
COMP303 - Computer Architecture

Combinational Logic &
Computer Arithmetic

Review

COMP 303 PS1

Combinational Logic Review

Combinational Logic Review

Input = 4-bit number
Output = 1 if primary

0 otherwise

0 0 0 0 0

0 0 0 1 0

0 0 1 0 1

0 0 1 1 1

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 0

1 1 1 1 0

1 1

1 1

1

1

00 01 11 10

00

01

11

10

A B
C D

B

A

D

CBC’D + A’BD + A’B’C + B’CD

Shift Operations

The MIPS architecture defines various shift operations:
(a) sll r1, r2, 3 r2 = 10101100 (shift left logical)

r1 = 01100000
- shift in zeros to the least significant bits

(b) srl r1, r2, 3 r2 = 10101100 (shift right logical)
r1 = 00010101

- shift in zeros to the most significant bits

(c) sra r1, r2, 3 r2 = 10101100 (shift right arithmetic)
r1 = 11110101

- copy the sign bit to the most significant bits

There are also versions of these instructions that take
three register operands.

Logical Operations

In the MIPS architecture logical operations (and, or, xor)
correspond to bit-wise operations.
(a) and r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are both one)

r2 = 0110
r1 = 0010

(b) or r1, r2, r3 r3 = 1010 (r1 is 1 if r2 or r3 is one)
r2 = 0110
r1 = 1110

(c) xor r1, r2, r3 r3 = 1010 (r1 is 1 if r2 and r3 are different)
r2 = 0110
r1 = 1100

Immediate versions of these instructions are also
supported.

Two’s Complement Negation
To negate a two's complement integer, invert all the bits
and add a one to the least significant bit.

What are the two’s complements of
6 = 0110 1001 -4 = 1100 0011

+ 1 + 1
1010 = -6 0100 = 4

Two’s Complement Subtraction

To subtract two's complement numbers we first negate
the second number and then add the corresponding bits
of both numbers.

A – B = A + (2n – B) 0110 (6)
+1100 (-4)
1 0010

For example:
3 = 0011 3 = 0011

- 2 = 0010 + -2 = 1110
1 = 0001

Overflow

When adding or subtracting numbers, the sum or
difference can go beyond the range of representable
numbers.
This is known as overflow. For example, for two's
complement numbers,
5 = 0101 -5 = 1011

+ 6 = 0110 + -6 = 1010
-------------- ---------------
-5 = 1011 5 = 0101

Overflow creates an incorrect result that should be
detected.

2’s Comp - Detecting Overflow
When adding two's complement numbers, overflow will
only occur if

the numbers being added have the same sign
the sign of the result is different

If we perform the addition
an-1 an-2 ... a1 a0

+ bn-1 bn-2 … b1 b0

= sn-1 sn-2 … s1 s0

Overflow can be detected as

Overflow can also be detected as
, where cn-1 and cn are the carry in and

carry out of the most significant bit.

111111 −⋅−⋅−+−⋅−⋅−= nnnnnn sbasbaV

1−⊗= nn ccV

Full Adder

A fundamental building block in the ALU is a full adder (FA).
A FA performs a one bit addition.

ai + bi + ci = ci+1 si

FA

aibi

cici+1

si

ai
bi
si

cici+1

Full Adder Logic Equations

si is ‘1’ if an odd number of inputs are ‘1’.
ci+1 is ‘1’ if two or more inputs are ‘1’ .

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

ai bi ci ci+1 si
iiii cbas ⊗⊗=

iiiiiii cbcabac +++ =1

iiiiiiiiiiiii cbacbacbacbas +++=

iiiiiiiiiiiii cbacbacbacbac ++++ =1

)(1 iiiiii bacbac +++ =
)(1 iiiiii bacbac ⊗++ =

Larger Adders

FA

11

c1

0

0
FA

10

c2

0

FA

11

c3

1

FA

00

1

c4

0 1 0 1
0 1 1 1
1 1 0 0

1 1 1 0

Full Adder Design
One possible implementation of a full adder uses nine
gates.

iiii cbas ⊗⊗=

)(1 iiiiii bacbac ⊗+ +=

7

iaib

ic

is

1+ic

iiiiii bababa)(+=⊗

ALU Interface

We will be designing a 1-bit ALU with the following
interface.

Z =1, if Result=0
V= 1, if Overflow
C1 = 1, if Carry-Out

ALUOp | Function
000 | AND
001 | OR
010 | ADD
110 | SUBTRACT
111 | XOR

1

1

Result

B

ALU

1

A

3Z

C1

V ALUOp

Cin

1-Bit ALU

The full adder, an xor gate, and a 4-to-1
mux are combined to form a 1-bit ALU.

7

ia

ib

ic

ir

1+ic

0 12 3 0,1ALUop

2ALUop

1-bit
ALU

aibi

cici+1

ri

ALUop2:0

ALUOp | Function
000 | AND
001 | OR
010 | ADD
110 | SUBTRACT
111 | XOR

1-bit ALU for MSB

The ALU for the MSB
must also detect overflow
and indicate the sign of
the result.

1−⊗= nn ccV

)(BAset <=

7

ia

ib

ic

ir

1+ic

0 12 3 0,1ALUop

2ALUop

V

set

EE203 Digital System
Design

Multiplexers
Fig 9-1. 2-to-1 Multiplexer and Switch Analog

10' AIIAZ +=

 MUX 1-to-2 for theequation logic

Multiplexers

7654

3210

''''
''''''''

ABCIIABCCIABICAB
BCIAIBCACIBAICBAZ

++++
+++=

 MUX 1-to-8 for theequation logic

Fig 9-2. Multiplexer (2)

Multiplexers
Fig 9-3. Logic Diagram for 8-to-1 MUX

Assembly Example
.data

str1: .asciiz "\nEnter a number for summation:"
str2: .asciiz "Sum of numbers entered = “

.text

.globl main
main:

li $t0, 0
loop:

li $v0, 4 # system call code for print_str
la $a0, str1 # address of string to print
syscall
li $v0, 5 # system call code for read_int
syscall # read int

add $t0, $t0, $v0
bne $v0, $zero, loop

li $v0, 4 # system call code for print_str
la $a0, str2 # address of string to print
syscall
li $v0, 1 # system call code for print_int
move $a0, $t0 # move the result in $a0
syscall # print it

	COMP303 - Computer Architecture
	Combinational Logic Review
	Combinational Logic Review
	Shift Operations
	Logical Operations
	Two’s Complement Negation
	Two’s Complement Subtraction
	Overflow
	2’s Comp - Detecting Overflow
	Full Adder
	Full Adder Logic Equations
	Larger Adders
	Full Adder Design
	ALU Interface
	1-Bit ALU
	1-bit ALU for MSB
		Multiplexers
	 Multiplexers
		Multiplexers
	Assembly Example

