PS Midterm 2

Pipelining
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= Sequential laundry takes 6 hours for 4 loads
= |If they learned pipelining, how long would laundry take?
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Pipelined Laundry: Start work ASAP
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= Pipelined laundry takes 3.5 hours for 4 loads
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‘ Total Time for Eight Instructions

Instr. Instr. Register ALU Data Register Total
class fetch read operation access write time
Load word 2 Nns 1ns 2 ns 2 ns 1ns 8 ns
Store word | 2 ns 1ns 2 NS 2 NS 7 ns
R-type 2 ns 1 ns 2 NS 1ns 6 ns
Branch 2 ns 1 ns 2 ns 5ns

R-type instructions: add, sub, and, or, slt




The Five Stages of the LLoad Instruction

i Cycle1iCycle2 | Cycle3iCycle4 i Cycle5 :

Load| Ifetch IReg/DecI EXxec I Meml Wr

Ifetch: Instruction Fetch
o Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode
Exec: Calculate the memory address

Mem: Read the data from the Data Memory

Wr: Write the data back to the register file



Single Cycle, Multiple Cycle, vs. Pipeline

Cycle 1 Cycle 2

Clk

SingEIe Cycle Implementation:

Load I _ Store : Waste

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9§Cycle§ 10

Clk !

I\/Iultiple Cycle Implementation: : :
i Load i Store ! R-type
Ifetchl Reg I EXxec I Mem I Wr I Ifetchl Reg I EXxec I Mem I Ifetch

Pipeline Implementation:

Load Ifetchl Reg I EXxec I Mem I Wr

Stord] Ifetchl Reg I EXxec I Mem I Wr

R-type Ifetchl Reg I EXxec I Mem I Wr




Why Pipeline?

= Suppose
= 100 instructions are executed
= The single cycle machine has a cycle time of 45 ns
= The multicycle and pipeline machines have cycle times of 10 ns
= The multicycle machine has a CPI of 3.6
= Single Cycle Machine
= 45 ns/cycle x 1 CPI x 100 inst = 4500 ns
= Multicycle Machine
= 10 ns/cycle x 3.6 CPI x 100 inst = 3600 ns
= ldeal pipelined machine
= 10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns
= Ideal pipelined vs. single cycle speedup
= 4500 ns / 1040 ns = 4.33
= What has not yet been considered?



e Cycle Datapath
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‘ Pipelined Version of the Datapath
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An Example to Clarity Pipelining

Since many instructions are simultaneously are executing
In a single cycle datapath, it can be difficult to
understand.

The following code will be examined:
lw  $10, 20($1)
sub $11, $2, $3

Time (clock cycles)

: CcC7

lw $10,20($1)

S~ W0W 5 —

sub $11,%$2,$3
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Clock 1

lw $10, 20($1)

Instruction fetch
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Clock 2

, sub $11, $2, $3
Instruction fetch
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lw $10, 20($1) |
Instruction decode
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Clock 3

—rXcZ o

sub $11,

$2, $3 1 lw

$10, 20($1)

Instruction decode
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Clock 4

| sub $11, $2, $3 I lw $10, 20($1)
! ] Execution : Memory i
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Clock 5

lw $10,
l sub $11, $2, $3 1 20($1) [
| ! :' Memory :' Write
| ! ! 1 Back
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Pipelined Datapath with Control Signals

PCSrc
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An Example to Clarify Pipelined Control

Let’s look at what's happing in the pipeline for the
following program.

lw  $10, 20($1)
sub $11, $2, $3
and $12, $4, $5
or $13, $6, $7
add $14, $8, $9

Code does not have any data, control, or structural
hazard.



IF: lw $10,20($1)

IF/ 1D D/ EX EX / MEM MEM / WB
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IF: sub $11,$2,$3 ID: Iw $10,20(%$1)

IF/ 1D

ID/ EX EX / MEM MEM / WB
T T ] |
! | !
1 ! 1
11 | !
\WB : :
lw 010 L ' !
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ID: sub $11,$2,$3 EX: Iw $10,20($1)

IF: and $12,$4,%5

IF/ 1D

ID/ EX EX / MEM MEM / WB
T T ] |
i : : :
1 1 ! :
—| 0 : 10 11 : !
M ! \WE ' !
u = | 1 .
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IF: or $13,$6,%7 ID: and $12,%$4,$5 EX: sub $11,$2,$3 MEM: Iw $10,20($1)

IF/ 1D

ID/ EX EX / MEM MEM / WB
T T ] |
i : : |
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IF: add $14,$8,$9

IF/ 1D

ID: or $13,%$6,%$7

EX: and $12,%4,$5

MEM: sub $11,%$2,$3

» PC

\ 4
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Instruction
Memory
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WB: Iw $10...

Clock 5

ID/ EX EX / MEM
T T . 1
: i !
! : !
10 10 i !
W i i
or 000 000 L 1 10 :
» Control 1M W \
\ 51100 110 % |_. i 1
EX 5 M 0 WH 1
»
g Branch
(@]
= Registers _} g
6 J s — = 2
ra 6 £
7 busA[— 2 5
=
rb 47 > _—
rw out M
| busw Data u
Memory X
Instr. 0
x| 115-01 ( sign Pata
lexten
Instr. Mede;
X| [20-16] X »
> 11 10
Instr. —
13] [15-11] 13




Single Memory is a Structural Hazard

Time (clock cycles)

Mem ..I: Reg
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Detection is easy in this case! (right half highlight means read, left half write)



Solution 3: Stall
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Control Hazard Solutions

Predict: guess one direction then back up if wrong
o Predict not taken

| Time (clock cycles)
n . . . . .
S Mem|i0 R %
¢ |Add Lk
r. ; ;
Be Mem :

o q

4 |Load

e

r

Impact: 1 clock cycle per branch instruction if right,
2 If wrong (right - 50% of time)

More dynamic scheme: history of 1 branch (- 90%)



Data Hazard on rl

Problem: r1 cannot be read by other instructions before it
IS written by the add.

add rl,r2,r3
sub r4,rl1,r3
and r6,rl,r7
or r8,rl,r9
xor rl10,rl,rll



Data Hazard on r1:

T~ N 5 -

- 0 a-=0

= Dependencies backwards in time are hazards

Time (clock cycles)

add rl1,r2,r3

Im

i Reg

sub rd4,ri,r3
and re,rl,r7/

or r8,rl,r9

xorrl10,r1.r1l

[ Im

HIm

IF §|D/RF§_§>§x§ MEM§

WB

i Im

Reg




Data Hazard Solution:

= “Forward” result from one stage to another

Time (clock cycles) : : : :
IF iID/RF; NEX:i MEMi WB i
. » > - . -

add r1,r2,r3 | 'm [{Res[} ¥ Jerjom [ff69)0

subr4,r1.r3 'm IRI:J; EﬂrReg

T~ N 5 -

or r8,r1,r9 'm IRI:LE{( [

WCDQ_—so

xor r10,r1,rl11

= “or” instruction is OK if define read/write properly




Forwarding (or Bypassing): What about Loads

= Dependencies backwards in time are hazards

Time (clock cycles)
IF §|D/RF§_§_>EX§MEM§ WB§
lw r1,0(r2) | -ngeg D3l 1 all

(SUb I‘4,ﬂ,r3 Im -IR I Reg

= Can’t solve with forwarding:
= Must delay/stall instruction dependent on loads



Data Hazards

Previous example shows us how independent
Instructions that do not use the results calculated by prior
Instructions are executed.

This is not the case with real programs.
Let’s look at the following code sequence.

sub $2, $1, $3
and $12, $2, $5
or $13, $6, $2
add $14, $2, $2
SW $15, 100($2)

The last four instructions are all dependent on the
register $2 of the first instruction.

Assume that register $2 had the value of 10 before the
subtract instruction and -20 afterwards.



Data Hazards (Cont’)

CC1

The value of $2: 10

sub $2, $1, $3

and $12, $2, $5

or $13, $6, $2

add $14, $2, $2

sw $15, 100($2)

Im

CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

10 10 10 10/-20 -20 -20 -20 -20
e )
Im H £ Re’gf
Im H

Reg




Data Hazard Detection & Forwarding

It is possible to detect data hazard and then forward the
proper value to resolve the hazard.

When an instruction tries to read a register in its EX stage
that an earlier instruction intends to write in its WB stage.

This Is the case between sub-and instruction below:

sub $2, $1, $3 | Im |:|‘Reg: % DmEA HReg

and $12, $2, $5 Im H i Reg[ { Dm | HReg

This hazard can be detected by simply checking:
EX/MEM.RegisterRd = ID/EX.RegisterRs = $2




Data Hazard Detection & Forwarding (Cont’)

Another hazard is between sub-or Instructions:

sub $2, $1, $3 | Im |:|‘Reg: % Dm Reg
and $12, $2, $5 Im H IReg: Tb Dm HReg

or $13, $6, $2 Im H 4 Reg[| 1 Dm i HReg

This hazard can be detected by simply checking:
MEM/WB.RegisterRd = ID/EX.RegisterRt = $2

There Is no data hazard between sub-add and sub-sw

Instructions.



Summary of Data Hazard Conditions

la.
1b.
24.
2b.

EX/MEM.RegistérRd\ = ID/EX.RegisterRs
EX/MEM.RegisterRd E ID/EX.RegisterRt
MEM/WB.RegisterRd|/= ID/EX.RegisterRs

This actually refers to destination field of an instruction. It is rd field in R-type
instructions and rt field in I-type instructions. Mux in the EX stage chooses
the correct one, therefore, EX/MEM and MEM/WB pipeline registers store

this information as a rd field (EX/MEM.RegisterRd and MEM/WB.RegisterRd).

Since some of the instructions (i.e. sw, beq) do not write to
register file, the above policy is inaccurate. Consider the following
code sequence:

sw $1, 100($5) j‘> EX/MEM.RegisterRd = ID/EX.RegisterRs

add $3,($1) $2 $1 = I80+$5
&0 -

This problem can be solved simply by checking RegWr signal.



Summary ot Data Hazard Conditions (Cont’)

Another problem: What happens if $0 is used as a
destination register?
2 A non-zero value would not be forwarded.

Therefore, hazard detection should be the following:

EX hazard.:

if (EX/MEM.RegWr

and (EX/MEM.RegisterRd # 0)

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)) ForwardA=10

if (EX/MEM.RegWr
and (EX/MEM.RegisterRd # 0)
and (EX/MEM.RegisterRd = ID/EX.RegisterRt)) ForwardB=10

MEM hazard:

if (MEM/WB.RegWr

and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA=01

if (MEM/WB.RegWr
and (MEM/WB.RegisterRd # 0)
and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB=01



Summary ot Data Hazard Conditions (Cont’)

Consider the following sequence:
add $1, $1, $2
add $1, $1, $3
add $1, $1, $4

o In this case, the result is forwarded from MEM stage because the
result in the MEM stage is the more recent result than the result in
WB stage. Thus, the control for the MEM hazard:

MEM hazard:

if (MEM/WB.RegWr

and (MEM/WB.RegisterRd # 0)

and (EX/MEM.RegisterRd # ID/EX.RegisterRs)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs)) ForwardA=01

if (MEM/WB.RegWr

and (MEM/WB.RegisterRd # 0)

and (EX/MEM.RegisterRd # ID/EX.RegisterRt)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt)) ForwardB=01



Summary of Data Hazard Conditions (Cont)

ForwardA = 00 ID/EX The first ALU operand comes from the register file.

ForwardA = 10 EX/MEM The first ALU operand is forwarded from the prior ALU result.

ForwardA = 01 MEM/WB The first ALU operand is forwarded from data memory or an earlier
ALU result.

ForwardB = 00 ID/EX The second ALU operand comes from the register file.

ForwardB = 10 EX/MEM The second ALU operand is forwarded from the prior ALU result.

ForwardB = 01 MEM/WB The second ALU operand is forwarded from data memory or an
earlier ALU result.




The Pipelined Datapath with Forwarding
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‘ Signed Immediate Enhancement
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Data Hazards and Stalls

Time (in clock cycles)

Program
execution order

(in instructions) ~ CC1  CC2
lw $2, 20($1) | Im Reg
and $4, $2, $5 I
or $8, $2, $6
add $9, $4, $2

| sIt$1, $6, $7

CC3

Im

Reg

A 4

CC7 CC8 CC9

v

Reg

Forwarding does not solve
the problem. We need a
hazard detection unit.

and instruction needs to
be stalled one cycle.

Im

Dm

Reg

Im F

Ml

Dm Reg




Hazard Detection

The control for the hazard detection unit IS:

if ID/EX.MemRd » Checks if the instruction is a load

and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt)))
stall the pipeline



Data Hazards and Stalls (Cont’)

Time (in clock cycles)

Program
execution order
(in instructions)

CC1 CC2 CC3 CC4 CC5
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Dm Reg
»oll Sl
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N — _
and $4, $2, $5 Ig J‘ fRegl | Y]Reg|
or $8, $2, $6 Im HH Im H FHReg
Im
add $9, $4, $2 BUbDIC
| slt$1, $6, $7

and and or instructions repeat
in CC4 what they did in CC3

MReg|

A 4

S

CC9 CC10
Reg
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The Pipelined Datapath with Forwarding and Hazard Detection Unit

PCWrite

IF/IDWrite
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Branch Hazards

Time (in clock cycles)

A 4

Program
execution order

(in instructions) CC1 CC2 CC3 CC4 CC5 CC6 CC7 CC8 CC9

Addr. [Instr.
40 beq $1, $3,7 | Im R HRegl| T%r Dmge
N .

44 and $12, $2, $5 Im |[ Dmk‘ Reg

48 or $13, $6, $2

Reg

-,
E
I

Py,

Q

52 add $14, $2, $
——/

72 Iw $4, (50)$7 OReg( Dmid HReg

Actually, the number of instructions needs to be flushed can be reduced from 3 to 1
instruction (shown in the following slide) when the direction of branch is mispredicted.




Datapath for Branch (including HW to flush the pipeline)
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‘ Question 1

6.2 [10] <§6.1> A computer architect needs to design the pipeline of a new micro-
processor. She has an example workload program core with 10° instructions. Each
instruction takes 100 ps to finish.

a. How long does it take to execute this program core on a nonpipelined proces-
sor?

b. The current state-of-the-art microprocessor has about 20 pipeline stages.
Assume it is perfectly pipelined. How much speedup will it achieve compared
to the nonpipelined processor?

c. Real pipelining isn’t perfect, since implementing pipelining introduces some
overhead per pipeline stage. Will this overhead affect instruction latency,
instruction throughput, or both?

6.2

a. It takes 100 ps * 10° instructions = 100 microseconds to execute on a non-
pipelined processor (ignoring start and end transients in the pipeline).

b. A perfect 20-stage pipeline would speed up the execution by 20 times.

c. Pipeline overhead impacts both latency and throughput.




‘ Question 2

6.17 [5] <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

add $2, $3, §1
sub $4, §$3, §5
add $5, $3, §7
add $7, %6, §$1
add $8, $2, $6

At the end of the fifth cycle of execution, which registers are being read and which
register will be written?

6.18 [5] <§§6.4, 6.5> With regard to the program in Exercise 6.17, explain what the
forwarding unit is doing during the fifth cycle of execution. If any comparisons are
being made, mention them.




‘ Answer 2

6.17 At the end of the first cycle, instruction 1 is fetched.
At the end of the second cycle, instruction 1 reads registers.
At the end of the third cycle, instruction 2 reads registers.
At the end of the fourth cycle, instruction 3 reads registers.

At the end of the fifth cycle, instruction 4 reads registers, and instruction 1 writes
registers.

Therefore, at the end of the fifth cycle of execution, registers $6 and $1 are being
read and register $2 will be written.

6.18 The forwarding unit is seeing if it needs to forward. It is looking at the
instructions in the fourth and fifth stages and checking to see whether they intend
to write to the register file and whether the register written is being used as an ALU
input. Thus, it is comparing 3 =423 =227 =42 7 = 2?



‘ Question 3

6.22 [5] <§§6.4, 6.5> Consider executing the following code on the pipelined data-
path of Figure 6.36 on page 416:

Tw $4, 100(%$2)
sub $6, $4, §$3
add $2, $3, %5

How many cycles will it take to execute this code? Draw a diagram like that of Figure
6.34 on page 414 that illustrates the dependencies that need to be resolved, and pro-
vide another diagram like that of Figure 6.35 on page 415 that illustrates how the
code will actually be executed (incorporating any stalls or forwarding) so as to
resolve the identified problems.




‘ Answer 3

6.22 It will take 8 cycles to execute this code, including a bubble of 1 cycle due to
the dependency between the Tw and sub instructions.

Time iin clock eyeles) -
Program cCl CC2 CC3 CC4 CCS CCa oC7
execution
order

(in instructions)

— - —-—

lw $4, 100(%2) | IM LRBE | DMf{—~} |Reg!
| I

b $6, $4. 3 M (| FaRes ] DM| | {Req
=1 LT —|— |_
y add 52, 53, 55 IM— HReg| | DM b
Program Time (in clock cycles) -
execution cC1 cCc2 CC3 cC4 CC5 CCo cc7 CCs
order

(in instructions) _ __ _

bw 84, 100052) | IM Reg [ DM/ |o| |Reg |
IR L] |
] (_l‘r.i“
sub B3 - sy | ] g ||
56,534, % M JUERLEI?( JZ;RLg_
u L
I\ —
| T
y add 52, 53, 5 ™| | e
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