COMP 303

Computer Architecture
Lecture 5

Unsigned Binary Integers

- Unsigned binary numbers are typically used to represent computer addresses or other values that are guaranteed not to be negative.
- An n-bit unsigned binary integer $A=a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ has a value of

$$
\sum^{n-1} a_{i} \cdot 2^{i}
$$

- What is 1011 as an iunsigned integer?
- An n-bit unsigned binary integer has a range from 0 to $2^{n}-1$.
- What is the value of of the 8-bit unsigned integer 10000001?

Signed Binary Integers

- Signed binary numbers are typically used to represent data that is either positive or negative.
- The most common representation for signed binary integers is the two's complement format.
- An n-bit 2's comp. binary integer $A=a_{n-1} a_{n-2} \ldots a_{1} a_{0}$ has a value of

$$
-a_{n-1} \cdot 2^{n-1}+\sum_{i n}^{n-2} a_{i} \cdot 2^{i}
$$

- What is 1011 as a 2 's comp.ifpteger?
- An n-bit 2's comp. binary integer has a range from -2n-1 to $2^{n-1}-1$.
- What is the value of the 2's comp. Integer 10000001?

'Two's Complement Negation

- To negate a two's complement integer, invert all the bits and add a one to the least significant bit.
- What are the two's complements of

$$
\begin{aligned}
& 6=0110 \longrightarrow 1001 \\
& \frac{+1}{1010}=-6 \\
& -4=1100 \longrightarrow 0011 \\
& \begin{array}{l}
+\quad 1 \\
0100=4
\end{array}
\end{aligned}
$$

- What is the value of the two's complement integer 1111111111111101 in decimal?
- What is the value of the unsigned integer 1111111111111101 in decimal?

'Two's Complement Addition

- To add two's complement numbers, add the corresponding bits of both numbers with carry between bits.
- For example,

$$
\begin{array}{r}
\begin{array}{r}
3=0011 \\
+2=0010 \\
5=0101
\end{array}+\begin{array}{r}
-3=1101 \\
-5=1110 \\
-5=1011 \\
+1=1111 \\
+2=0010 \\
-2=0001
\end{array}+\begin{array}{c}
3=0011 \\
-2=1110
\end{array} \\
\hline 1=0
\end{array}
$$

- Unsigned and two's complement addition are performed exactly the same way, but how they detect overflow differs.

'Two's Complement Subtraction

- To subtract two's complement numbers we first negate the second number and then add the corresponding bits of both numbers.
- For example:

$$
\begin{array}{r}
3=0011 \\
-\quad 2=0010 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
3=0011 \\
+\quad-2=1110 \\
\hline 1=0001
\end{array}
$$

Overflow

- When adding or subtracting numbers, the sum or difference can go beyond the range of representable numbers.
- This is known as overflow. For example, for two's complement numbers,

$$
\begin{array}{rrrr}
5 & =0101 & -5=1011 & 5=0101 \\
+6=0110 & +-6=1010 & -6=1010 & -+6=0110 \\
---1011
\end{array}
$$

- Overflow creates an incorrect result that should be detected.

2's Comp - Detecting Overflow

- When adding two's complement numbers, overflow will only occur if
- the numbers being added have the same sign
- the sign of the result is different
- If we perform the addition

$$
\begin{aligned}
& a_{n-1} a_{n-2} \ldots a_{1} a_{0} \\
& +b_{n-1} b_{n-2} \ldots b_{1} b_{0} \\
& =s_{n-1} s_{n-2} \ldots s_{1} s_{0}
\end{aligned}
$$

- Overflow can be detected as

$$
V=a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}}+\overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}
$$

- Overflow can also be detected as
$V=c_{n} \otimes c_{n-1}$, where $\mathrm{c}_{\mathrm{n}-1}$ and c_{n} are the carry in and carry out of the most significant bit.

Unsigned - Detecting Overflow

- For unsigned numbers, overflow occurs if there is carry out of the most significant bit.

$$
V=c_{n}
$$

- For example,

$$
\begin{array}{r}
1001=9 \\
+\quad 1000=8 \\
\hline 0001=1
\end{array}
$$

- With the MIPS architecture
- Overflow exceptions occur for two's complement arithmetic
- add, sub, addi
- Overflow exceptions do not occur for unsigned arithmetic
- addu, subu, addiu

Shift Operations

- The MIPS architecture defines various shift operations:
(a) sll r1, r2, 3
$r 2=10101100 \quad$ (shift left logical)
$r 1=01100000$
- shift in zeros to the least significant bits
(b) srl r1, r2, $3 \quad r 2=10101100 \quad$ (shift right logical)
$r 1=00010101$
- shift in zeros to the most significant bits
(c) sra r1, r2, $3 \quad \mathrm{r} 2=10101100 \quad$ (shift right arithmetic)
$r 1=11110101$
- copy the sign bit to the most significant bits
- There are also versions of these instructions that take three register operands.

Logical Operations

- In the MIPS architecture logical operations (and, or, xor) correspond to bit-wise operations.
(a) and r1, r2, r3 r3 = 1010 ($r 1$ is 1 if $r 2$ and $r 3$ are both one)

$$
\mathrm{r} 2=0110
$$

$$
\mathrm{r} 1=0010
$$

(b) or $r 1, r 2, r 3 \quad r 3=1010 \quad$ ($r 1$ is 1 if $r 2$ or $r 3$ is one)

$$
\text { r2 = } 0110
$$

$$
\mathrm{r} 1=1110
$$

(c) xor $r 1, r 2, r 3 \quad r 3=1010 \quad$ ($r 1$ is 1 if $r 2$ and $r 3$ are different)

$$
\begin{aligned}
& \mathrm{r} 2=0110 \\
& \mathrm{r} 1=1100
\end{aligned}
$$

- Immediate versions of these instructions are also supported.

ALU Interface

- We will be designing a 32-bit ALU with the following interface.

Set-on-less-than

- The set-on-less instruction

> slt \$s1, \$s2, \$s3
sets \$s1 to '1’ if (\$s2 < \$s3) and to '0' otherwise.

- This can be accomplished by
- subtracting \$s3 from \$s2
- setting the least significant bit to the sign bit of the result
- setting all other bits to zero
- if overflow occurs the sign bit needs to be inverted
- For example,

$$
\begin{aligned}
\$ s 2 & =1010 & \$ s 2 & =0111 \\
-\$ s 3 & =\underline{1011} & -\$ s 3 & =\underline{0100} \\
& =\mathbf{1 1 1 1} & & =\mathbf{0 0 1 1} \\
\$ s 1 & =0001 & \$ s 1 & =0000
\end{aligned}
$$

Full Adder

- A fundamental building block in the ALU is a full adder (FA).
- A FA performs a one bit addition.

$$
a_{i}+b_{i}+c_{i}=2 c_{i+1}+s_{i}
$$

Full Adder Logic Equations

- s_{i} is ' 1 ' if an odd number of inputs are ' 1 '.
- $\mathrm{c}_{\mathrm{i}+1}$ is ' 1 ' if two or more inputs are ' 1 '.

Full Adder Design

- One possible implementation of a full adder uses nine gates.

$$
\begin{aligned}
& s_{i}=a_{i} \otimes b_{i} \otimes c_{i} \\
& c_{i}+1=a_{i} b_{i}+c_{i}\left(a_{i} \otimes b_{i}\right) \\
& a_{i} \otimes b_{i}=\left(a_{i}+b_{i}\right) \overline{a_{i} b_{i}}
\end{aligned}
$$

1-Bit ALU

- The full adder, an xor gate, and a 4-to-1 mux are combined to form a 1-bit ALU.

ALUOp	Function
000	AND
001	OR
010	ADD
110	SUBTRACT
111	SET-ON-LESS-THAN

1-bit ALU for MSB

- The ALU for the MSB must also detect overflow and indicate the sign of the result.

$$
\begin{aligned}
& V=c_{n} \otimes c_{n-1} \\
& \text { set }=(A<B)
\end{aligned}
$$

Larger ALUs

- Three 1-bit ALUs, a 1-bit MSB ALU, and a 4-input NOR gate can be concatenated to form a 4-bit ALU.

Gate Counts

- Assume
- 4-input mux $=5$ gates
- XOR gate $=3$ gates
- AND/OR gate $=1$ gate
- Inverter $=0.5$ gates.
- How many gates are required by
- A 1-bit ALU?
- A 4-bit ALU?
- A 32-bit ALU?
- An n-bit ALU?
- Additional gates needed to compute V and Z

Gate Counts

- Assume
- 4-input mux $=5$ gates
- XOR gate $=3$ gates
- AND/OR gate $=1$ gate
- Inverter = 0.5 gates.
- How many gates are required by
- A 1-bit ALU? 16
- A 4-bit ALU? 16x4
- A 32-bit ALU? 16x32
- An n-bit ALU? 16xn
- (n-1) 2-input OR gates, 1 inverter and 1 XOR gate are needed to compute V and Z for an n-bit ALU

Gate Delays

- Assume delays of
- 4-input mux $=2 \mathrm{t}$
- XOR gate $=2 \mathrm{t}$
- AND/OR gate $=1 \mathrm{t}$
- Inverter = 1t
- What is the delay of
- A 1-bit ALU?
- A 4-bit ALU?
- A 32-bit ALU?
- An n-bit ALU?
- Additional delay needed to compute Z

Ripple Carry Adder (RCA)

- With the previous design the carry "rippled" from one 1bit ALU to the next.

- These leads to a relatively slow design.
- Z is ready at 19 t

Gate Delays

- Assume delays of
- 4-input mux $=2 \mathrm{t}$
- XOR gate $=2 \mathrm{t}$
- AND/OR gate $=1 \mathrm{t}$
- Inverter = 1t
- What is the delay of
- A 1-bit ALU? 10t
- A 4-bit ALU? 16t
- A 32-bit ALU? $(2 \times 32+8) t=72 t$
- An n-bit ALU? $(2 n+8) t$
- $\left\lceil\log _{2}(n)\right\rceil$ levels of 2-input OR gates and 1 inverter are needed to compute Z.

Carry Lookahead Adder (CLA)

- With a CLA, the carries are computed in parallel using carry lookahead logic (CLL).

Carry Logic Equation

- The carry logic equation is

$$
c_{i+1}=a_{i} b_{i}+\left(a_{i}+b_{i}\right) c_{i}
$$

- We define a propagate signal

$$
p_{i}=a_{i}+b_{i}
$$

and a generate signal

$$
g_{i}=a_{i} b_{i}
$$

- This allows the carry logic equation to be rewritten as

$$
c_{i+1}=g_{i}+p_{i} C_{i}
$$

Carry Lookahead Logic

- For a 4-bit carry lookahead adder, the carries are computed as

$$
\begin{aligned}
c_{1} & =g_{0}+p_{0} c_{0} \\
c_{2} & =g_{1}+p_{1} c_{1}=g_{1}+p_{1}\left(g_{0}+p_{0} c_{0}\right) \\
& =g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0} \\
c_{3} & =g_{2}+p_{2} c_{2}=g_{2}+p_{2}\left(g_{1}+p_{1} g_{0}+p_{1} p_{0} c_{0}\right) \\
& =g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0} \\
c_{4} & =g_{3}+p_{3} c_{3}=g_{3}+p_{3}\left(g_{2}+p_{2} g_{1}+p_{2} p_{1} g_{0}+p_{2} p_{1} p_{0} c_{0}\right) \\
& =g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}
\end{aligned}
$$

- How many gates does the 4-bit CLL require, if gates can have unlimited fan-in?
- If each logic level has a delay of only 1 t , the CLL has a delay of 2 t . $=>$ In practice this may not be realistic.

Modifying the 1-bit ALU

- How would we modify our 1-bit ALU if it is to be used in a CLA?
- How many gates does the modified 1-bit ALU require?
- How many gates does a 4-bit CLA require?
- How many gate delays until p_{i} and g_{i} are ready?

4-bit CLA Timing

- With a carry lookahead adder, the carries are computed in parallel using carry lookahead logic.

- This design requires $15 \times 4+14=74$ gates, without computing V or Z

16-bit ALU - Version 1

- A 16-bit ALU could be constructed by concatenating four 4 -bit CLAs and letting the carry "ripple" between 4 -bit "blocks".

- This design requires $74 \times 4=296$ gates, without computing V or Z .

16-bit ALU - Version 2

- Another approach is to use a second level of carry lookahead logic.
- This approach is faster, but requires more gates $16 \times 15+5 \times 14=310$ gates

4-bit CLA*

- The 4-bit CLA* (Block CLA) is similar to the first 4-bit CLA, except the CLL computes a "block" generate and "block propagate", instead of a carry out.
- Thus the computation
$c_{4}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}+p_{3} p_{2} p_{1} p_{0} c_{0}$
is replaced by

$$
\begin{aligned}
& \mathrm{P}_{3: 0}=\mathrm{p}_{3} \mathrm{p}_{2} \mathrm{p}_{1} p_{0} \\
& \mathrm{G}_{3: 0}=g_{3}+p_{3} g_{2}+p_{3} p_{2} g_{1}+p_{3} p_{2} p_{1} g_{0}
\end{aligned}
$$

- Note: $\mathrm{C}_{4}=\mathrm{G}_{3: 0}+\mathrm{P}_{3: 0} \mathrm{C}_{0}$
- This approach limits the maximum fan-in to four, and the carry-lookahead logic still requires 14 gates.

Conclusions

- An n-bit ALU can be designed by concatenating n 1-bit ALUs.
- Carry lookahead logic can be used to improve the speed of the computation.
- A variety of design options exist for implementing the ALU.
- The best design depends on area, delay, and power requirements, which vary based on the underlying technology.

Reading assignment

- Read 3.4, 3.5

