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Unsigned Binary Integers
Unsigned binary numbers are typically used to 
represent computer addresses or other values that are 
guaranteed not to be negative.
An n-bit unsigned binary integer A = an-1 an-2... a1 a0
has a value of 

What is 1011 as an unsigned integer? 
An n-bit unsigned binary integer has a range from 0 to 
2n - 1.
What is the value of of the 8-bit unsigned integer 
10000001?

∑
−

=

⋅
1

0

2
n

i
i

ia



Signed Binary Integers
Signed binary numbers are typically used to represent 
data that is either positive or negative.
The most common representation for signed binary 
integers is the two's complement format.
An n-bit 2’s comp. binary integer A = an-1 an-2... a1 a0 has 
a value of 

What is 1011 as a 2’s comp. integer?
An n-bit 2’s comp. binary integer has a range from -2n-1

to 2n-1 - 1.
What is the value of the 2’s comp. Integer 10000001?  
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Two’s Complement Negation

To negate a two's complement integer, invert all the bits 
and add a one to the least significant bit.
What are the two’s complements of
6 = 0110 1001 -4 = 1100 0011

+      1 +          1
1010  = -6 0100 = 4 

What is the value of the two's complement integer 
1111111111111101 in decimal?
What is the value of the unsigned integer 
1111111111111101 in decimal? 



Two’s Complement Addition

To add two's complement numbers, add the 
corresponding bits of both numbers with carry between 
bits. 
For example, 
3 = 0011 -3 = 1101 -3 = 1101 3 = 0011

+ 2 = 0010 + -2 = 1110 + 2 = 0010 + -2 = 1110

Unsigned and two’s complement addition are performed 
exactly the same way, but how they detect overflow 
differs. 

5 = 0101 -5 = 1011 -1 = 1111 1 = 0001



Two’s Complement Subtraction

To subtract two's complement numbers we first negate 
the second number and then add the corresponding bits 
of both numbers.

For example:
3 = 0011      3 = 0011

- 2 = 0010    + -2 = 1110

1 = 0001



Overflow

When adding or subtracting numbers, the sum or 
difference can go beyond the range of representable 
numbers. 
This is known as overflow. For example, for two's 
complement numbers, 
5 = 0101       -5 = 1011      5 = 0101        -5 = 1011

+ 6 = 0110    + -6 = 1010  - -6 = 1010     - +6 = 0110
-------------- --------------- --------------- ----------------
-5 = 1011        5 = 0101     -5 = 1011         5 = 0101

Overflow creates an incorrect result that should be 
detected. 



2’s Comp - Detecting Overflow
When adding two's complement numbers, overflow will 
only occur if 

the numbers being added have the same sign 
the sign of the result is different

If we perform the addition
an-1 an-2 ... a1  a0

+ bn-1 bn-2 … b1 b0
----------------------------------

= sn-1 sn-2 … s1 s0

Overflow can be detected as

Overflow can also be detected as
, where cn-1and cn are the carry in and 

carry out of the most significant bit.
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Unsigned - Detecting Overflow

For unsigned numbers, overflow occurs if there is carry 
out of the most significant bit.

For example, 
1001 = 9

+ 1000 = 8
0001 = 1 

With the MIPS architecture
Overflow exceptions occur for two’s complement arithmetic

add, sub, addi
Overflow exceptions do not occur for unsigned arithmetic

addu, subu, addiu
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Shift Operations
The MIPS architecture defines various shift operations: 
(a) sll  r1, r2, 3 r2 = 10101100       (shift left logical)

r1 = 01100000
- shift in zeros to the least significant bits

(b) srl  r1, r2, 3 r2 = 10101100       (shift right logical)
r1 = 00010101

- shift in zeros to the most significant bits
(c) sra  r1, r2, 3 r2 = 10101100       (shift right arithmetic)

r1 = 11110101
- copy the sign bit to the most significant bits

There are also versions of these instructions that take 
three register operands. 



Logical Operations

In the MIPS architecture logical operations (and, or, xor) 
correspond to bit-wise operations. 
(a) and r1, r2, r3      r3 = 1010     (r1 is 1 if r2 and r3 are both one) 

r2 = 0110
r1 = 0010  

(b) or  r1, r2, r3        r3 = 1010     (r1 is 1 if r2 or r3 is one) 
r2 = 0110
r1 = 1110  

(c) xor r1, r2, r3        r3 = 1010     (r1 is 1 if r2 and r3 are different) 
r2 = 0110
r1 = 1100 

Immediate versions of these instructions are also 
supported. 



ALU Interface

We will be designing a 32-bit ALU with the following 
interface.

Z =1, if Result=0
V= 1, if Overflow
C32 = 1, if Carry-Out

ALUOp     | Function
000         |      AND
001         |      OR
010         |      ADD
110         |      SUBTRACT
111         |      SET-ON-LESS-THAN
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Set-on-less-than

The set-on-less instruction 
slt $s1, $s2, $s3

sets $s1 to ‘1’ if ($s2 < $s3) and to ‘0’ otherwise.
This can be accomplished by 

subtracting $s3 from $s2
setting the least significant bit to the sign bit of the result
setting all other bits to zero 
if overflow occurs the sign bit needs to be inverted

For example, 
$s2 = 1010 $s2 = 0111
-$s3 = 1011 -$s3 = 0100

= 1111 = 0011
$s1 = 0001 $s1 = 0000



Full Adder

A fundamental building block in the ALU is a full adder (FA). 
A FA performs a one bit addition.

ai+ bi + ci = 2ci+1 + si 

FA

aibi

cici+1

si

0 1 0 1
0 1 1 1
1 1 0 0

ai
bi
si

cici+1 1  1  1  0



Full Adder Logic Equations

si is ‘1’ if an odd number of inputs are ‘1’.
ci+1 is ‘1’ if two or more inputs are ‘1’ .

0     0     0     0      0
0     0     1     0      1
0     1     0     0      1
0     1     1     1      0
1     0     0     0      1
1     0     1     1      0
1     1     0     1      0
1     1     1     1      1

ai bi ci ci+1 si
iiii cbas ⊗⊗=

iiiiiii cbcabac +++ =1

iiiiiiiiiiiii cbacbacbacbas +++=

iiiiiiiiiiiii cbacbacbacbac ++++ =1

)(1 iiiiii bacbac +++ =
)(1 iiiiii bacbac ⊗++ =



Full Adder Design

One possible implementation of a full adder uses nine 
gates.

iiii cbas ⊗⊗=

)(1 iiiiii bacbac ⊗+ +=
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1-Bit ALU
The full adder, an xor gate, and a 4-to-1 
mux are combined to form a 1-bit ALU.
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1-bit
ALU

aibi

cici+1

ri

lessi

ALUop2:0

ALUOp     | Function
000         |      AND
001         |      OR
010         |      ADD
110         |      SUBTRACT
111         |      SET-ON-LESS-THAN



1-bit ALU for MSB

The ALU for the MSB 
must also detect overflow 
and indicate the sign of 
the result.
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Larger ALUs

Three 1-bit ALUs, a 1-bit MSB ALU, and a 4-input NOR 
gate can be concatenated to form a 4-bit ALU.

1-bit
ALU

a0bo

c1

r0

ALUop2:0

c0=ALUop2
1-bit
ALU

a1b1

c2

r1

0

1-bit
ALU

a2b2

c3

r2

0

1-bit
MSB
ALU

a3b3

V

r3

0

c4
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Z



Gate Counts

Assume 
4-input mux = 5 gates
XOR gate = 3 gates
AND/OR gate = 1 gate
Inverter = 0.5 gates.

How many gates are 
required by 

A 1-bit ALU? 
A 4-bit ALU?
A 32-bit ALU?
An n-bit ALU?

Additional gates needed 
to compute V and Z
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Gate Counts
Assume 

4-input mux = 5 gates
XOR gate = 3 gates
AND/OR gate = 1 gate
Inverter = 0.5 gates.

How many gates are 
required by 

A 1-bit ALU? 16
A 4-bit ALU? 16x4 
A 32-bit ALU? 16x32
An n-bit ALU? 16xn

(n-1) 2-input OR gates, 1 
inverter and 1 XOR gate 
are needed to compute V 
and Z for an n-bit ALU
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Gate Delays

Assume delays of 
4-input mux = 2t
XOR gate = 2t
AND/OR gate = 1t
Inverter = 1t

What is the delay of
A 1-bit ALU?
A 4-bit ALU?
A 32-bit ALU?
An n-bit ALU?

Additional delay needed 
to compute Z
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Ripple Carry Adder (RCA)

With the previous design the carry “rippled” from one 1-
bit ALU to the next.  

These leads to a relatively slow design.  
Z is ready at 19 t

1-bit
ALU

a0bo

c1 c0
1-bit
ALU

a1b1

c2
1-bit
ALU

a2b2

c3
1-bit
ALU

a3b3

c4

r0r1r2r3

7t

10t12t14t16t

9t11t13t



Gate Delays

Assume delays of 
4-input mux = 2t
XOR gate = 2t
AND/OR gate = 1t
Inverter = 1t

What is the delay of
A 1-bit ALU? 10t
A 4-bit ALU? 16t
A 32-bit ALU? (2x32+8)t = 72t
An n-bit ALU? (2n+8)t

⎡log2(n)⎤ levels of 2-input OR 
gates and 1 inverter are 
needed to compute Z.
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Carry Lookahead Adder (CLA)

With a CLA, the carries are computed in parallel using 
carry lookahead logic (CLL). 

1-bit
ALU*

a0bo

c1 c01-bit
ALU*

a1b1

c2
1-bit
ALU*

a2b2

c3
1-bit
ALU*

a3b3

r0r1r2r3

Carry Lookahead Logic

p0 g0p1 g1p2 g2p3 g3
c4



Carry Logic Equation

The carry logic equation is 

We define a propagate signal 

and a generate signal

This allows the carry logic equation to be rewritten as 

iiiiii cbabac )(1 ++=+

iii bap +=

iii bag =

iiii cpgc +=+ 1



Carry Lookahead Logic
For a 4-bit carry lookahead adder, the carries are computed as
c1 = g0 + p0c0

c2 = g1 + p1c1= g1 + p1(g0 + p0c0)
= g1 + p1g0 + p1p0c0

c3 = g2 + p2c2= g2 + p2(g1 + p1g0 + p1p0c0)
= g2 + p2g1 + p2p1g0 + p2p1p0c0

c4 = g3 + p3c3= g3 + p3(g2 + p2g1 + p2p1g0 + p2p1p0c0)
= g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

How many gates does the 4-bit CLL require, if gates can have 
unlimited fan-in? 
If each logic level has a delay of only 1t, the CLL has a delay 
of 2t. => In practice this may not be realistic.



Modifying the 1-bit ALU

How would we modify our 
1-bit ALU if it is to be 
used in a CLA?
How many gates does 
the modified 1-bit ALU 
require?
How many gates does a 
4-bit CLA require?
How many gate delays 
until pi and gi are ready?
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4-bit CLA Timing
With a carry lookahead adder, the carries are computed 
in parallel using carry lookahead logic. 

1-bit
ALU*

a0bo

c1 c01-bit
ALU*

a1b1

c2
1-bit
ALU*

a2b2

c3
1-bit
ALU*

a3b3

r0r1r2r3

Carry Lookahead Logic

p0 g0p1 g1p2 g2p3 g3
c4

3t3t

5t5t

5t

10t

This design requires 15x4 +14 = 74 gates, without 
computing V or Z 



16-bit ALU - Version 1

A 16-bit ALU could be constructed by concatenating four 
4-bit CLAs and letting the carry “ripple” between 4-bit 
“blocks”. 

This design requires 74x4 = 296 gates, without 
computing V or Z.

4-bit
CLA

a3:0b3:0

c4 c0
4-bit
CLA

c8
4-bit
CLA

c12
4-bit
CLA

c16

r3:0r7:4r11:8r15:12

5t

10t12t14t16t

7t9t11t

a7:4b7:4a11:8b11:8a15:12b15:12



16-bit ALU - Version 2
Another approach is to use a second level of carry 
lookahead logic. 
This approach is faster, but requires more gates 

16x15 + 5x14  = 310 gates 

4-bit
CLA*

c4 c04-bit
CLA*

c8
4-bit
CLA*

c12
4-bit
CLA*

r3:0r7:4r11:8r15:12

Carry Lookahead Logicc16

5t5t

6t7t

14t

a3:0b3:0a7:4b7:4a11:8b11:8a15:12b15:12

4t
G3:0P3:0

4t
G11:8

P11:8

7t



4-bit CLA*

The 4-bit CLA* (Block CLA) is similar to the first 4-bit 
CLA, except the CLL computes a “block” generate and 
“block propagate”, instead of a carry out. 
Thus the computation
c4 = g3 + p3g2 + p3p2g1 + p3p2p1g0 + p3p2p1p0c0

is replaced by 
P3:0 = p3p2p1p0

G3:0 = g3 + p3g2 + p3p2g1 + p3p2p1g0

Note: c4 = G3:0 + P3:0c0

This approach limits the maximum fan-in to four, and the 
carry-lookahead logic still requires 14 gates.



Conclusions

An n-bit ALU can be designed by concatenating n
1-bit ALUs. 
Carry lookahead logic can be used to improve the 
speed of the computation.
A variety of design options exist for implementing 
the ALU.
The best design depends on area, delay, and 
power requirements, which vary based on the 
underlying technology. 



Reading assignment

Read 3.4, 3.5
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