
COMP 303
Computer Architecture
Lecture 5

Unsigned Binary Integers
Unsigned binary numbers are typically used to
represent computer addresses or other values that are
guaranteed not to be negative.
An n-bit unsigned binary integer A = an-1 an-2... a1 a0
has a value of

What is 1011 as an unsigned integer?
An n-bit unsigned binary integer has a range from 0 to
2n - 1.
What is the value of of the 8-bit unsigned integer
10000001?

∑
−

=

⋅
1

0

2
n

i
i

ia

Signed Binary Integers
Signed binary numbers are typically used to represent
data that is either positive or negative.
The most common representation for signed binary
integers is the two's complement format.
An n-bit 2’s comp. binary integer A = an-1 an-2... a1 a0 has
a value of

What is 1011 as a 2’s comp. integer?
An n-bit 2’s comp. binary integer has a range from -2n-1

to 2n-1 - 1.
What is the value of the 2’s comp. Integer 10000001?

∑
−

=

−
− ⋅+⋅−

2

0

1
1 22

n

i
i

n
n

iaa

Two’s Complement Negation

To negate a two's complement integer, invert all the bits
and add a one to the least significant bit.
What are the two’s complements of
6 = 0110 1001 -4 = 1100 0011

+ 1 + 1
1010 = -6 0100 = 4

What is the value of the two's complement integer
1111111111111101 in decimal?
What is the value of the unsigned integer
1111111111111101 in decimal?

Two’s Complement Addition

To add two's complement numbers, add the
corresponding bits of both numbers with carry between
bits.
For example,
3 = 0011 -3 = 1101 -3 = 1101 3 = 0011

+ 2 = 0010 + -2 = 1110 + 2 = 0010 + -2 = 1110

Unsigned and two’s complement addition are performed
exactly the same way, but how they detect overflow
differs.

5 = 0101 -5 = 1011 -1 = 1111 1 = 0001

Two’s Complement Subtraction

To subtract two's complement numbers we first negate
the second number and then add the corresponding bits
of both numbers.

For example:
3 = 0011 3 = 0011

- 2 = 0010 + -2 = 1110

1 = 0001

Overflow

When adding or subtracting numbers, the sum or
difference can go beyond the range of representable
numbers.
This is known as overflow. For example, for two's
complement numbers,
5 = 0101 -5 = 1011 5 = 0101 -5 = 1011

+ 6 = 0110 + -6 = 1010 - -6 = 1010 - +6 = 0110
-------------- --------------- --------------- ----------------
-5 = 1011 5 = 0101 -5 = 1011 5 = 0101

Overflow creates an incorrect result that should be
detected.

2’s Comp - Detecting Overflow
When adding two's complement numbers, overflow will
only occur if

the numbers being added have the same sign
the sign of the result is different

If we perform the addition
an-1 an-2 ... a1 a0

+ bn-1 bn-2 … b1 b0

= sn-1 sn-2 … s1 s0

Overflow can be detected as

Overflow can also be detected as
, where cn-1and cn are the carry in and

carry out of the most significant bit.

111111 −⋅−⋅−+−⋅−⋅−= nnnnnn sbasbaV

1−⊗= nn ccV

Unsigned - Detecting Overflow

For unsigned numbers, overflow occurs if there is carry
out of the most significant bit.

For example,
1001 = 9

+ 1000 = 8
0001 = 1

With the MIPS architecture
Overflow exceptions occur for two’s complement arithmetic

add, sub, addi
Overflow exceptions do not occur for unsigned arithmetic

addu, subu, addiu

ncV =

Shift Operations
The MIPS architecture defines various shift operations:
(a) sll r1, r2, 3 r2 = 10101100 (shift left logical)

r1 = 01100000
- shift in zeros to the least significant bits

(b) srl r1, r2, 3 r2 = 10101100 (shift right logical)
r1 = 00010101

- shift in zeros to the most significant bits
(c) sra r1, r2, 3 r2 = 10101100 (shift right arithmetic)

r1 = 11110101
- copy the sign bit to the most significant bits

There are also versions of these instructions that take
three register operands.

Logical Operations

In the MIPS architecture logical operations (and, or, xor)
correspond to bit-wise operations.
(a) and r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are both one)

r2 = 0110
r1 = 0010

(b) or r1, r2, r3 r3 = 1010 (r1 is 1 if r2 or r3 is one)
r2 = 0110
r1 = 1110

(c) xor r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are different)
r2 = 0110
r1 = 1100

Immediate versions of these instructions are also
supported.

ALU Interface

We will be designing a 32-bit ALU with the following
interface.

Z =1, if Result=0
V= 1, if Overflow
C32 = 1, if Carry-Out

ALUOp | Function
000 | AND
001 | OR
010 | ADD
110 | SUBTRACT
111 | SET-ON-LESS-THAN

32

32

Result

B

ALU

32

A

3Z

C32

V
ALUOp

Set-on-less-than

The set-on-less instruction
slt $s1, $s2, $s3

sets $s1 to ‘1’ if ($s2 < $s3) and to ‘0’ otherwise.
This can be accomplished by

subtracting $s3 from $s2
setting the least significant bit to the sign bit of the result
setting all other bits to zero
if overflow occurs the sign bit needs to be inverted

For example,
$s2 = 1010 $s2 = 0111
-$s3 = 1011 -$s3 = 0100

= 1111 = 0011
$s1 = 0001 $s1 = 0000

Full Adder

A fundamental building block in the ALU is a full adder (FA).
A FA performs a one bit addition.

ai+ bi + ci = 2ci+1 + si

FA

aibi

cici+1

si

0 1 0 1
0 1 1 1
1 1 0 0

ai
bi
si

cici+1 1 1 1 0

Full Adder Logic Equations

si is ‘1’ if an odd number of inputs are ‘1’.
ci+1 is ‘1’ if two or more inputs are ‘1’ .

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

ai bi ci ci+1 si
iiii cbas ⊗⊗=

iiiiiii cbcabac +++ =1

iiiiiiiiiiiii cbacbacbacbas +++=

iiiiiiiiiiiii cbacbacbacbac ++++ =1

)(1 iiiiii bacbac +++ =
)(1 iiiiii bacbac ⊗++ =

Full Adder Design

One possible implementation of a full adder uses nine
gates.

iiii cbas ⊗⊗=

)(1 iiiiii bacbac ⊗+ +=

7

iaib

ic

is

1+ic

iiiiii bababa)(+=⊗

1-Bit ALU
The full adder, an xor gate, and a 4-to-1
mux are combined to form a 1-bit ALU.

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

1-bit
ALU

aibi

cici+1

ri

lessi

ALUop2:0

ALUOp | Function
000 | AND
001 | OR
010 | ADD
110 | SUBTRACT
111 | SET-ON-LESS-THAN

1-bit ALU for MSB

The ALU for the MSB
must also detect overflow
and indicate the sign of
the result.

1−⊗= nn ccV

)(BAset <=

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

V

set

Larger ALUs

Three 1-bit ALUs, a 1-bit MSB ALU, and a 4-input NOR
gate can be concatenated to form a 4-bit ALU.

1-bit
ALU

a0bo

c1

r0

ALUop2:0

c0=ALUop2
1-bit
ALU

a1b1

c2

r1

0

1-bit
ALU

a2b2

c3

r2

0

1-bit
MSB
ALU

a3b3

V

r3

0

c4

set

Z

Gate Counts

Assume
4-input mux = 5 gates
XOR gate = 3 gates
AND/OR gate = 1 gate
Inverter = 0.5 gates.

How many gates are
required by

A 1-bit ALU?
A 4-bit ALU?
A 32-bit ALU?
An n-bit ALU?

Additional gates needed
to compute V and Z

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

Gate Counts
Assume

4-input mux = 5 gates
XOR gate = 3 gates
AND/OR gate = 1 gate
Inverter = 0.5 gates.

How many gates are
required by

A 1-bit ALU? 16
A 4-bit ALU? 16x4
A 32-bit ALU? 16x32
An n-bit ALU? 16xn

(n-1) 2-input OR gates, 1
inverter and 1 XOR gate
are needed to compute V
and Z for an n-bit ALU

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

Gate Delays

Assume delays of
4-input mux = 2t
XOR gate = 2t
AND/OR gate = 1t
Inverter = 1t

What is the delay of
A 1-bit ALU?
A 4-bit ALU?
A 32-bit ALU?
An n-bit ALU?

Additional delay needed
to compute Z

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

Ripple Carry Adder (RCA)

With the previous design the carry “rippled” from one 1-
bit ALU to the next.

These leads to a relatively slow design.
Z is ready at 19 t

1-bit
ALU

a0bo

c1 c0
1-bit
ALU

a1b1

c2
1-bit
ALU

a2b2

c3
1-bit
ALU

a3b3

c4

r0r1r2r3

7t

10t12t14t16t

9t11t13t

Gate Delays

Assume delays of
4-input mux = 2t
XOR gate = 2t
AND/OR gate = 1t
Inverter = 1t

What is the delay of
A 1-bit ALU? 10t
A 4-bit ALU? 16t
A 32-bit ALU? (2x32+8)t = 72t
An n-bit ALU? (2n+8)t

⎡log2(n)⎤ levels of 2-input OR
gates and 1 inverter are
needed to compute Z.

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

Carry Lookahead Adder (CLA)

With a CLA, the carries are computed in parallel using
carry lookahead logic (CLL).

1-bit
ALU*

a0bo

c1 c01-bit
ALU*

a1b1

c2
1-bit
ALU*

a2b2

c3
1-bit
ALU*

a3b3

r0r1r2r3

Carry Lookahead Logic

p0 g0p1 g1p2 g2p3 g3
c4

Carry Logic Equation

The carry logic equation is

We define a propagate signal

and a generate signal

This allows the carry logic equation to be rewritten as

iiiiii cbabac)(1 ++=+

iii bap +=

iii bag =

iiii cpgc +=+ 1

Carry Lookahead Logic
For a 4-bit carry lookahead adder, the carries are computed as
c1 = g0 + p0c0

c2 = g1 + p1c1= g1 + p1(g0 + p0c0)
= g1 + p1g0 + p1p0c0

c3 = g2 + p2c2= g2 + p2(g1 + p1g0 + p1p0c0)
= g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3= g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0c0)
= g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

How many gates does the 4-bit CLL require, if gates can have
unlimited fan-in?
If each logic level has a delay of only 1t, the CLL has a delay
of 2t. => In practice this may not be realistic.

Modifying the 1-bit ALU

How would we modify our
1-bit ALU if it is to be
used in a CLA?
How many gates does
the modified 1-bit ALU
require?
How many gates does a
4-bit CLA require?
How many gate delays
until pi and gi are ready?

7

ia

ib

ic

ir

1+ic

0 12

iless

3 0,1ALUop

2ALUop

4-bit CLA Timing
With a carry lookahead adder, the carries are computed
in parallel using carry lookahead logic.

1-bit
ALU*

a0bo

c1 c01-bit
ALU*

a1b1

c2
1-bit
ALU*

a2b2

c3
1-bit
ALU*

a3b3

r0r1r2r3

Carry Lookahead Logic

p0 g0p1 g1p2 g2p3 g3
c4

3t3t

5t5t

5t

10t

This design requires 15x4 +14 = 74 gates, without
computing V or Z

16-bit ALU - Version 1

A 16-bit ALU could be constructed by concatenating four
4-bit CLAs and letting the carry “ripple” between 4-bit
“blocks”.

This design requires 74x4 = 296 gates, without
computing V or Z.

4-bit
CLA

a3:0b3:0

c4 c0
4-bit
CLA

c8
4-bit
CLA

c12
4-bit
CLA

c16

r3:0r7:4r11:8r15:12

5t

10t12t14t16t

7t9t11t

a7:4b7:4a11:8b11:8a15:12b15:12

16-bit ALU - Version 2
Another approach is to use a second level of carry
lookahead logic.
This approach is faster, but requires more gates

16x15 + 5x14 = 310 gates

4-bit
CLA*

c4 c04-bit
CLA*

c8
4-bit
CLA*

c12
4-bit
CLA*

r3:0r7:4r11:8r15:12

Carry Lookahead Logicc16

5t5t

6t7t

14t

a3:0b3:0a7:4b7:4a11:8b11:8a15:12b15:12

4t
G3:0P3:0

4t
G11:8

P11:8

7t

4-bit CLA*

The 4-bit CLA* (Block CLA) is similar to the first 4-bit
CLA, except the CLL computes a “block” generate and
“block propagate”, instead of a carry out.
Thus the computation
c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

is replaced by
P3:0 = p3p2p1p0

G3:0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

Note: c4 = G3:0 + P3:0c0

This approach limits the maximum fan-in to four, and the
carry-lookahead logic still requires 14 gates.

Conclusions

An n-bit ALU can be designed by concatenating n
1-bit ALUs.
Carry lookahead logic can be used to improve the
speed of the computation.
A variety of design options exist for implementing
the ALU.
The best design depends on area, delay, and
power requirements, which vary based on the
underlying technology.

Reading assignment

Read 3.4, 3.5

	COMP 303�Computer Architecture�Lecture 5
	Unsigned Binary Integers
	Signed Binary Integers
	Two’s Complement Negation
	Two’s Complement Addition
	Two’s Complement Subtraction
	Overflow
	2’s Comp - Detecting Overflow
	Unsigned - Detecting Overflow
	Shift Operations
	Logical Operations
	ALU Interface
	Set-on-less-than
	Full Adder
	Full Adder Logic Equations
	Full Adder Design
	1-Bit ALU
	1-bit ALU for MSB
	Larger ALUs
	Gate Counts
	Gate Counts
	Gate Delays
	Ripple Carry Adder (RCA)
	Gate Delays
	Carry Lookahead Adder (CLA)
	Carry Logic Equation
	Carry Lookahead Logic
	Modifying the 1-bit ALU
	4-bit CLA Timing
	16-bit ALU - Version 1
	16-bit ALU - Version 2
	4-bit CLA*
	Conclusions
	Reading assignment

