and they may contain more
bugs.

Comp 303 Computer Architecture 9

MIPS memory allocation for program & data

Comp 303 Computer Architecture 10

Reserved

Text

Static data

Dynamic data

Stack

0

pc 0040 0000hex

1000 0000hex

gp 1000 8000hex

sp 7FFF EFFChex

A translation hierarch for Java

Comp 303 Computer Architecture 11

Java Program

Compiler

Class files (Java bytecodes)

Just In Time (JIT)
compiler Java Virtual Machine (JVM)

Java Library routines (Mach. lang.)

Compiled Java methods
(mach. lang.)

Array vs pointer

Comp 303 Computer Architecture 12

void clear1(int array[], int size)
{

int i;
for (i = 0; i < size; i++);

array[i] = 0;
}

void clear2(int *array, int size)
{

int *p;
for (p = &array[0]; p< &array[size]; p++);

*p = 0;
}

Array version of “clear”

Comp 303 Computer Architecture 13

Assume that the two parameters array and size are
found in the registers $a0 and $a1, and that i is
allocated to register $t0.

move $t0,$zero # i = 0
loop1: add $t1,$t0,$t0 # $t1 = i * 2

add $t1,$t1,$t1 # $t1 = i * 4
add $t2,$a0,$t1 # $t2 = address of array[i]
sw $zero,0($t2) # array[i] = 0
addi $t0,$t0,1 # i = i + 1
slt $t3,$t0,$a1 # $t3 = (i < size)
bne $t3,$zero,loop1 # if (i < size) go to loop1

Pointer version of “clear”

Comp 303 Computer Architecture 14

Assume that the two parameters array and size are
found in the registers $a0 and $a1, and that p is
allocated to register $t0.

move $t0,$a0 # p = address of array[0]
add $t1,$a1,$a1 # $t1 = size * 2
add $t1,$t1,$t1 # $t1 = size * 4
add $t2,$a0, $t1 # $t2=address of array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0
addi $t0,$t0,4 # p = p + 4
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2 # if (p < &array[size]) go

to loop2

Comparing two versions of “clear”

Comp 303 Computer Architecture 15

move $t0,$zero # i = 0
loop1: add $t1,$t0,$t0 # $t1 = i * 2

add $t1,$t1,$t1 # $t1 = i * 4
add $t2,$a0, $t1 # $t2 = address of array[i]
sw $zero,0($t2) # array[i] = 0
addi $t0,$t0,1 # i = i + 1
slt $t3,$t0,$a1 # $t3 = (i < size)
bne $t3,$zero,loop1 # if (i < size) go to loop1

move $t0,$a0 # p = address of array[0]
add $t1,$a1,$a1 # $t1 = size * 2
add $t1,$t1,$t1 # $t1 = size * 4
add $t2,$a0, $t1 # $t2=address of array[size]

loop2: sw $zero,0($t0) # Memory[p] = 0
addi $t0,$t0,4 # p = p + 4
slt $t3,$t0,$t2 # $t3 = (p < &array[size])
bne $t3,$zero,loop2 # if (p < &array[size]) go

to loop2

The pointer version reduces the instructions executed per
iteration from 7 to 4.

Reading assignment

Read 2.6, 2.8, 2.10 (Linker), 2.13

Comp 303 Computer Architecture 16

	COMP 303�Computer Architecture�Lecture 4
	Load Upper Immediate
	Large constants
	MIPS data transfer instructions
	Store byte (sb) instruction
	Load byte (lb) instruction
	Translating and starting a program
	Assembly language
	Advantages & disadvantages
	MIPS memory allocation for program & data
	A translation hierarch for Java
	Array vs pointer
	Array version of “clear”
	Pointer version of “clear”
	Comparing two versions of “clear”
	Reading assignment

