
COMP303 - Computer
Architecture
Lecture 8
Designing a Single Cycle Datapath

The Big Picture

The Five Classic Components of a Computer

Control

Datapath

Memory

Processor
Input

Output

The Big Picture: The Performance Perspective

Performance of a machine is determined by:
Instruction count
Clock cycle time
Clock cycles per instruction

Processor design (datapath and control) will determine:
Clock cycle time
Clock cycles per instruction

Single cycle processor - one clock cycle per instruction
Advantages: Simple design, low CPI
Disadvantages: Long cycle time, which is limited by the
slowest instruction.

CPI

Inst. Count Cycle Time

How to Design a Processor: step-by-step

Analyze instruction set => datapath requirements
the meaning of each instruction is given by register transfers

R[rd] <– R[rs] + R[rt];
datapath must include storage element for ISA registers
datapath must support each register transfer

Select set of datapath components and establish clocking
methodology
Design datapath to meet the requirements
Analyze implementation of each instruction to determine
setting of control points that effects the register transfer.
Design the control logic

Review: MIPS Instruction Formats
All MIPS instructions are 32 bits long. The three
instruction formats are:

shamt funct
6 bits5 bits

rd
5 bits

rt
5 bits

rs
5 bits

op
6 bits

immediatertrsop

R-type

I-type

The different fields are:
op : basic operation of the instruction (opcode)
rs, rt, rd : source and destination register specifier
shamt : shift amount
funct : selects the variant of the operation in the “op” field
immediate : address offset or immediate value
target address : target address of the jump instruction

16 bits5 bits5 bits6 bits

target addressopJ-type
26 bits6 bits

Step 1a: The MIPS Subset for Today

R-Type:
add rd, rs, rt
sub rd, rs, rt
and rd, rs, rt
or rd, rs, rt
slt rd, rs, rt

LOAD and STORE:
lw rt, rs, imm16
sw rt, rs, imm16

BRANCH:
beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Register Transfer Logic (RTL)

RTL gives the meaning of the instructions
All instructions start by fetching the instruction

op | rs | rt | rd | shamt | funct = MEM[PC]
op | rs | rt | Imm16 = MEM[PC]

inst Register Transfers
add R[rd] R[rs] + R[rt]; PC PC + 4
sub R[rd] R[rs] – R[rt]; PC PC + 4
load R[rt] MEM[R[rs] + sign_ext(imm16)]; PC PC + 4
store MEM[R[rs] + sign_ext(imm16)] R[rt]; PC PC + 4
beq if (R[rs] == R[rt]) then PC PC + 4 + sign_ext(imm16)] || 00

else PC PC + 4

Step 1: Requirements of the Instruction Set

Memory
instruction & data

Registers (32 x 32)
read rs
read rt
write rt or rd

PC
Sign extender
Add and sub register or extended immediate
Add 4 and/or shifted extended immediate to PC

Step 2: Components of the Datapath

Adder

MUX

ALU

32

32

A

B
32 Sum

Carry

32

32

A

B
32 Result

OP

32A

B 32
Y32

Select

A
dder

M
U

X
A

L
U

CarryIn

3

Combinational Logic:
Does not use a clock

Storage Element: Register (Basic Building Blocks)

Register
Similar to the D Flip Flop except

N-bit input and output
Write enable input

Write Enable:
negated (0): Data Out will not change
asserted (1): Data Out will become Data In on the
falling edge of the clock

Clk

Data In

Write Enable

N N
Data Out

Storage Element: Register File

Register File consists of
32 registers:

Two 32-bit output busses:
busA and busB
One 32-bit input bus: busW

Register is selected by:
RA (number) selects the register to put on busA (data)
RB (number) selects the register to put on busB (data)
RW (number) selects the register to be written
via busW (data) when Write Enable is 1

Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, behaves as a combinational logic block:

RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32 32-bit
Registers

Read from Register File

Write to Register File

Storage Element: Memory

Memory
One input bus: Data In
One output bus: Data Out

Memory word is selected by:
Address selects the word to put on Data Out
Write Enable = 1: address selects the memory
word to be written via the Data In bus

Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, memory behaves as a combinational logic
block:

Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
32

Step 3

Register Transfer Requirements –> Datapath Design
Instruction Fetch
Decode instructions and Read Operands
Execute Operation
Write back the result

3a: Overview of the Instruction Fetch Unit

The common RTL operations
Fetch the Instruction: mem[PC]
Update the program counter:

Sequential Code: PC PC + 4
Branch and Jump: PC “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic

3b: R-Type Instructions
R[rd] R[rs] op R[rt] Example: add rd, rs, rt

Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
ALUctr and RegWr: control logic after decoding the instruction

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs RtRd

A
L

U

3

3c: Load Operations

R[rt] Mem[R[rs] + SignExt[imm16] Example: lw rt, rs, imm16
11

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits rd

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

RtRd
RegDst

Sign
E

xtender

M
ux

Mux

32
16

imm16

ALUSrc
Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U

MemWr M
ux

MemtoReg
3

MemRd

Rt

3d: Store Operations

Mem[R[rs]+SignExt[imm16]] R[rt] Example: sw rt, rs, imm16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Sign
E

xtender

M
ux

Mux

3216
imm16

ALUSrc

Clk

Data In
WrEn

32
Adr

Data
Memory

MemWr

A
L

U

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

M
ux

MemtoReg

3

MemRd

3e: The Branch Instruction

beq rs, rt, imm16

mem[PC] Fetch the instruction from memory

Equal R[rs] == R[rt] Calculate the branch condition

if (Equal && Branch Instr.) Calculate the next instruction’s address
PC PC + 4 + (SignExt(imm16) x 4)

else
PC PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

Datapath for Branch Operations
beq rs, rt, imm16

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

32

imm16
PC

Clk

00

A
dder

M
ux

A
dder

4 nPC_sel

Clk

busW

RegWr

32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs Rt

PC
 E

xt

Inst Address

0

1

ALU

Equal

Branch

Putting it All Together: A Single Cycle Datapath
im

m
16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32

busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Sign
E

xtende
r

M
ux

32
16

imm16

ALUSrc

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr
A

L
U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

3

MemRd

Different View of Same Implementation (From Book)

ALU

ALU
result

zero

Add Shift
left 2

Sign
extend

Read
reg 1
Read
reg 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
control

PC

Instruction
memory

Read
Address

Instruction
[31-0]

Control

M
u
x

1

0

M
u
x

0

1

Add ALU
result

Write
data

Data
memory

Read
data

Address

M
u
x

0

1

4

M
u
x

0

1

RegDst

Branch

MemRead
MemtoReg
ALUOp
MemWrite
ALUSrc
RegWrite

Instruction [31-26]

Instruction [25-21]

Instruction [20-16]

Instruction [15-11]

Instruction [15-0]

Instruction [5-0]

16 32

Step 4: Given Datapath: RTL Control

ALUctrRegDst ALUSrc MemtoRegMemWr Equal

Instruction<31:0>

nPC_sel

Adr

Inst
Memory

DATA PATH

Control

Op

<0:5>

Fun

RegWr MemRd

<26:31>

Meaning of the Control Signals

Rs, Rt, Rd and Imm16 hardwired into datapath
nPC_sel: 0 => PC PC + 4;

1 => PC PC + 4 + SignExt(Im16) || 00

Adr

Inst
Memory

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xtim
m

16

0

1

Meaning of the Control Signals
ALUsrc: 0 => regB; 1 => immed
MemRd: read memory
MemWr: write memory
ALUctr: “add”, “sub”, “and”, “or”, “set less than”

32

ALUctr

Clk

busW

RegWr

32
32

busA

32

busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Sign
E

xtender

M
ux

3216
imm16

ALUSrc

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

0

1

0

1

01

RegWr: write dest register
MemtoReg: 0 => ALU; 1 => Mem
RegDst: 0 => “rt”; 1 => “rd”

=

3

MemRd

Example: Load Instruction

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

Sign
E

xtende
r

M
ux

3216
imm16

ALUSrc

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr
A

L
U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

im
m

16

A
dder

A
dder

PC

Clk

00M
ux

4

nPC_sel

PC
 E

xt

Adr

Inst
Memory

ext

addrt+4

0

1

MemRd

An Abstract View of the Implementation

Data
Out

Clk

5

Rw Ra Rb
32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address Ideal

Data
Memory

Instruction

Instruction
Address

Ideal
Instruction

Memory

C
lk

PC

5
Rs

5
Rt

32

32
3232

A

B

N
ex

t A
dd

re
ss

Control

Datapath

Control Signals Conditions

Summary

5 steps to design a processor
1. Analyze instruction set => datapath requirements
2. Select set of datapath components & establish clock
methodology
3. Design datapath meeting the requirements
4. Analyze implementation of each instruction to determine setting
of control points that effects the register transfer.
5. Design the control logic

MIPS makes it easier
Instructions same size
Source registers always in same place
Immediates same size, location
Operations always on registers/immediates

Single cycle datapath => CPI=1, CCT => long
Next time: implementing control

	COMP303 - Computer Architecture�Lecture 8
	The Big Picture
	The Big Picture: The Performance Perspective
	How to Design a Processor: step-by-step
	Review: MIPS Instruction Formats
	Step 1a: The MIPS Subset for Today
	Register Transfer Logic (RTL)
	Step 1: Requirements of the Instruction Set
	Step 2: Components of the Datapath
	Storage Element: Register (Basic Building Blocks)
	Storage Element: Register File
	Read from Register File
	Write to Register File
	Storage Element: Memory
	Step 3
	3a: Overview of the Instruction Fetch Unit
	3b: R-Type Instructions
	3c: Load Operations
	3d: Store Operations
	3e: The Branch Instruction
	Datapath for Branch Operations
	Putting it All Together: A Single Cycle Datapath
	Different View of Same Implementation (From Book)
	Step 4: Given Datapath: RTL  Control
	Meaning of the Control Signals
	Meaning of the Control Signals
	Example: Load Instruction
	An Abstract View of the Implementation
	Summary

