COMP 303 Computer Architecture Lecture 5

Unsigned Binary Integers

- Unsigned binary numbers are typically used to represent computer addresses or other values that are guaranteed not to be negative.
- An n-bit unsigned binary integer A = a_{n-1} a_{n-2}... a₁ a₀ has a value of

$$\sum_{i=1}^{n-1} a_i \cdot 2^i$$

- What is 1011 as an item signed integer?
- An n-bit unsigned binary integer has a range from 0 to 2ⁿ - 1.
- What is the value of of the 8-bit unsigned integer 10000001?

Signed Binary Integers

- Signed binary numbers are typically used to represent data that is either positive or negative.
- The most common representation for signed binary integers is the two's complement format.
- An n-bit 2's comp. binary integer A = a_{n-1} a_{n-2}... a₁ a₀ has a value of

$$-a_{n-1} \cdot 2^{n-1} + \sum_{i=1}^{n-2} a_i \cdot 2^i$$

- What is 1011 as a 2's comp.ⁱinteger?
- An n-bit 2's comp. binary integer has a range from -2ⁿ⁻¹ to 2ⁿ⁻¹ - 1.
- What is the value of the 2's comp. Integer 10000001?

Two's Complement Negation

- To negate a two's complement integer, invert all the bits and add a one to the least significant bit.
- What are the two's complements of

$$6 = 0110 \longrightarrow 1001$$

+ 1
1010 = -6

$$-4 = 1100 \implies 0011$$

 $+ 1$
 $0100 = 4$

- What is the value of the two's complement integer 1111111111111101 in decimal?
- What is the value of the unsigned integer 111111111111101 in decimal?

Two's Complement Addition

To add two's complement numbers, add the corresponding bits of both numbers with carry between bits.

For example,

	3 = 0011	-3 = 1101	-3 = 1101	3 = 0011
+	2 = 0010	+ -2 = 1110	+ 2 = 0010	+ -2 = 1110
	5 = 0101	-5 = 1011	-1 = 1111	1 = 0001

 Unsigned and two's complement addition are performed exactly the same way, but how they detect overflow differs.

Two's Complement Subtraction

To subtract two's complement numbers we first negate the second number and then add the corresponding bits of both numbers.

Overflow

- When adding or subtracting numbers, the sum or difference can go beyond the range of representable numbers.
- This is known as overflow. For example, for two's complement numbers,

5 = 0101 -5 = 1011 5 = 0101 -5 = 1011

+ 6 = 0110 + -6 = 1010 - -6 = 1010 - +6 = 0110

-5 = 1011 5 = 0101 -5 = 1011 5 = 0101

 Overflow creates an incorrect result that should be detected.

2's Comp - Detecting Overflow

- When adding two's complement numbers, overflow will only occur if
 - the numbers being added have the same sign
 - the sign of the result is different
- If we perform the addition

$$a_{n-1} a_{n-2} \dots a_1 a_0$$

$$+ b_{n-1} b_{n-2} \dots b_1 b_0$$

 $= S_{n-1} S_{n-2} \dots S_1 S_0$

Overflow can be detected as

$$V = a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}} + \overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}$$

Overflow can also be detected as

 $V = c_n \otimes c_{n-1}$, where c_{n-1} and c_n are the carry in and carry out of the most significant bit.

Unsigned - Detecting Overflow

 For unsigned numbers, overflow occurs if there is carry out of the most significant bit.

$$V = c_n$$

For example,

1001 = 9

+ 1000 = 8

0001 = 1

- With the MIPS architecture
 - Overflow exceptions occur for two's complement arithmetic
 - add, sub, addi
 - Overflow exceptions do not occur for unsigned arithmetic
 - addu, subu, addiu

Shift Operations

- The MIPS architecture defines various shift operations:
 - (a) sll r1, r2, 3 r2 = 10101100 (shift left logical) r1 = 01100000
 - shift in zeros to the least significant bits
 - (b) srl r1, r2, 3 r2 = 10101100 (shift right logical) r1 = 00010101
 - shift in zeros to the most significant bits
 - (c) sra r1, r2, 3 r2 = 10101100 (shift right arithmetic) r1 = 11110101

- copy the sign bit to the most significant bits

 There are also versions of these instructions that take three register operands.

Logical Operations

In the MIPS architecture logical operations (and, or, xor) correspond to bit-wise operations.

(a) and r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are both one) r2 = 0110 r1 = 0010(b) or r1, r2, r3 r3 = 1010 (r1 is 1 if r2 or r3 is one) r2 = 0110 r1 = 1110(c) xor r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are different) r2 = 0110r1 = 1100

 Immediate versions of these instructions are also supported.

ALU Interface

We will be designing a 32-bit ALU with the following interface.

Set-on-less-than

The set-on-less instruction

slt \$s1, \$s2, \$s3

sets s1 to '1' if (s2 < s3) and to '0' otherwise.

- This can be accomplished by
 - subtracting \$s3 from \$s2
 - setting the least significant bit to the sign bit of the result
 - setting all other bits to zero
 - if overflow occurs the sign bit needs to be inverted
- For example,

\$s2 = 1010 \$s2 = 0111 \$s3 = 1011 = 1111 \$s1 = 0001 \$s2 = 0111 \$s2 = 0111 \$s3 = 0100 = 0011\$s1 = 0000

Full Adder

- A fundamental building block in the ALU is a full adder (FA).
- A FA performs a one bit addition.

 $a_i + b_i + c_i = 2c_{i+1} + s_i$

Full Adder Logic Equations

- s_i is '1' if an odd number of inputs are '1'.
- c_{i+1} is '1' if two or more inputs are '1'.

$$s_{i} = \overline{a_{i}b_{i}c_{i}} + \overline{a_{i}b_{i}c_{i}} + a_{i}\overline{b_{i}c_{i}} + a_{i}b_{i}c_{i}$$

$$s_{i} = a_{i} \otimes b_{i} \otimes c_{i}$$

$$c_{i+1} = \overline{a_{i}b_{i}c_{i}} + a_{i}\overline{b_{i}c_{i}} + a_{i}b_{i}\overline{c_{i}} + a_{i}b_{i}c_{i}$$

$$c_{i+1} = a_{i}b_{i} + a_{i}c_{i} + b_{i}c_{i}$$

$$c_{i+1} = a_{i}b_{i} + c_{i}(a_{i} + b_{i})$$

$$c_{i+1} = a_{i}b_{i} + c_{i}(a_{i} \otimes b_{i})$$

Full Adder Design

One possible implementation of a full adder uses nine gates.

1-Bit ALU

 The full adder, an xor gate, and a 4-to-1 mux are combined to form a 1-bit ALU.

ALUOp	Function
000	AND
001	OR
010	ADD
110	SUBTRACT
111	SET-ON-LESS-THAN

1-bit ALU for MSB

The ALU for the MSB must also detect overflow and indicate the sign of the result.

Larger ALUs

Three 1-bit ALUs, a 1-bit MSB ALU, and a 4-input NOR gate can be concatenated to form a 4-bit ALU.

Gate Counts

Assume

- 4-input mux = 5 gates
- XOR gate = 3 gates
- AND/OR gate = 1 gate
- Inverter = 0.5 gates.
- How many gates are required by
 - A 1-bit ALU?
 - A 4-bit ALU?
 - A 32-bit ALU?
 - An n-bit ALU?
- Additional gates needed to compute V and Z

Gate Counts

Assume

- 4-input mux = 5 gates
- XOR gate = 3 gates
- AND/OR gate = 1 gate
- Inverter = 0.5 gates.
- How many gates are required by
 - A 1-bit ALU? 16
 - A 4-bit ALU? 16x4
 - A 32-bit ALU? 16x32
 - An n-bit ALU? 16xn
- (n-1) 2-input OR gates, 1 inverter and 1 XOR gate are needed to compute V and Z for an n-bit ALU

Gate Delays

- Assume delays of
 - 4-input mux = 2t
 - XOR gate = 2t
 - AND/OR gate = 1t
 - Inverter = 1t
- What is the delay of
 - A 1-bit ALU?
 - A 4-bit ALU?
 - A 32-bit ALU?
 - An n-bit ALU?
- Additional delay needed to compute Z

Ripple Carry Adder (RCA)

With the previous design the carry "rippled" from one 1bit ALU to the next.

- These leads to a relatively slow design.
- Z is ready at 19 t

Gate Delays

Assume delays of

- 4-input mux = 2t
- XOR gate = 2t
- AND/OR gate = 1t
- Inverter = 1t

What is the delay of

- A 1-bit ALU? 10t
- A 4-bit ALU? 16t
- □ A 32-bit ALU? (2x32+8)t = 72t
- An n-bit ALU? (2n+8)t
- Iog₂(n) levels of 2-input OR gates and 1 inverter are needed to compute Z.

Carry Lookahead Adder (CLA)

 With a CLA, the carries are computed in parallel using carry lookahead logic (CLL).

Carry Logic Equation

The carry logic equation is

 $c_{i+1} = a_i b_i + (a_i + b_i) c_i$

• We define a <u>propagate</u> signal $p_i = a_i + b_i$

and a <u>generate</u> signal $g_i = a_i b_i$

This allows the carry logic equation to be rewritten as

 $c_{i+1} = g_i + p_i c_i$

Carry Lookahead Logic

- For a 4-bit carry lookahead adder, the carries are computed as $c_1 = g_0 + p_0 c_0$ $c_2 = g_1 + p_1 c_1 = g_1 + p_1 (g_0 + p_0 c_0)$ $= g_1 + p_1 g_0 + p_1 p_0 c_0$ $c_3 = g_2 + p_2 c_2 = g_2 + p_2 (g_1 + p_1 g_0 + p_1 p_0 c_0)$ $= g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0$ $c_4 = g_3 + p_3 c_3 = g_3 + p_3 (g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 c_0)$ $= g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$
- How many gates does the 4-bit CLL require, if gates can have unlimited fan-in?
- If each logic level has a delay of only 1t, the CLL has a delay of 2t. => In practice this may not be realistic.

Modifying the 1-bit ALU

- How would we modify our 1-bit ALU if it is to be used in a CLA?
- How many gates does the modified 1-bit ALU require?
- How many gates does a 4-bit CLA require?
- How many gate delays until p_i and g_i are ready?

4-bit CLA Timing

 With a carry lookahead adder, the carries are computed in parallel using carry lookahead logic.

This design requires 15x4 +14 = 74 gates, without computing V or Z

16-bit ALU - Version 1

 A 16-bit ALU could be constructed by concatenating four 4-bit CLAs and letting the carry "ripple" between 4-bit "blocks".

16-bit ALU - Version 2

- Another approach is to use a second level of carry lookahead logic.
- This approach is faster, but requires more gates 16x15 + 5x14 = 310 gates

4-bit CLA*

- The 4-bit CLA* (Block CLA) is similar to the first 4-bit CLA, except the CLL computes a "block" generate and "block propagate", instead of a carry out.
- Thus the computation
 - $c_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 c_0$ is replaced by

$$P_{3:0} = p_3 p_2 p_1 p_0$$

- $\mathbf{G}_{3:0} = \mathbf{g}_3 + \mathbf{p}_3 \mathbf{g}_2 + \mathbf{p}_3 \mathbf{p}_2 \mathbf{g}_1 + \mathbf{p}_3 \mathbf{p}_2 \mathbf{p}_1 \mathbf{g}_0$
- Note: $c_4 = G_{3:0} + P_{3:0}c_0$
- This approach limits the maximum fan-in to four, and the carry-lookahead logic still requires 14 gates.

Conclusions

- An *n*-bit ALU can be designed by concatenating *n* 1-bit ALUs.
- Carry lookahead logic can be used to improve the speed of the computation.
- A variety of design options exist for implementing the ALU.
- The best design depends on area, delay, and power requirements, which vary based on the underlying technology.

Reading assignment

Read 3.4, 3.5