COMP303 - Computer Architecture

Combinational Logic \& Computer Arithmetic Review

Combinational Logic Review

OR gate

Logic symbol

A	B	F
0	0	0
0	1	0
1	0	0
1	1	1

A	B	F
0	0	0
0	1	1
1	0	1
1	1	1

A	F
0	1
1	0

Truth table

NAND gate

NOR gate

XOR gate

A	B	F
0	0	1
0	1	1
1	0	1
1	1	0

A	B	F
0	0	1
0	1	0
1	0	0
1	1	0

A	B	F
0	0	0
0	1	1
1	0	1
1	1	0

Combinational Logic Review

- Input = 4-bit number

Output = 1 if primary

$B C^{\prime} D+A^{\prime} B D+A^{\prime} B^{\prime} C+B^{\prime} C D$

0	0	0	0	$\mathbf{0}$
0	0	0	1	$\mathbf{0}$
0	0	1	0	$\mathbf{1}$
0	0	1	1	$\mathbf{1}$
0	1	0	0	$\mathbf{0}$
0	1	0	1	$\mathbf{1}$
0	1	1	0	$\mathbf{0}$
0	1	1	1	$\mathbf{1}$
1	0	0	0	$\mathbf{0}$
1	0	0	1	$\mathbf{0}$
1	0	1	0	$\mathbf{0}$
1	0	1	1	$\mathbf{1}$
1	1	0	0	$\mathbf{0}$
1	1	0	1	$\mathbf{1}$
1	1	1	0	$\mathbf{0}$
1	1	1	1	$\mathbf{0}$

Shift Operations

- The MIPS architecture defines various shift operations:

$$
\begin{array}{ll}
\text { (a) sll r1, r2, } 3 & r 2=10101100 \\
& r 1=01100000
\end{array} \quad \text { (shift left logical) }
$$

- shift in zeros to the least significant bits
(b) srl r1, r2, 3

$$
\begin{aligned}
& r 2=10101100 \quad(\text { shift right logical }) \\
& r 1=00010101
\end{aligned}
$$

- shift in zeros to the most significant bits
(c) sra r1, r2, $3 \quad \mathrm{r} 2=10101100 \quad$ (shift right arithmetic)

$$
r 1=11110101
$$

- copy the sign bit to the most significant bits
- There are also versions of these instructions that take three register operands.

Logical Operations

- In the MIPS architecture logical operations (and, or, xor) correspond to bit-wise operations.
$\begin{array}{lll}\text { (a) and } r 1, r 2, r 3 & r 3=1010 \\ & r 2=0110 \\ & r 1=0010 \\ \text { (b) or } r 1, r 2, r 3 \\ & r 3=1010 \\ & r 2=0110\end{array} \quad$ ($r 1$ is is 1 if $r 2$ if $r 2$ ord $r 3$ are both one) $)$
- Immediate versions of these instructions are also supported.

Two's Complement Negation

- To negate a two's complement integer, invert all the bits and add a one to the least significant bit.
- What are the two's complements of

$$
\begin{aligned}
& 6=0110 \begin{array}{c}
\underset{+101}{+} 1 \\
\\
\\
\\
\\
\hline
\end{array} \\
& -4=1100 \longrightarrow 0011 \\
& \begin{array}{l}
+\quad 1 \\
\hline
\end{array} \\
& 0100=4
\end{aligned}
$$

Two's Complement Subtraction

- To subtract two's complement numbers we first negate the second number and then add the corresponding bits of both numbers.
- $A-B=A+\left(2^{n}-B\right)$

$$
\begin{array}{r}
0110(6) \\
+1100 \\
\hline X 0010
\end{array}
$$

- For example:

$$
\begin{array}{r}
3=0011 \\
-\quad 2=0010 \\
\hline
\end{array}
$$

$$
\begin{array}{r}
3=0011 \\
+\quad-2=1110 \\
\hline 1=0001
\end{array}
$$

Overflow

- When adding or subtracting numbers, the sum or difference can go beyond the range of representable numbers.
- This is known as overflow. For example, for two's complement numbers,

$$
\begin{array}{rr}
5=0101 & -5=1011 \\
+6=0110 & +-6=1010 \\
----------------------- & 5=0101
\end{array}
$$

- Overflow creates an incorrect result that should be detected.

2's Comp - Detecting Overflow

- When adding two's complement numbers, overflow will only occur if
- the numbers being added have the same sign
- the sign of the result is different
- If we perform the addition

$$
\begin{aligned}
& a_{n-1} a_{n-2} \ldots a_{1} a_{0} \\
& +b_{n-1} b_{n-2} \ldots b_{1} b_{0} \\
& =s_{n-1} s_{n-2} \quad \cdots s_{1} s_{0}
\end{aligned}
$$

- Overflow can be detected as

$$
V=a_{n-1} \cdot b_{n-1} \cdot \overline{s_{n-1}}+\overline{a_{n-1}} \cdot \overline{b_{n-1}} \cdot s_{n-1}
$$

- Overflow can also be detected as
$V=c_{n} \otimes c_{n-1}$, where c_{n-1} and c_{n} are the carry in and
carry out of the most significant bit.

Full Adder

- A fundamental building block in the ALU is a full adder (FA).
- A FA performs a one bit addition.

$$
a_{i}+b_{i}+c_{i}=c_{i+1} s_{i}
$$

Full Adder Logic Equations

- s_{i} is ' 1 ' if an odd number of inputs are ' 1 '.
- $\mathrm{c}_{\mathrm{i}+1}$ is ' 1 ' if two or more inputs are ' 1 ' .

$\mathrm{a}_{\boldsymbol{i}}$	$\mathrm{b}_{\boldsymbol{i}}$	$\mathrm{c}_{\boldsymbol{i}}$	c_{i+1}	$\mathrm{~s}_{\boldsymbol{i}}$
0	0	0	$\mathbf{0}$	$\mathbf{0}$
0	0	1	$\mathbf{0}$	$\mathbf{1}$
0	1	0	$\mathbf{0}$	$\mathbf{1}$
0	1	1	$\mathbf{1}$	$\mathbf{0}$
1	0	0	$\mathbf{0}$	$\mathbf{1}$
1	0	1	$\mathbf{1}$	$\mathbf{0}$
1	1	0	$\mathbf{1}$	$\mathbf{0}$
1	1	1	$\mathbf{1}$	$\mathbf{1}$

$$
\begin{aligned}
& s_{i}=\bar{a}_{i} \bar{b}_{i} c_{i}+\bar{a}_{i} b_{i} \bar{c}_{i}+a_{i} \bar{b}_{i} \bar{c}_{i}+a_{i} b_{i} c_{i} \\
& s_{i}=a_{i} \otimes b_{i} \otimes c_{i} \\
& c_{i+1}=\overline{a_{i}} b_{i} c_{i}+a_{i} \bar{b}_{i} c_{i}+a_{i} b_{i} \bar{c}_{i}+a_{i} b_{i} c_{i} \\
& c_{i+1}=a_{i} b_{i}+a_{i} c_{i}+b_{i} c_{i} \\
& c_{i+1}=a_{i} b_{i}+c_{i}\left(a_{i}+b_{i}\right) \\
& c_{i+1}=a_{i} b_{i}+c_{i}\left(a_{i} \otimes b_{i}\right)
\end{aligned}
$$

Larger Adders

Full Adder Design

- One possible implementation of a full adder uses nine gates.

$$
\begin{aligned}
& s_{i}=a_{i} \otimes b_{i} \otimes c_{i} \\
& c_{i}+1=a_{i} b_{i}+c_{i}\left(a_{i} \otimes b_{i}\right) \\
& a_{i} \otimes b_{i}=\left(a_{i}+b_{i}\right) \overline{a_{i} b_{i}}
\end{aligned}
$$

ALU Interface

- We will be designing a 1-bit ALU with the following interface.

1-Bit ALU

- The full adder, an xor gate, and a 4-to-1 mux are combined to form a 1-bit ALU.

1-bit ALU for MSB

- The ALU for the MSB must also detect overflow and indicate the sign of the result.

$$
\begin{aligned}
& V=c_{n} \otimes c_{n-1} \\
& \text { set }=(A<B)
\end{aligned}
$$

Multiplexers

Fig 9-1. 2-to-1 Multiplexer and Switch Analog

logic equation for the 2 - to - 1 MUX

$$
Z=A^{\prime} I_{0}+A I_{1}
$$

EE203 Digital System
Design

Multiplexers

Fig 9-2. Multiplexer (2)

logic equation for the 8 - to -1 MUX

$$
\begin{aligned}
Z= & A^{\prime} B^{\prime} C^{\prime} I_{0}+A^{\prime} B^{\prime} C I_{1}+A^{\prime} B C^{\prime} I_{2}+A^{\prime} B C I_{3} \\
& +A B^{\prime} C^{\prime} I_{4}+A B^{\prime} C I_{5}+A B C^{\prime} I_{6}+A B C I_{7}
\end{aligned}
$$

Multiplexers

Fig 9-3. Logic Diagram for 8-to-1 MUX

Assembly Example

.data

str1: .asciiz "\nEnter a number for summation:"
str2: .asciiz "Sum of numbers entered = "

```
.text
.globl main
```

main:
li \$t0, 0
loop:

1 i	\$v0, 4	\# system call code for print_str
la	\$a0, str1	\# address of string to print
syscall		
li	\$v0, 5	\# system call code for read_int
syscall		\# read int
add	\$t0, \$t0, \$v0	
bne	\$v0, \$zero, loop	
1 i	\$v0, 4	\# system call code for print_str
la	\$a0, str2	\# address of string to print
syscall		
$1 i$	\$v0, 1	\# system call code for print_int
move	\$a0, \$t0	\# move the result in \$a0
syscall		\# print it

