
COMP 303
Computer Architecture
Lecture 6

MULTIPLY (unsigned)
Paper and pencil example (unsigned):

Multiplicand 1000 = 8
Multiplier x 1001 = 9

1000
0000

0000
1000

Product 01001000 = 72

n bits x n bits = 2n bit product
Binary makes it easy:

0 => place 0 (0 x multiplicand)
1 => place a copy (1 x multiplicand)

4 versions of multiply hardware & algorithm:
successive refinement

Unsigned shift-add multiplier (version 1)

64-bit Multiplicand reg, 64-bit ALU, 64-bit Product reg,
32-bit multiplier reg

Product

Multiplier

Multiplicand Shift Left

Shift Right

Write
Control

32 bits

64 bits

64 bits

Multiplier = datapath + control

64-bit ALU

Multiply Algorithm Version 1

3. Shift the Multiplier register right 1 bit.

Done
Yes: n repetitions

2. Shift the Multiplicand register left 1 bit.

No: < n repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to product &
place the result in Product register

nth

repetition?

Start

Product Multiplier Multiplicand
0000 0000 0011 0000 0010

0000 0010 0001 0000 0100

0000 0110 0000 0000 1000

0000 0110 0000 0001 0000

0000 0110 0000 0010 0000

0000 0110

Observations on Multiply Version 1

1/2 bits in multiplicand always 0
=> 64-bit adder is wasted
0’s inserted into the least significant bit of multiplicand as
shifted => least significant bits of product never changed
once formed
Instead of shifting multiplicand to left, shift product to
right.

MULTIPLY HARDWARE Version 2

32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
32-bit Multiplier reg

Product

Multiplier

Multiplicand

32-bit ALU
Shift Right

Write
Control

32 bits

32 bits

64 bits

Shift Right

Multiply Algorithm Version 2

3. Shift the Multiplier register right 1 bit.

Done
Yes: n repetitions

2. Shift the Product register right 1 bit.

No: < n repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to the left half of product &
place the result in the left half of Product register

nth

repetition?

Start

0000 0000 0011 0010
1: 0010 0000 0011 0010
2: 0001 0000 0011 0010
3: 0001 0000 0001 0010
1: 0011 0000 0001 0010
2: 0001 1000 0001 0010
3: 0001 1000 0000 0010
1: 0001 1000 0000 0010
2: 0000 1100 0000 0010
3: 0000 1100 0000 0010
1: 0000 1100 0000 0010
2: 0000 0110 0000 0010
3: 0000 0110 0000 0010

0000 0110 0000 0010

Product Multiplier Multiplicand

Still more wasted space!

3. Shift the Multiplier register right 1 bit.

Done
Yes: n repetitions

2. Shift the Product register right 1 bit.

No: < n repetitions

1. Test
Multiplier0

Multiplier0 = 0Multiplier0 = 1

1a. Add multiplicand to the left half of product &
place the result in the left half of Product register

nth

repetition?

Start

0000 0000 0011 0010
1: 0010 0000 0011 0010
2: 0001 0000 0011 0010
3: 0001 0000 0001 0010
1: 0011 0000 0001 0010
2: 0001 1000 0001 0010
3: 0001 1000 0000 0010
1: 0001 1000 0000 0010
2: 0000 1100 0000 0010
3: 0000 1100 0000 0010
1: 0000 1100 0000 0010
2: 0000 0110 0000 0010
3: 0000 0110 0000 0010

0000 0110 0000 0010

Product Multiplier Multiplicand

Observations on Multiply Version 2

Product register wastes space that exactly matches size
of multiplier

Both Multiplier register and Product register require right
shift

Combine Multiplier register and Product register

MULTIPLY HARDWARE Version 3

32-bit Multiplicand reg, 32 -bit ALU, 64-bit Product reg,
(0-bit Multiplier reg)

Product (Multiplier)

Multiplicand

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right

Multiply Algorithm Version 3
Multiplicand Multiplier
0010 0011

Done
Yes: 32 repetitions

2. Shift the Product register right 1 bit.

No: < 32 repetitions

1. Test
Product0

Product0 = 0Product0 = 1

1a. Add multiplicand to the left half of product &
place the result in the left half of Product register

32nd
repetition?

Start

Product Multiplicand
0000 0011 0010

1: 0010 0011 0010
2: 0001 0001 0010

1: 0011 0001 0010
2: 0001 1000 0010

1: 0001 1000 0010
2: 0000 1100 0010

1: 0000 1100 0010
2: 0000 0110 0010

0000 0110 0010

Observations on Multiply Version 3

2 steps per bit because Multiplier & Product combined
MIPS registers Hi and Lo are left and right half of Product
Gives us MIPS instruction MultU
What about signed multiplication?

easiest solution is to make both positive & remember whether to
complement product when done (leave out the sign bit, run for 31
steps)
Multiply algorithm 3 will work for signed numbers if partial
products are sign-extended as shifted
Booth’s Algorithm is elegant way to multiply signed numbers using
same hardware as before and save cycles

can be modified to handle multiple bits at a time

Faster Multiplication
Whether the multiplicant is to be added or not is known at the
beginning of the operation
Provide a 32-bit adder for each bit of the multiplier
One input is the multiplicand ANDed with a multiplier bit and the
other is the output of a prior adder.
Speed: just the oerhead of a clock for each bit of the product.
log2(32)

Shifters

Two kinds:

logical-- value shifted in is always "0"

arithmetic-- on right shifts, sign extend

msb lsb"0" "0"

msb lsb "0"

Note: these are single bit shifts. A given
instruction might request 0 to 32 bits to be shifted!

Combinational Shifter from MUXes

What comes in the MSBs?
How many levels for 32-bit shifter?

1 0sel

A B

D

Basic Building Block

8-bit right shifter

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

S2 S1 S0A0A1A2A3A4A5A6A7

R0R1R2R3R4R5R6R7

2-to-1 Mux

Unsigned Divide: Paper & Pencil

1001 Quotient
Divisor 1000 1001010 Dividend

–1000
10
101
1010

–1000
10 Remainder (or Modulo result)

See how big a number can be subtracted, creating quotient
bit on each step

Binary => 1 * divisor or 0 * divisor
Dividend = Quotient x Divisor + Remainder
3 versions of divide, successive refinement

DIVIDE HARDWARE Version 1

64-bit Divisor reg, 64-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor Shift Right

Shift Left

Write
Control

32 bits

64 bits

64 bits

64-bit ALU

Divide Algorithm Version 1

Takes n+1 steps for n-bit Quotient & Rem.
Remainder Quotient Divisor
0000 0111 0000 0010 0000

2b. Restore the original value by adding the
Divisor register to the Remainder register, &
place the sum in the Remainder register. Also
shift the Quotient register to the left, setting
the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

1. Subtract the Divisor register from the
Remainder register, and place the result
in the Remainder register.

2a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

3. Shift the Divisor register right 1 bit.

Done

Yes: n+1 repetitions (n = 4 here)

Start: Place Dividend in Remainder

n+1
repetition?

No: < n+1 repetitions

Observations on Divide Version 1

1/2 bits in divisor always 0
=> 1/2 of 64-bit adder is wasted
=> 1/2 of divisor is wasted

Instead of shifting divisor to right,
shift remainder to left?

1st step cannot produce a 1 in quotient bit
(otherwise too big)
=> switch order to shift first and then subtract,
can save 1 iteration

Divide: Paper & Pencil

01010 Quotient
Divisor 0001 00001010 Dividend

Notice that there is no way to get a 1 in leading digit!
(this would be an overflow, since quotient would have
n+1 bits)

0001
– 0001

0000
0001
–0001

0
00 Remainder (or Modulo result)

DIVIDE HARDWARE Version 2

32-bit Divisor reg, 32-bit ALU, 64-bit Remainder reg,
32-bit Quotient reg

Remainder

Quotient

Divisor

32-bit ALU
Shift Left

Write
Control

32 bits

32 bits

64 bits

Shift Left

Divide Algorithm Version 2

Remainder Quotient Divisor
0000 0111 0000 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainder register,
& place the sum in the left half of the Remainder
register. Also shift the Quotient register to the left,
setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Quotient register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done

Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

Observations on Divide Version 2

Eliminate Quotient register by combining with Remainder
as shifted left

Start by shifting the Remainder left as before.
Thereafter loop contains only two steps because the shifting of
the Remainder register shifts both the remainder in the left half
and the quotient in the right half
The consequence of combining the two registers together and the
new order of the operations in the loop is that the remainder will
shifted left one time too many.
Thus the final correction step must shift back only the remainder
in the left half of the register

DIVIDE HARDWARE Version 3

32-bit Divisor reg, 32 -bit ALU, 64-bit Remainder reg,
(0-bit Quotient reg)

Remainder (Quotient)

Divisor

32-bit ALU

Write
Control

32 bits

64 bits

Shift Right“HI” “LO”

Shift Left

Divide Algorithm Version 3

Remainder Divisor
0000 0111 0010

3b. Restore the original value by adding the Divisor
register to the left half of the Remainder register,
& place the sum in the left half of the Remainder
register. Also shift the Remainder register to the
left, setting the new least significant bit to 0.

Test
Remainder

Remainder < 0Remainder ≥ 0

2. Subtract the Divisor register from the
left half of the Remainder register, & place the
result in the left half of the Remainder register.

3a. Shift the
Remainder register
to the left setting
the new rightmost
bit to 1.

1. Shift the Remainder register left 1 bit.

Done. Shift left half of Remainder right 1 bit.
Yes: n repetitions (n = 4 here)

nth
repetition?

No: < n repetitions

Start: Place Dividend in Remainder

Observations on Divide Version 3

Same Hardware as Multiply: just need ALU to add or
subtract, and 64-bit register to shift left or shift right
Hi and Lo registers in MIPS combine to act as 64-bit
register for multiply and divide
Signed Divides: Simplest is to remember signs, make
positive, and complement quotient and remainder if
necessary

Note: Dividend and Remainder must have same sign

Note: Quotient negated if Divisor sign & Dividend sign disagree
e.g., –7 ÷ 2 = –3, remainder = –1

	COMP 303 �Computer Architecture�Lecture 6
	MULTIPLY (unsigned)
	Unsigned shift-add multiplier (version 1)
	Multiply Algorithm Version 1
	Observations on Multiply Version 1
	MULTIPLY HARDWARE Version 2
	Multiply Algorithm Version 2
	Still more wasted space!
	Observations on Multiply Version 2
	MULTIPLY HARDWARE Version 3
	Multiply Algorithm Version 3
	Observations on Multiply Version 3
	Faster Multiplication
	Shifters
	Combinational Shifter from MUXes
	Unsigned Divide: Paper & Pencil
	DIVIDE HARDWARE Version 1
	Divide Algorithm Version 1
	Observations on Divide Version 1
	Divide: Paper & Pencil
	DIVIDE HARDWARE Version 2
	Divide Algorithm Version 2
	Observations on Divide Version 2
	DIVIDE HARDWARE Version 3
	Divide Algorithm Version 3
	Observations on Divide Version 3

